Review
BibTex RIS Cite

Duyuşsal Bileşenler Açısından Problem Kurmaya Yönelik SSCI İndeksli Çalışmaların İncelenmesi esi

Year 2023, Volume: 10 Issue: 2, 118 - 141, 30.06.2023
https://doi.org/10.17278/ijesim.1267361

Abstract

Problem kurma etkinlikleri, yaratıcı düşünmeye teşvik ettiği ve mevcut bilginin kullanımını sağladığı için öğrencilerin matematik kavramlarını anlamalarında önemli rol oynamaktadır. Öğrencilerin duyuşsal özelliklerinin matematik başarısı başta olmak üzere matematik öğrenme çıktılarını şekillendirdiği düşünüldüğünde problem kurma çalışmalarını duyuşsal bileşenler açısından ele alan çalışmaların bütünsel olarak incelenme gereksinimi ortaya çıkmaktadır. Bu doğrultuda araştırmanın amacı; SSCI indeksli dergilerde duyuşsal bileşenler açısından problem kurmaya yönelik yayımlanan çalışmaların genel özellikleri, amaç ve sonuçlarının sistematik derleme yoluyla incelenmesidir. Araştırmada duyuşsal bileşenleri içeren problem kurma araştırmalarının amaçlarından sonuçlarına kadar genel çerçeveleri çıkarılarak genel eğilimleri betimlenmiş ve değerlendirmeleri yapılmıştır. Çalışmada Web of Science veri tabanı kullanılmış ve anahtar kelimeler “problem posing (problem kurma), mathematics (matematik), attitude (tutum), self-efficacy (öz yeterlilik), affective factors (duyuşsal faktörler), motivation (motivasyon)” olarak belirlenmiştir. Çalışma kapsamında 19 dergi/kitap/kitap bölümüne ulaşılmıştır. Ulaşılan kaynaklardan 15 makale, 7 bildiri ve 2 adet kitap/kitap bölümü olmak üzere toplam 24 çalışma incelenmiştir. Çalışmaların çoğunlukla 2018-2020 yılları arasında yayımlandığı; problem kurma ile incelemeye alınan duyuşsal bileşenler; “tutum, öz yeterlilik, motivasyon, kaygı ve duyuşsal faktörler” olmak üzere çoğunlukla tutum (f=10) üzerinde çalışıldığı, öz yeterlilik (f=6) ve motivasyonun (f=4) ise tutum çalışmalarını niceliksel olarak izlediği; çoğunlukla öğrencilerle çalışıldığı (f=19) ve nicel araştırma yöntemlerinin daha fazla tercih edildiği (f=13) belirlenmiştir. Çalışmalarda problem kurmanın tutum, öz yeterlilik, kaygı ve motivasyon üzerindeki etkisi incelenmiştir. Çalışmaların amaç ve sonuçlarına göre dağılımları detaylı olarak incelenerek elde edilen çıktılara göre önerilerde bulunulmuştur.

