Research Article
BibTex RIS Cite

Urban Heat Island Mapping Based on a Local Climate Zone Classification : a Case Study in Strasbourg City, France

Year 2022, Volume: 9 Issue: 4, 57 - 67, 25.12.2022
https://doi.org/10.30897/ijegeo.1080023

Abstract

The Urban Heat Island (UHI) effect is characterised by higher temperatures in cities than in rural surroundings. This phenomenon leads to increased health risks in urban dwellers, particularly in the context of global climate change. It is essential to consider its spatial variability to propose efficient UHI mitigation strategies. The Local Climate Zone (LCZ) scheme is a climate-based classification that can accurately capture UHI intensities according to the urban area characteristics. In this study, an LCZ classification has been established for the city of Strasbourg by using a vector-based method that relies on a large vector database composed of land cover and cadastral parcels data. LCZ polygons are digitized from cadastral maps, then the different LCZ parameters are calculated for each of them. Six of the ten LCZ parameters proposed in the literature have been obtained. New criteria have been added to improve the classification, i.e. a vegetation parameter (VgSF) and a compactness index (CI). A given LCZ class is then assigned to each polygon using a trapezoidal fuzzy logic model, which is completed by a decision tree. The acquired final LCZ map shows that the developed vector-based method permits obtaining relevant LCZ classification. The LCZ parameters values are subsequently used to determine a multiple linear regression (MLR) aiming to get a UHI intensity for each LCZ polygon. The resulting UHI map of the Eurométropole de Strasbourg (EMS) accurately illustrates the strong spatial heterogeneity of the phenomenon.

Thanks

The authors would like to acknowledge the EMS geomatics department for the data of the study area as well as the Master students Camille Gourguechon and Olivier Montauban for their precious work.

References

  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1-26.
  • Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., Stewart, I.D. (2015). Mapping Local Climate Zones for a worldwide database of the form and function of cities. ISPRS International Journal of Geoinformation, 4(1), 199-219.
  • Bottyan, Z., Unger, J. (2003). A multiple statistical linear model for estimating the mean maximum urban heat island. Theoretical and Applied Climatology, 75, 233-243.
  • Chandler, T.J. (1965). The Climate of London. Hutchinson.
  • Chen, Y., Zheng, B., Hu, Y. (2020). Mapping Local Climate Zones using ArcGIS-based method and exploring Land Surface Temperature characteristics in Chenzou, China. Sustainability, 12, 2974.
  • Ellefsen, R. (1991). Mapping and measuring buildings in the urban canopy boundary layer in ten US cities. Energy and Buildings, 15-16, 1025-1049.
  • Geletič, J., Lehnert, M. (2016). GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Reports, 24(3), 2-12.
  • Gourguechon, C. (2018). Classification de données images et vecteur et de nuages de points dans le but d’extraire des zones climatiques types dans des quartiers de Strasbourg. Technological research project, INSA Strasbourg, France.
  • Hidalgo, J., Dumas, G., Masson, V., Petit, G., Bechtel, B., Bocher, E., Foley, M., Schoetter, R., Mills, G. (2019). Comparison between local climate zones maps derived from administrative datasets and satellite observations. Urban Climate, 27, 64-89.
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263.
  • Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C. (2018). Overview of the Meso-NH model version 5.4 and its applications. Geoscientific Model Development, 11, 1929-1969.
  • Landes, T., Najjar, G., Koehl, M., Montauban, O., Gourguechon, C., Kastendeuch, P., Slisse, P. (2020). Création de cartes de zones climatiques locales pour le suivi des îlots de chaleur urbains à Strasbourg. Revue XYZ de l’Association Française de Topographie (AFT), 163, 53-61.
  • Masson, V. (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-layer Meteorology. 118, 477-501.
  • Oke, T.R. (2004). Initial guidance to obtain representative meteorological observations at urban sites. IOM Rep. 81, World Meteorological Organization/TD-No 1250.
  • Oke, T.R., Mills, G., Christen, A., Voogt, J.A. (2017). Urban climates. Cambridge University Press.
  • Philipps, N., Kastendeuch, P.P, Najjar G. (2020). Analyse de la variabilité spatio-temporelle de l’ICU strasbourgeois. Climatologie, 17, 10.
  • Schatz, J., Kucharik, C.J. (2014). Seasonality of the urban heat island effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology, 53(10), 2371-2386.
  • Stewart, I.D. (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31(2), 200-217.
  • Stewart, I.D., Oke, T.R. (2012). Local Climate Zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 1879-1900.
  • Unger, J. (2004). Intra-urban relationship between surface geometry and urban heat island: review and new approach. Climate Research, 27(3), 253-264.
Year 2022, Volume: 9 Issue: 4, 57 - 67, 25.12.2022
https://doi.org/10.30897/ijegeo.1080023

