Research Article
BibTex RIS Cite

PRODUCTION OF SUGAR ALCOHOLS WITH BIOTECHNOLOGICAL METHODS

Year 2019, Volume: 5 Issue: 2, 47 - 58, 01.10.2019

Abstract

Sugar alcohols, which are increasingly used in industries worldwide, are sugar substitutes that are
formed by the reduction of sugars. With its low calorie advantage, they have sweetness, such as
non-carcinogenic, low glycemic index and non–insulin resistance, it strengthens the nutritional
properties in food products and improves product properties in terms of technological properties.
It also has positive contributions to health against the increase of diseases such as obesity and
diabetes. Although these compounds are generally produced by catalytic hydrogenation of sugars
in the industry, they are receiving increasing attention as they can be obtained on a microbial basis.
Several interesting metabolic engineering studies were carried out in recent years to improve the
ability of bacteria and yeast to overproduce xylitol, mannitol, and sorbitol. The aim of this review
is to provide information about sugar alcohols and production using biotechnology.

References

  • [1] Granström, T. B., Izumori, K. & Leisola, M. (2007a). A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Applied microbiology and biotechnology, 74(2), 277-281.
  • [2] Schiweck, H. (2003). Bä r A, Vogel R, Schwarz E, Kunz M: Sugar alcohols: Ullmann’s Encyclopedia of Industrial Chemistry Wiley– VCH.
  • [3] Bhise, S. & Kaur, A. (2013). Polyols to improve quality and shelf life of baked products: A review. International Journal of Advanced Scientific and Technical Research, 1(3), 262-272.
  • [4] Zumbe, A., Lee, A. & Storey, D. (2001). Polyols in confectionery: the route to sugarfree, reduced sugar and reduced calorie confectionery. British Journal of Nutrition, 85(S1), S31-S45.
  • [5] Akinterinwa, O., Khankal, R. & Cirino, P. C. (2008). Metabolic engineering for bioproduction of sugar alcohols. Current opinion in biotechnology, 19(5), 461-467.
  • [6] Silveira, M. & Jonas, R. (2002). The biotechnological production of sorbitol. Applied microbiology and biotechnology, 59(4-5), 400-408.
  • [7] Blankers, I. (1995). Properties and applications of lactitol. Food technology (Chicago), 49(1), 66-68.
  • [8] Sych, J., Lacroix, C. & Carrier, M. (1991). Determination of optimal level of lactitol for surimi. Journal of food science, 56(2), 285- 290.
  • [9] Ünal, D. (2011). Farklı oranlarda laktitol ve sakkaroz ilavesiyle hazırlanan Tekirdağ peynir helvalarının bazı özelliklerinin belirlenmesi. Namık Kemal Üniversitesi.
  • [10] Gültekin, F., Öner, M. E., Savaş, H. B. & Doğan, B. (2017). Tatlandırıcılar, Glikoz İntoleransı ve Mikrobiyota. Journal of Biotechnology And Strategic Health Research, 1, 34-38.
  • [11] Newman, A. W., Vitez, I. M., Mueller, R. L., Kiesnowski, C. C., Findlay, W. P., Rodriguez, C. & McGeorge, G. (1999). Sorbitol Analytical profiles of drug substances and excipients (Vol. 26, pp. 459-502): Elsevier.
  • [12] Krüger, C. (1994). Sugar Industrial chocolate manufacture and use (pp. 25-42): Springer.
  • [13] Güldane, M. (2014). Şeker alkolleri ve yeni nesil antioksidan etkili tatlandırıcıların bisküvi kalite özelliklerine etkileri. Pamukkale Üniversitesi Fen Bilimleri Enstitüsü.
  • [14] Munro, I., Shubik, P. & Hall, R. (1998). Principles for the safety evaluation of flavouring substances. Food and Chemical Toxicology, 36(6), 529-540.
  • [15] Livesey, G. (2003). Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutrition Research Reviews, 16(2), 163-191.
  • [16] Grembecka, M. (2015). Sugar alcoholstheir role in the modern world of sweeteners: a review. European Food Research and Technology, 241(1), 1-14.
  • [17] Commission, E. (2008). Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Official Journal of the European Communities, 50, 18.