References

  • Akay, H., & Boz, N. (2010). The effect of problem posing oriented analyses-II course on the attitudes toward mathematics and mathematics self-efficacy of elementary prospective mathematics teachers. Australian Journal of Teacher Education, 35(1), 59-75. http://dx.doi.org/10.14221/ajte.2010v35n1.6
  • Aromataris, E., & Pearson, A. (2014). The systematic review: An overview. AJN The American Journal of Nursing, 114(3), 53-58. doi: 10.1097/01.NAJ.0000444496.24228.2c
  • Balaban Salı, J. (2006). Tutumların öğretimi. İçerik türlerine dayalı öğretim. Nobel Yayın Dağıtım Ankara, 133-162.
  • Bataller, A., Ferrando, I., & Reyes-Torres, A. (2022). Visual poetry and real context situations in mathematical problem posing and solving: A study of the affective impact. Mathematics, 10(10), 1647, 1-24. https://doi.org/10.3390/math10101647
  • Bevan, D., Williams, A. M., & Capraro, M. M. (2019, August). Strike a pose: The impact of problem-posing on elementary students’ mathematical attitudes and achievement. In International Symposium Elementary Mathematics Teaching (pp. 80-88).
  • Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105, 457-485. https://doi.org/10.1007/s10649-020-09995-8
  • Bloom, B. S. (1976). Human characteristics and school learning. McGraw-Hill.
  • Bonotto, C. (2006, July). Extending students’ understanding of decimal numbers via realistic mathematical modeling and problem posing. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 193-200). Prague Charles University Prague.
  • Bonotto, C. (2009). Artifacts: Influencing practice and supporting problem posing in the mathematics classrooms. Proceedings of PME, 33(2), 193-200.
  • Bonotto, C. (2010). Realistic mathematical modeling and problem posing. In Modeling Students’ Mathematical Modeling Competencies (pp. 399-408). Springer, Boston, MA.
  • Cai, J., & Leikin, R. (2018). Call for papers: Educational Studies in Mathematics special issue: Affect in mathematical problem posing. Educational Studies in Mathematics, 99, 243-244.
  • Cai, J., & Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educ. Stud. Math., 105, 287–301.
  • Cansız Aktaş, M. (2022). Problem-posing research in mathematics education: A bibliometric analysis. Journal of Pedagogical Research, 6(4), 217-233. https://doi.org/10.33902/JPR.202217414
  • Chang, K. E., Wu, L. J., Weng, S. E., & Sung, Y. T. (2012). Embedding game-based problem-solving phase into problem-posing system for mathematics learning. Computers & Education, 58(2), 775-786.
  • Cotič, M., & Zuljan, M. V. (2009). Problem‐based instruction in mathematics and its impact on the cognitive results of the students and on affective‐motivational aspects. Educational Studies, 35(3), 297-310.
  • Darhim, Prabawanto, S., & Susilo, B. E. (2020). The effect of problem-based learning and mathematical problem posing in ımproving student’s critical thinking skills. International Journal of Instruction, 13(4), 103-116. https://doi.org/10.29333/iji.2020.1347a
  • Demirbaş, M., & Yağbasan, R. (2004). Fen bilgisi öğretiminde, duyuşsal özelliklerin değerlendirilmesinin işlevi ve öğretim süreci içinde, öğretmen uygulamalarının analizi üzerine bir araştırma. Gazi Üniversitesi Kırşehir Eğitim Fakültesi, 5(2), 177-193.
  • Duman, B., & Yakar, A. (2017). Öğretime yönelik duyuşsal farkındalık ölçeği. Cumhuriyet Uluslararası Eğitim Dergisi, 6(1), 200-229.
  • English, L. D. (2003). Problem posing in the elementary curriculum. In F. K. Lester Jr. & R. I. Charles (Eds.), Teaching mathematics through problem solving: Prekindergarten—grade 6 (pp. 187–198). Reston: NCTM.
  • Ertane Baş, Ö., & Özturan Sağırlı, M. (2021). Türkiye’de matematik eğitimi alanında yapılan problem temalı makalelere yönelik bir içerik analizi. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 50(2), 778-832.
  • Farrow, R., Iniesto, F., Weller, M., & Pitt, R. (2020). GO-GN research methods handbook. Milton Keynes: Global OER Gradate Network. Retrieved from http://go-gn.net/wp-content/uploads/2020/07/GO-GN adresinden elde edildi.
  • Fetterly, J. M. (2020). Fostering mathematical creativity while impacting beliefs and anxiety in mathematics. Journal of Humanistic Mathematics, 10(2), 102-128.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. New York: McGraw-Hill.
  • Gömleksiz, M. N. ve Kan, A. Ü. (2012). Eğitimde duyuşsal boyut ve duyuşsal öğrenme. Turkish Studies - International Periodical For The Languages, Literature and History of Turkish or Turkic, 7(1), 1159-1177.
  • Guo, M., Leung, F. K. S., & Hu, X. (2020). Affective determinants of mathematical problem posing: The case of Chinese Miao students. Educational Studies in Mathematics, 105, 367-387.
  • Hannula, M. S. (2019). Young learners’ mathematics-related affect: A commentary on concepts, methods, and developmental trends. Educational Studies in Mathematics, 100(3), 309-316.
  • Hatipoğlu, H. (2021). Sistematik derleme ve meta analiz. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(1), 7-10.
  • Headrick, L., Wiezel, A., Tarr, G., Zhang, X., Cullicott, C. E., Middleton, J. A., & Jansen, A. (2020). Engagement and affect patterns in high school mathematics classrooms that exhibit spontaneous problem posing: An exploratory framework and study. Educational Studies in Mathematics, 105(3), 435-456.
  • Hwang, G. J., Huang, H., Wang, R. X., & Zhu, L. L. (2021). Effects of a concept mapping‐based problem‐posing approach on students’ learning achievements and critical thinking tendency: An application in Classical Chinese learning contexts. British Journal of Educational Technology, 52(1), 374-493.
  • Irvine, J. (2017). Problem posing in consumer mathematics classes: Not just for future mathematicians. The Mathematics Enthusiast, 14(1), 387-411. doi: https://doi.org/10.54870/1551-3440.1404