Abstract

References

  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1-26.
  • Bechtel, B., Alexander, P., Böhner, J., Ching, J., Conrad, O., Feddema, J., Mills, G., See, L., Stewart, I.D. (2015). Mapping Local Climate Zones for a worldwide database of the form and function of cities. ISPRS International Journal of Geoinformation, 4(1), 199-219.
  • Bottyan, Z., Unger, J. (2003). A multiple statistical linear model for estimating the mean maximum urban heat island. Theoretical and Applied Climatology, 75, 233-243.
  • Chandler, T.J. (1965). The Climate of London. Hutchinson.
  • Chen, Y., Zheng, B., Hu, Y. (2020). Mapping Local Climate Zones using ArcGIS-based method and exploring Land Surface Temperature characteristics in Chenzou, China. Sustainability, 12, 2974.
  • Ellefsen, R. (1991). Mapping and measuring buildings in the urban canopy boundary layer in ten US cities. Energy and Buildings, 15-16, 1025-1049.
  • Geletič, J., Lehnert, M. (2016). GIS-based delineation of local climate zones: The case of medium-sized Central European cities. Moravian Geographical Reports, 24(3), 2-12.
  • Gourguechon, C. (2018). Classification de données images et vecteur et de nuages de points dans le but d’extraire des zones climatiques types dans des quartiers de Strasbourg. Technological research project, INSA Strasbourg, France.
  • Hidalgo, J., Dumas, G., Masson, V., Petit, G., Bechtel, B., Bocher, E., Foley, M., Schoetter, R., Mills, G. (2019). Comparison between local climate zones maps derived from administrative datasets and satellite observations. Urban Climate, 27, 64-89.
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263.
  • Lac, C., Chaboureau, J.-P., Masson, V., Pinty, J.-P., Tulet, P., Escobar, J., Leriche, M., Barthe, C. (2018). Overview of the Meso-NH model version 5.4 and its applications. Geoscientific Model Development, 11, 1929-1969.
  • Landes, T., Najjar, G., Koehl, M., Montauban, O., Gourguechon, C., Kastendeuch, P., Slisse, P. (2020). Création de cartes de zones climatiques locales pour le suivi des îlots de chaleur urbains à Strasbourg. Revue XYZ de l’Association Française de Topographie (AFT), 163, 53-61.
  • Masson, V. (2000). A physically-based scheme for the urban energy budget in atmospheric models. Boundary-layer Meteorology. 118, 477-501.
  • Oke, T.R. (2004). Initial guidance to obtain representative meteorological observations at urban sites. IOM Rep. 81, World Meteorological Organization/TD-No 1250.
  • Oke, T.R., Mills, G., Christen, A., Voogt, J.A. (2017). Urban climates. Cambridge University Press.
  • Philipps, N., Kastendeuch, P.P, Najjar G. (2020). Analyse de la variabilité spatio-temporelle de l’ICU strasbourgeois. Climatologie, 17, 10.
  • Schatz, J., Kucharik, C.J. (2014). Seasonality of the urban heat island effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology, 53(10), 2371-2386.
  • Stewart, I.D. (2011). A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31(2), 200-217.
  • Stewart, I.D., Oke, T.R. (2012). Local Climate Zones for urban temperature studies. Bulletin of the American Meteorological Society, 93, 1879-1900.
  • Unger, J. (2004). Intra-urban relationship between surface geometry and urban heat island: review and new approach. Climate Research, 27(3), 253-264.
There are 20 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Research Articles
Authors

Nathalia Philipps 0000-0001-6662-4332

Tania Landes 0000-0001-9115-9401

Pierre Kastendeuch 0000-0002-5479-3136

Georges Najjar 0000-0001-8249-2691

Camille Gourguechon This is me

Publication Date December 25, 2022
Published in Issue Year 2022 Volume: 9 Issue: 4

Cite

APA Philipps, N., Landes, T., Kastendeuch, P., Najjar, G., et al. (2022). Urban Heat Island Mapping Based on a Local Climate Zone Classification : a Case Study in Strasbourg City, France. International Journal of Environment and Geoinformatics, 9(4), 57-67. https://doi.org/10.30897/ijegeo.1080023