  • [18] Kratzl, K. & Silbernagel, H. (1963). ‹ ber das Vorkommen von Xylit im Speisepilz Champignon (Psalliota campestris). NW, 50(5), 154-154.
  • [19] Makınen, K. K. & Söderllng, E. (1980). A quantitative study of mannitol, sorbitol, xylitol, and xylose in wild berries and commercial fruits. Journal of food science, 45(2), 367-371.
  • [20] Chiang, C. & Knight, S. (1959). D-Xylose metabolism by cell-free extracts of Penicillium chrysogenum. Biochimica et Biophysica Acta, 35, 454-463.
  • [21] Spalt, H. & Niketas, P. (1973). Production of crystalline xylose: Google Patents.
  • [22] Varo, P. (1979). The baking behavior of different sugars and sugar alcohols as determined by high pressure liquid chromatography.
  • [23] Gehring, F., Mäkinen, K., Larmas, M. & Scheinin, A. (1974). Turku sugar studies IV. An intermediate report on the differentiation of polysaccharide-forming streptococci (S. mutans). Acta Odontologica Scandinavica, 32(6), 435-444.
  • [24] Pepper, T. & Olinger, P. (1988). Xylitol in sugar-free confections. Food technology (Chicago), 42(10), 98-106.
  • [25] Voirol, F. (1978). The value of xylitol as an ingredient in confectionery. Xylitol, 11-20.
  • [26] Kadam, K. L., Chin, C. Y. & Brown, L. W. (2008). Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. Journal of industrial microbiology & biotechnology, 35(5), 331.
  • [27] Ko, C.-H., Chiu, P.-C., Yang, C.-L. & Chang, K.-H. (2008). Xylitol conversion by fermentation using five yeast strains and polyelectrolyte-assisted ultrafiltration. Biotechnology letters, 30(1), 81-86.
  • [28] Granström, T. B., Izumori, K. & Leisola, M. (2007b). A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Applied microbiology and biotechnology, 74(2), 273.
  • [29] Kwon, S.-G., Park, S.-W. & Oh, D.-K. (2006). Increase of xylitol productivity by cellrecycle fermentation of Candida tropicalis using submerged membrane bioreactor. Journal of Bioscience and Bioengineering, 101(1), 13-18.
  • [30] Ko, B. S., Rhee, C. H. & Kim, J. H. (2006). Enhancement of xylitol productivity and yield using a xylitol dehydrogenase genedisrupted mutant of Candida tropicalis under fully aerobic conditions. Biotechnology letters, 28(15), 1159-1162.
  • [31] Jin, Y.-S., Cruz, J. & Jeffries, T. W. (2005). Xylitol production by a Pichia stipitis D-xylulokinase mutant. Applied microbiology and biotechnology, 68(1), 42-45.
  • [32] Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current opinion in biotechnology, 17(3), 320-326.
  • [33] Jeppsson, M., Bengtsson, O., Franke, K., Lee, H., Hahn‐Hägerdal, B. & Gorwa‐ Grauslund, M. F. (2006). The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnology and bioengineering, 93(4), 665-673.
  • [34] Uysal, R. S., Sabancı, S., Sapçı, B. & Akpınar, Ö. (2015). Lignoselulozik Materyallerden Ksilitol Üretimi ve Kullanım Alanları. Academic Food Journal/Akademik GIDA, 13(2).
  • [35] Cirino, P. C., Chin, J. W. & Ingram, L. O. (2006). Engineering Escherichia coli for xylitol production from glucose‐xylose mixtures. Biotechnology and bioengineering, 95(6), 1167-1176.
  • [36] Khankal, R., Chin, J. W. & Cirino, P. C. (2008). Role of xylose transporters in xylitol production from engineered Escherichia coli. Journal of biotechnology, 134(3-4), 246-252.
  • [37] Hibi, M., Yukitomo, H., Ito, M. & Mori, H. (2007). Improvement of NADPHdependent bioconversion by transcriptomebased molecular breeding. Applied and environmental microbiology, 73(23), 7657- 7663.
  • [38] Nyyssölä, A., Pihlajaniemi, A., Palva, A., Von Weymarn, N. & Leisola, M. (2005). Production of xylitol from D-xylose by recombinant Lactococcus lactis. Journal of biotechnology, 118(1), 55-66.