  • Isrokatun, I., Haryani, C. S., & Rahmi, N. I. (2021, April). Analysis of mathematical problem-posing ability. In Journal of Physics: Conference Series (Vol. 1869, No. 1, p. 012122). IOP Publishing.
  • Işık, C., & Kar, T. (2012). Matematik dersinde problem kurmaya yönelik öğretmen görüşleri üzerine nitel bir çalışma. Milli Eğitim Dergisi, 194, 199-215.
  • Karaçam, Z. (2013). Sistematik derleme metodolojisi: Sistematik derleme hazırlamak için bir rehber. Dokuz Eylül Üniversitesi Hemşirelik Fakültesi Elektronik Dergisi, 6(1), 26-33.
  • Katrancı, Y., & Şengül, S. (2019). The relationship between middle school students' attitudes towards mathematical problem-posing, attitudes towards mathematical problem-solving, and attitudes towards mathematics. Education and Science, 44, 1-24.
  • Keşan, C., Kaya, D., & Güvercin, S. (2010). The effect of problem posing approach to the gifted student’s mathematical abilities. International Online Journal of Educational Sciences, 2(3), 677–687.
  • Korkmaz, E., & Gür, H. (2006). Öğretmen adaylarının problem kurma becerilerinin belirlenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 65-74.
  • Kul, Ü., & Çelik, S. (2020). A meta- analysis of the impact of problem posing strategies on student’s learning of mathematics. Revista Românească pentru Educaţie Multidimensională, 12(3), 341-368. https://doi.org/10.18662/rrem/12.3/325
  • Lee, S. Y. (2021). Research status of mathematical problem posing in mathematics education journals. International Journal of Science and Mathematics Education, 19(8), 1677-1693.
  • Lewis, W. M., & Colonnese, M. W. (2021). Fostering mathematical creativity through problem posing and three-act tasks. Gifted Child Today, 44(3), 141-150.
  • Liu, Q., Liu, J., Cai, J., & Zhang, Z. (2020). The relationship between domain- and task-specific self-efficacy and mathematical problem posing: A large-scale study of eighth-grade students in China. Educational Studies in Mathematics, 105, 407-431. https://doi.org/10.1007/s10649-020-09977-w
  • Lowrie, T. (2002). Designing a framework for problem posing: young children generating open-ended tasks. Contemporary Issues in Early Childhood, 3(3), 354-364. https://doi.org/10.2304/ciec.2002.3.3.4
  • Malmivuori, M. L. (2001). The dynamics of affect, cognition, and social environment in the regulation of personal learning processes: The case of mathematics. University of Helsinki Department of Education Research Report 172. Helsinki University Press.
  • Marchisio, M., Barana, A., Fioravera, M., Fissore, C., Anna, B., Massimo, E., ... & Rabellino, S. (2018). Online asynchronous collaboration for enhancing teacher professional knowledges and competencies. In The 14th International Scientific Conference e-Learning and Software for Education (Vol. 1, pp. 167-175).
  • McDonald, P. A., & Smith, J. M. (2020). Improving mathematical learning in Scotland's curriculum for excellence through problem posing: An integrative review. The Curriculum Journal, 31(3), 398-435.
  • Mestre, J. P. (2002). Probing adults’ conceptual understanding and transfer of learning via problem posing. Journal of Applied Developmental Psychology, 23(1), 9-50.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks, CA: Sage.
  • Nedaei, M., Radmehr, F., & Drake, M. (2019). Exploring engineering undergraduate students’ attitudes toward mathematical problem posing. Journal of Professional Issues in Engineering Education and Practice, 145(4), 04019009.
  • Ningsih, M. K., Sujadi, I., & Subanti, S. (2018, January). Creative thinking processes of vocational students with high learning motivation in mathematic problem posing. In University of Muhammadiyah Malang's 1st International Conference of Mathematics Education (INCOMED 2017) (pp. 192-196). Atlantis Press.
  • Oh, Y., & Jeon, Y. (2018). The effect of problem-posing activities on the affective domain of mathematics. The Journal of the Korea Contents Association, 18(2), 541-552.
  • Özçelik, D. A. (1998). Eğitim programları ve öğretim (4. baskı). Ankara : ÖSYM Yayınları.
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906.
  • Parhizgar, Z., Dehbashi, A., Liljedahl, P., & Alamolhodaei, H. (2022). Exploring students’ misconceptions of the function concept through problem-posing tasks and their views thereon. International Journal of Mathematical Education in Science and Technology, 53(12), 3261–3285.
  • Pollock, A., & Berge, E. (2018). How to do a systematic review. International Journal of Stroke, 13(2), 138-156.
  • Prabhu, V., & Czarnocha, B. (2015). Problem-posing/problem-solving dynamics in the context of a teaching-research and discovery method. In Mathematical Problem Posing (pp. 355-372). Springer, New York, NY.
  • Pratiwi, H. (2019, March). How does HOTS based problem posing model improve students’ attitudes toward mathematics?. In IOP Conference Series: Earth and Environmental Science (Vol. 243, No. 1, p. 012138). IOP Publishing.
  • Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303-324.
  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.
  • Stoyanova, E. (2003). Extending students' understanding of mathematics via problem-posing. Australian Mathematics Teacher, 59(2), 32-40.
  • Şengül Akdemir, T., & Türnüklü, E. (2023). Sınıf içi problem kurma uygulaması ve kurulan problemlerin değerlendirilmesine ilişkin ortaokul matematik öğretmenlerinin görüşleri. International Journal of New Trends in Arts, Sports & Science Education (IJTASE), 12(1), 9-22.
  • Tichá, M., & Hošpesová, A. (2009). Problem posing and development of pedagogical content knowledge in prospective teacher training. In meeting of CERME Vol. 6. doi, 10, 978-1.
  • Tiftik, C. (2021). Akademisyenler ve psikolojik yıldırma: Sistematik bir derleme araştırması. IBAD Sosyal Bilimler Dergisi, (11), 249-279.
  • Toluk Uçar, Z. (2009). Developing pre-service teachers understanding of fractions through problem posing. Teaching and Teacher Education, 25, 166-175.
  • Torgerson, C. (2003). Systematic reviews. London: Continuum International Publishing Group.
  • Vionita, A., & Purboningsih, D. (2017, August). Improving attitudes toward mathematics learning with problem posing in class VIII. In AIP Conference Proceedings (Vol. 1868, No. 1, p. 050007). AIP Publishing LLC.
  • Voica, C., Singer, F. M., & Stan, E. (2020). How are motivation and self-efficacy interacting in problem-solving and problem-posing?. Educational Studies in Mathematics, 105(3), 487-517.
  • Wang, X. M., & Hwang, G. J. (2017). A problem posing-based practicing strategy for facilitating students’ computer programming skills in the team-based learning mode. Educational Technology Research and Development, 65(6), 1655-1671.
  • İncelenen Çalışmalar
  • Ç1. Katrancı, Y., & Şengül, S. (2019). The relationship between middle school students' attitudes towards mathematical problem-posing, attitudes towards mathematical problem-solving, and attitudes towards mathematics. Education and Science, 44, 1-24.
  • Ç2. Bevan, D., Williams, A. M., & Capraro, M. M. (2019, August). Strike a pose: The impact of problem-posing on elementary students’ mathematical attitudes and achievement. In International Symposium Elementary Mathematics Teaching (pp. 80-88).
  • Ç3. Nedaei, M., Radmehr, F., & Drake, M. (2019). Exploring engineering undergraduate students’ attitudes toward mathematical problem posing. Journal of Professional Issues in Engineering Education and Practice, 145(4), 04019009.
  • Ç4. Pratiwi, H. (2019, March). How does HOTS based problem posing model improve students’ attitudes toward mathematics?. In IOP Conference Series: Earth and Environmental Science (Vol. 243, No. 1, p. 012138). IOP Publishing.
  • Ç5. Bonotto, C. (2009). Artifacts: Influencing practice and supporting problem posing in the mathematics classrooms. Proceedings of PME, 33(2), 193-200.
  • Ç6. Vionita, A., & Purboningsih, D. (2017, August). Improving attitudes toward mathematics learning with problem posing in class VIII. In AIP Conference Proceedings (Vol. 1868, No. 1, p. 050007). AIP Publishing LLC. Ç7. Akay, H., & Boz, N. (2010). The effect of problem posing oriented analyses-II course on the attitudes toward mathematics and mathematics self-efficacy of elementary prospective mathematics teachers. Australian Journal of Teacher Education, 35(1), 59-75.
  • Ç8. Bonotto, C. (2010). Realistic mathematical modeling and problem posing. In Modeling Students’ Mathematical Modeling Competencies (pp. 399-408). Springer, Boston, MA.
  • Ç9. Bonotto, C. (2006, July). Extending students’ understanding of decimal numbers via realistic mathematical modeling and problem posing. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 193-200). Prague Charles University Prague.
  • Ç10. Cotič, M., & Zuljan, M. V. (2009). Problem‐based instruction in mathematics and its impact on the cognitive results of the students and on affective‐motivational aspects. Educational Studies, 35(3), 297-310.
  • Ç11. Irvine, J. (2017). Problem posing in consumer mathematics classes: Not just for future mathematicians. The Mathematics Enthusiast, 14(1), 387-412.
  • Ç12. Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105(3), 457-485.
  • Ç13. Voica, C., Singer, F. M., & Stan, E. (2020). How are motivation and self-efficacy interacting in problem-solving and problem-posing?. Educational Studies in Mathematics, 105(3), 487-517.
  • Ç14. Liu, Q., Liu, J., Cai, J., & Zhang, Z. (2020). The relationship between domain-and task-specific self-efficacy and mathematical problem posing: A large-scale study of eighth-grade students in China. Educational Studies in Mathematics, 105(3), 407-431.
  • Ç15. Headrick, L., Wiezel, A., Tarr, G., Zhang, X., Cullicott, C. E., Middleton, J. A., & Jansen, A. (2020). Engagement and affect patterns in high school mathematics classrooms that exhibit spontaneous problem posing: An exploratory framework and study. Educational Studies in Mathematics, 105(3), 435-456.
  • Ç16. Wang, X. M., & Hwang, G. J. (2017). A problem posing-based practicing strategy for facilitating students’ computer programming skills in the team-based learning mode. Educational Technology Research and Development, 65(6), 1655-1671.
  • Ç17. Guo, M., Leung, F. K., & Hu, X. (2020). Affective determinants of mathematical problem posing: the case of Chinese Miao students. Educational Studies in Mathematics, 105(3), 367-387.
  • Ç18. Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303-324.
  • Ç19. Fetterly, J. M. (2020). Fostering mathematical creativity while impacting beliefs and anxiety in mathematics. Journal of Humanistic Mathematics, 10(2), 102-128.
  • Ç20. Bataller, A., Ferrando, I., & Reyes-Torres, A. (2022). Visual poetry and real context situations in mathematical problem posing and solving: A study of the affective impact. Mathematics, 10(10), 1-24.
  • Ç21. Ningsih, M. K., Sujadi, I., & Subanti, S. (2018, January). Creative thinking processes of vocational students with high learning motivation in mathematic problem posing. In University of Muhammadiyah Malang's 1st International Conference of Mathematics Education (INCOMED 2017) (pp. 192-196). Atlantis Press.
  • Ç22. Chang, K. E., Wu, L. J., Weng, S. E., & Sung, Y. T. (2012). Embedding game-based problem-solving phase into problem-posing system for mathematics learning. Computers & Education, 58(2), 775-786.
  • Ç23. Prabhu, V., & Czarnocha, B. (2015). Problem-posing/problem-solving dynamics in the context of a teaching-research and discovery method. In Mathematical Problem Posing (pp. 355-372). Springer, New York, NY.
  • Ç24. Marchisio, M., Barana, A., Fioravera, M., Fissore, C., Anna, B., Massimo, E., ... & Rabellino, S. (2018). Online asynchronous collaboration for enhancing teacher professional knowledges and competencies. In The 14th International Scientific Conference e-Learning and Software for Education (Vol. 1, pp. 167-175).

Examination of SSCI-Indexed Studies on Problem-Posing in Terms of Affective Components

Year 2023, Volume: 10 Issue: 2, 118 - 141, 30.06.2023
https://doi.org/10.17278/ijesim.1267361

Abstract

Problem-posing activities are crucial for students’ understanding of mathematical concepts, as they encourage creativity and application of prior knowledge. Since students' affective characteristics can significantly impact their math learning outcomes, it is important to comprehensively analyze research that investigates problem-posing activities in terms of their affective components. This systematic review aims to assess the general features, goals, and outcomes of SSCI-indexed studies on problem-posing involving affective components, with the goal of providing a comprehensive framework for such studies. The research will analyze the general tendencies of these studies, from their objectives to their outcomes. The Web of Science database was utilized, and the keywords of “problem-posing, mathematics, attitude, self-efficacy, affective factors, and motivation” were identified. The study analyzed 24 studies from 19 journals/books/book chapters, including 15 articles, 7 papers, and 2 books/book chapters. Most studies were published between 2018-2020, and attitude (f=10), self-efficacy (f=6), and motivation (f=4) were the most studied affective components. Students were the primary sample group (f=19), and quantitative research methods were predominantly used (f=13). The studies examined the effect of problem-posing on attitude, self-efficacy, anxiety, and motivation. The distribution of studies based on objectives and outcomes was analyzed, and recommendations were made based on the gathered data.

References

  • Akay, H., & Boz, N. (2010). The effect of problem posing oriented analyses-II course on the attitudes toward mathematics and mathematics self-efficacy of elementary prospective mathematics teachers. Australian Journal of Teacher Education, 35(1), 59-75. http://dx.doi.org/10.14221/ajte.2010v35n1.6
  • Aromataris, E., & Pearson, A. (2014). The systematic review: An overview. AJN The American Journal of Nursing, 114(3), 53-58. doi: 10.1097/01.NAJ.0000444496.24228.2c
  • Balaban Salı, J. (2006). Tutumların öğretimi. İçerik türlerine dayalı öğretim. Nobel Yayın Dağıtım Ankara, 133-162.
  • Bataller, A., Ferrando, I., & Reyes-Torres, A. (2022). Visual poetry and real context situations in mathematical problem posing and solving: A study of the affective impact. Mathematics, 10(10), 1647, 1-24. https://doi.org/10.3390/math10101647
  • Bevan, D., Williams, A. M., & Capraro, M. M. (2019, August). Strike a pose: The impact of problem-posing on elementary students’ mathematical attitudes and achievement. In International Symposium Elementary Mathematics Teaching (pp. 80-88).
  • Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105, 457-485. https://doi.org/10.1007/s10649-020-09995-8
  • Bloom, B. S. (1976). Human characteristics and school learning. McGraw-Hill.
  • Bonotto, C. (2006, July). Extending students’ understanding of decimal numbers via realistic mathematical modeling and problem posing. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 193-200). Prague Charles University Prague.
  • Bonotto, C. (2009). Artifacts: Influencing practice and supporting problem posing in the mathematics classrooms. Proceedings of PME, 33(2), 193-200.
  • Bonotto, C. (2010). Realistic mathematical modeling and problem posing. In Modeling Students’ Mathematical Modeling Competencies (pp. 399-408). Springer, Boston, MA.
  • Cai, J., & Leikin, R. (2018). Call for papers: Educational Studies in Mathematics special issue: Affect in mathematical problem posing. Educational Studies in Mathematics, 99, 243-244.
  • Cai, J., & Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educ. Stud. Math., 105, 287–301.
  • Cansız Aktaş, M. (2022). Problem-posing research in mathematics education: A bibliometric analysis. Journal of Pedagogical Research, 6(4), 217-233. https://doi.org/10.33902/JPR.202217414
  • Chang, K. E., Wu, L. J., Weng, S. E., & Sung, Y. T. (2012). Embedding game-based problem-solving phase into problem-posing system for mathematics learning. Computers & Education, 58(2), 775-786.
  • Cotič, M., & Zuljan, M. V. (2009). Problem‐based instruction in mathematics and its impact on the cognitive results of the students and on affective‐motivational aspects. Educational Studies, 35(3), 297-310.
  • Darhim, Prabawanto, S., & Susilo, B. E. (2020). The effect of problem-based learning and mathematical problem posing in ımproving student’s critical thinking skills. International Journal of Instruction, 13(4), 103-116. https://doi.org/10.29333/iji.2020.1347a
  • Demirbaş, M., & Yağbasan, R. (2004). Fen bilgisi öğretiminde, duyuşsal özelliklerin değerlendirilmesinin işlevi ve öğretim süreci içinde, öğretmen uygulamalarının analizi üzerine bir araştırma. Gazi Üniversitesi Kırşehir Eğitim Fakültesi, 5(2), 177-193.
  • Duman, B., & Yakar, A. (2017). Öğretime yönelik duyuşsal farkındalık ölçeği. Cumhuriyet Uluslararası Eğitim Dergisi, 6(1), 200-229.
  • English, L. D. (2003). Problem posing in the elementary curriculum. In F. K. Lester Jr. & R. I. Charles (Eds.), Teaching mathematics through problem solving: Prekindergarten—grade 6 (pp. 187–198). Reston: NCTM.
  • Ertane Baş, Ö., & Özturan Sağırlı, M. (2021). Türkiye’de matematik eğitimi alanında yapılan problem temalı makalelere yönelik bir içerik analizi. Çukurova Üniversitesi Eğitim Fakültesi Dergisi, 50(2), 778-832.
  • Farrow, R., Iniesto, F., Weller, M., & Pitt, R. (2020). GO-GN research methods handbook. Milton Keynes: Global OER Gradate Network. Retrieved from http://go-gn.net/wp-content/uploads/2020/07/GO-GN adresinden elde edildi.
  • Fetterly, J. M. (2020). Fostering mathematical creativity while impacting beliefs and anxiety in mathematics. Journal of Humanistic Mathematics, 10(2), 102-128.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education. New York: McGraw-Hill.
  • Gömleksiz, M. N. ve Kan, A. Ü. (2012). Eğitimde duyuşsal boyut ve duyuşsal öğrenme. Turkish Studies - International Periodical For The Languages, Literature and History of Turkish or Turkic, 7(1), 1159-1177.
  • Guo, M., Leung, F. K. S., & Hu, X. (2020). Affective determinants of mathematical problem posing: The case of Chinese Miao students. Educational Studies in Mathematics, 105, 367-387.
  • Hannula, M. S. (2019). Young learners’ mathematics-related affect: A commentary on concepts, methods, and developmental trends. Educational Studies in Mathematics, 100(3), 309-316.
  • Hatipoğlu, H. (2021). Sistematik derleme ve meta analiz. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(1), 7-10.
  • Headrick, L., Wiezel, A., Tarr, G., Zhang, X., Cullicott, C. E., Middleton, J. A., & Jansen, A. (2020). Engagement and affect patterns in high school mathematics classrooms that exhibit spontaneous problem posing: An exploratory framework and study. Educational Studies in Mathematics, 105(3), 435-456.
  • Hwang, G. J., Huang, H., Wang, R. X., & Zhu, L. L. (2021). Effects of a concept mapping‐based problem‐posing approach on students’ learning achievements and critical thinking tendency: An application in Classical Chinese learning contexts. British Journal of Educational Technology, 52(1), 374-493.
  • Irvine, J. (2017). Problem posing in consumer mathematics classes: Not just for future mathematicians. The Mathematics Enthusiast, 14(1), 387-411. doi: https://doi.org/10.54870/1551-3440.1404
  • Isrokatun, I., Haryani, C. S., & Rahmi, N. I. (2021, April). Analysis of mathematical problem-posing ability. In Journal of Physics: Conference Series (Vol. 1869, No. 1, p. 012122). IOP Publishing.
  • Işık, C., & Kar, T. (2012). Matematik dersinde problem kurmaya yönelik öğretmen görüşleri üzerine nitel bir çalışma. Milli Eğitim Dergisi, 194, 199-215.
  • Karaçam, Z. (2013). Sistematik derleme metodolojisi: Sistematik derleme hazırlamak için bir rehber. Dokuz Eylül Üniversitesi Hemşirelik Fakültesi Elektronik Dergisi, 6(1), 26-33.
  • Katrancı, Y., & Şengül, S. (2019). The relationship between middle school students' attitudes towards mathematical problem-posing, attitudes towards mathematical problem-solving, and attitudes towards mathematics. Education and Science, 44, 1-24.
  • Keşan, C., Kaya, D., & Güvercin, S. (2010). The effect of problem posing approach to the gifted student’s mathematical abilities. International Online Journal of Educational Sciences, 2(3), 677–687.
  • Korkmaz, E., & Gür, H. (2006). Öğretmen adaylarının problem kurma becerilerinin belirlenmesi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 65-74.
  • Kul, Ü., & Çelik, S. (2020). A meta- analysis of the impact of problem posing strategies on student’s learning of mathematics. Revista Românească pentru Educaţie Multidimensională, 12(3), 341-368. https://doi.org/10.18662/rrem/12.3/325
  • Lee, S. Y. (2021). Research status of mathematical problem posing in mathematics education journals. International Journal of Science and Mathematics Education, 19(8), 1677-1693.
  • Lewis, W. M., & Colonnese, M. W. (2021). Fostering mathematical creativity through problem posing and three-act tasks. Gifted Child Today, 44(3), 141-150.
  • Liu, Q., Liu, J., Cai, J., & Zhang, Z. (2020). The relationship between domain- and task-specific self-efficacy and mathematical problem posing: A large-scale study of eighth-grade students in China. Educational Studies in Mathematics, 105, 407-431. https://doi.org/10.1007/s10649-020-09977-w
  • Lowrie, T. (2002). Designing a framework for problem posing: young children generating open-ended tasks. Contemporary Issues in Early Childhood, 3(3), 354-364. https://doi.org/10.2304/ciec.2002.3.3.4
  • Malmivuori, M. L. (2001). The dynamics of affect, cognition, and social environment in the regulation of personal learning processes: The case of mathematics. University of Helsinki Department of Education Research Report 172. Helsinki University Press.
  • Marchisio, M., Barana, A., Fioravera, M., Fissore, C., Anna, B., Massimo, E., ... & Rabellino, S. (2018). Online asynchronous collaboration for enhancing teacher professional knowledges and competencies. In The 14th International Scientific Conference e-Learning and Software for Education (Vol. 1, pp. 167-175).
  • McDonald, P. A., & Smith, J. M. (2020). Improving mathematical learning in Scotland's curriculum for excellence through problem posing: An integrative review. The Curriculum Journal, 31(3), 398-435.
  • Mestre, J. P. (2002). Probing adults’ conceptual understanding and transfer of learning via problem posing. Journal of Applied Developmental Psychology, 23(1), 9-50.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks, CA: Sage.
  • Nedaei, M., Radmehr, F., & Drake, M. (2019). Exploring engineering undergraduate students’ attitudes toward mathematical problem posing. Journal of Professional Issues in Engineering Education and Practice, 145(4), 04019009.
  • Ningsih, M. K., Sujadi, I., & Subanti, S. (2018, January). Creative thinking processes of vocational students with high learning motivation in mathematic problem posing. In University of Muhammadiyah Malang's 1st International Conference of Mathematics Education (INCOMED 2017) (pp. 192-196). Atlantis Press.
  • Oh, Y., & Jeon, Y. (2018). The effect of problem-posing activities on the affective domain of mathematics. The Journal of the Korea Contents Association, 18(2), 541-552.
  • Özçelik, D. A. (1998). Eğitim programları ve öğretim (4. baskı). Ankara : ÖSYM Yayınları.
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906.
  • Parhizgar, Z., Dehbashi, A., Liljedahl, P., & Alamolhodaei, H. (2022). Exploring students’ misconceptions of the function concept through problem-posing tasks and their views thereon. International Journal of Mathematical Education in Science and Technology, 53(12), 3261–3285.
  • Pollock, A., & Berge, E. (2018). How to do a systematic review. International Journal of Stroke, 13(2), 138-156.
  • Prabhu, V., & Czarnocha, B. (2015). Problem-posing/problem-solving dynamics in the context of a teaching-research and discovery method. In Mathematical Problem Posing (pp. 355-372). Springer, New York, NY.
  • Pratiwi, H. (2019, March). How does HOTS based problem posing model improve students’ attitudes toward mathematics?. In IOP Conference Series: Earth and Environmental Science (Vol. 243, No. 1, p. 012138). IOP Publishing.
  • Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303-324.
  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.
  • Stoyanova, E. (2003). Extending students' understanding of mathematics via problem-posing. Australian Mathematics Teacher, 59(2), 32-40.
  • Şengül Akdemir, T., & Türnüklü, E. (2023). Sınıf içi problem kurma uygulaması ve kurulan problemlerin değerlendirilmesine ilişkin ortaokul matematik öğretmenlerinin görüşleri. International Journal of New Trends in Arts, Sports & Science Education (IJTASE), 12(1), 9-22.
  • Tichá, M., & Hošpesová, A. (2009). Problem posing and development of pedagogical content knowledge in prospective teacher training. In meeting of CERME Vol. 6. doi, 10, 978-1.
  • Tiftik, C. (2021). Akademisyenler ve psikolojik yıldırma: Sistematik bir derleme araştırması. IBAD Sosyal Bilimler Dergisi, (11), 249-279.
  • Toluk Uçar, Z. (2009). Developing pre-service teachers understanding of fractions through problem posing. Teaching and Teacher Education, 25, 166-175.
  • Torgerson, C. (2003). Systematic reviews. London: Continuum International Publishing Group.
  • Vionita, A., & Purboningsih, D. (2017, August). Improving attitudes toward mathematics learning with problem posing in class VIII. In AIP Conference Proceedings (Vol. 1868, No. 1, p. 050007). AIP Publishing LLC.
  • Voica, C., Singer, F. M., & Stan, E. (2020). How are motivation and self-efficacy interacting in problem-solving and problem-posing?. Educational Studies in Mathematics, 105(3), 487-517.
  • Wang, X. M., & Hwang, G. J. (2017). A problem posing-based practicing strategy for facilitating students’ computer programming skills in the team-based learning mode. Educational Technology Research and Development, 65(6), 1655-1671.
  • İncelenen Çalışmalar
  • Ç1. Katrancı, Y., & Şengül, S. (2019). The relationship between middle school students' attitudes towards mathematical problem-posing, attitudes towards mathematical problem-solving, and attitudes towards mathematics. Education and Science, 44, 1-24.
  • Ç2. Bevan, D., Williams, A. M., & Capraro, M. M. (2019, August). Strike a pose: The impact of problem-posing on elementary students’ mathematical attitudes and achievement. In International Symposium Elementary Mathematics Teaching (pp. 80-88).
  • Ç3. Nedaei, M., Radmehr, F., & Drake, M. (2019). Exploring engineering undergraduate students’ attitudes toward mathematical problem posing. Journal of Professional Issues in Engineering Education and Practice, 145(4), 04019009.
  • Ç4. Pratiwi, H. (2019, March). How does HOTS based problem posing model improve students’ attitudes toward mathematics?. In IOP Conference Series: Earth and Environmental Science (Vol. 243, No. 1, p. 012138). IOP Publishing.
  • Ç5. Bonotto, C. (2009). Artifacts: Influencing practice and supporting problem posing in the mathematics classrooms. Proceedings of PME, 33(2), 193-200.
  • Ç6. Vionita, A., & Purboningsih, D. (2017, August). Improving attitudes toward mathematics learning with problem posing in class VIII. In AIP Conference Proceedings (Vol. 1868, No. 1, p. 050007). AIP Publishing LLC. Ç7. Akay, H., & Boz, N. (2010). The effect of problem posing oriented analyses-II course on the attitudes toward mathematics and mathematics self-efficacy of elementary prospective mathematics teachers. Australian Journal of Teacher Education, 35(1), 59-75.
  • Ç8. Bonotto, C. (2010). Realistic mathematical modeling and problem posing. In Modeling Students’ Mathematical Modeling Competencies (pp. 399-408). Springer, Boston, MA.
  • Ç9. Bonotto, C. (2006, July). Extending students’ understanding of decimal numbers via realistic mathematical modeling and problem posing. In Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 193-200). Prague Charles University Prague.
  • Ç10. Cotič, M., & Zuljan, M. V. (2009). Problem‐based instruction in mathematics and its impact on the cognitive results of the students and on affective‐motivational aspects. Educational Studies, 35(3), 297-310.
  • Ç11. Irvine, J. (2017). Problem posing in consumer mathematics classes: Not just for future mathematicians. The Mathematics Enthusiast, 14(1), 387-412.
  • Ç12. Bicer, A., Lee, Y., Perihan, C., Capraro, M. M., & Capraro, R. M. (2020). Considering mathematical creative self-efficacy with problem posing as a measure of mathematical creativity. Educational Studies in Mathematics, 105(3), 457-485.
  • Ç13. Voica, C., Singer, F. M., & Stan, E. (2020). How are motivation and self-efficacy interacting in problem-solving and problem-posing?. Educational Studies in Mathematics, 105(3), 487-517.
  • Ç14. Liu, Q., Liu, J., Cai, J., & Zhang, Z. (2020). The relationship between domain-and task-specific self-efficacy and mathematical problem posing: A large-scale study of eighth-grade students in China. Educational Studies in Mathematics, 105(3), 407-431.
  • Ç15. Headrick, L., Wiezel, A., Tarr, G., Zhang, X., Cullicott, C. E., Middleton, J. A., & Jansen, A. (2020). Engagement and affect patterns in high school mathematics classrooms that exhibit spontaneous problem posing: An exploratory framework and study. Educational Studies in Mathematics, 105(3), 435-456.
  • Ç16. Wang, X. M., & Hwang, G. J. (2017). A problem posing-based practicing strategy for facilitating students’ computer programming skills in the team-based learning mode. Educational Technology Research and Development, 65(6), 1655-1671.
  • Ç17. Guo, M., Leung, F. K., & Hu, X. (2020). Affective determinants of mathematical problem posing: the case of Chinese Miao students. Educational Studies in Mathematics, 105(3), 367-387.
  • Ç18. Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics, 105(3), 303-324.
  • Ç19. Fetterly, J. M. (2020). Fostering mathematical creativity while impacting beliefs and anxiety in mathematics. Journal of Humanistic Mathematics, 10(2), 102-128.
  • Ç20. Bataller, A., Ferrando, I., & Reyes-Torres, A. (2022). Visual poetry and real context situations in mathematical problem posing and solving: A study of the affective impact. Mathematics, 10(10), 1-24.
  • Ç21. Ningsih, M. K., Sujadi, I., & Subanti, S. (2018, January). Creative thinking processes of vocational students with high learning motivation in mathematic problem posing. In University of Muhammadiyah Malang's 1st International Conference of Mathematics Education (INCOMED 2017) (pp. 192-196). Atlantis Press.
  • Ç22. Chang, K. E., Wu, L. J., Weng, S. E., & Sung, Y. T. (2012). Embedding game-based problem-solving phase into problem-posing system for mathematics learning. Computers & Education, 58(2), 775-786.
  • Ç23. Prabhu, V., & Czarnocha, B. (2015). Problem-posing/problem-solving dynamics in the context of a teaching-research and discovery method. In Mathematical Problem Posing (pp. 355-372). Springer, New York, NY.
  • Ç24. Marchisio, M., Barana, A., Fioravera, M., Fissore, C., Anna, B., Massimo, E., ... & Rabellino, S. (2018). Online asynchronous collaboration for enhancing teacher professional knowledges and competencies. In The 14th International Scientific Conference e-Learning and Software for Education (Vol. 1, pp. 167-175).
There are 90 citations in total.

Details

Primary Language Turkish
Subjects Studies on Education
Journal Section Research Article
Authors

Gülşah Gerez Cantimer 0000-0003-1643-6055

Sare Şengül 0000-0002-1069-9084

Early Pub Date June 30, 2023
Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

APA Gerez Cantimer, G., & Şengül, S. (2023). Duyuşsal Bileşenler Açısından Problem Kurmaya Yönelik SSCI İndeksli Çalışmaların İncelenmesi esi. International Journal of Educational Studies in Mathematics, 10(2), 118-141. https://doi.org/10.17278/ijesim.1267361