  • [39] Povelainen, M. & Miasnikov, A. N. (2007). Production of xylitol by metabolically engineered strains of Bacillus subtilis. Journal of biotechnology, 128(1), 24-31.
  • [40] Jacobsen, J. H. & Frigaard, N.-U. (2014). Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metabolic engineering, 21, 60-70.
  • [41] Gombás, Á., Szabó-Révész, P., Regdon, G. & Erős, I. (2003). Study of thermal behaviour of sugar alcohols. Journal of thermal analysis and calorimetry, 73(2), 615-621.
  • [42] Sweeteners, A. (2012). O, Brien Nabors, L., Ed: CRC Press: Boca Raton, FL, USA.
  • [43] Wisselink, H., Weusthuis, R., Eggink, G., Hugenholtz, J. & Grobben, G. (2002). Mannitol production by lactic acid bacteria: a review. International Dairy Journal, 12(2-3), 151-161.
  • [44] Wang, J., Kim, Y. M., Rhee, H. S., Lee, M. W. & Park, J. M. (2013). Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3. Bioresource technology, 135, 199-206.
  • [45] Saha, B. C., & Racine, F. M. (2011). Biotechnological production of mannitol and its applications. Applied microbiology and biotechnology, 89(4), 879-891.
  • [46] Kiviharju, K. & Nyyssola, A. (2008). Contributions of biotechnology to the production of mannitol. Recent patents on biotechnology, 2(2), 73-78.
  • [47] Racine, F. M. & Saha, B. C. (2007). Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochemistry, 42(12), 1609-1613.
  • [48] von Weymarn, N., Hujanen, M. & Leisola, M. (2002). Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochemistry, 37(11), 1207-1213.
  • [49] Wisselink, H. W., Moers, A. P., Mars, A. E., Hoefnagel, M. H., De Vos, W. M., & Hugenholtz, J. (2005). Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis. Applied and environmental microbiology, 71(3), 1507-1514.
  • [50] Ferain, T., Schanck, A., & Delcour, J. (1996). 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. Journal of bacteriology, 178(24), 7311-7315.
  • [51] Erten, H. (1998). Metabolism of fructose as an electron acceptor by Leuconostoc mesenteroides. Process Biochemistry, 33(7), 735-739.
  • [52] Gaspar, P., Neves, A. R., Ramos, A., Gasson, M. J., Shearman, C. A. & Santos, H. (2004). Engineering Lactococcus lactis for production of mannitol: high yields from foodgrade strains deficient in lactate dehydrogenase and the mannitol transport system. Applied and environmental microbiology, 70(3), 1466- 1474.
  • [53] Weymarn, F. N. W. v., Kiviharju, K. J., Jääskeläinen, S. T. & Leisola, M. S. (2003). Scale‐up of a New Bacterial Mannitol Production Process. Biotechnology progress, 19(3), 815-821.
  • [54] Reshamwala, S. M., Pagar, S. K., Velhal, V. S., Maranholakar, V. M., Talangkar, V. G. & Lali, A. M. (2014). Construction of an efficient Escherichia coli whole-cell biocatalyst for D-mannitol production. Journal of Bioscience and Bioengineering, 118(6), 628-631.
  • [55] Kaup, B., Bringer-Meyer, S. & Sahm, H. (2004). Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Applied microbiology and biotechnology, 64(3), 333-339.
  • [56] Kaup, B., Bringer-Meyer, S. & Sahm, H. (2005). D-Mannitol formation from D-glucose in a whole-cell biotransformation with recombinant Escherichia coli. Applied microbiology and biotechnology, 69(4), 397.
  • [57] Washuttl, J. (1973). A qualitative and quantitative study of sugar alcohols in several foods. J. food Sci., 38, 1262-1263.
  • [58] O’Donnell, K. & Kearsley, M. (2012). Sweeteners and sugar alternatives in food technology: John Wiley & Sons.
  • [59] Barbieri, G., Barone, C., Bhagat, A., Caruso, G., Conley, Z. R. & Parisi, S. (2014). Sweet compounds in foods: sugar alcohols The Influence of Chemistry on New Foods and Traditional Products (pp. 51-59): Springer.
  • [60] Rhodes, M. & Kator, H. (1999). Sorbitolfermenting bifidobacteria as indicators of diffuse human faecal pollution in estuarine watersheds. Journal of applied microbiology, 87(4), 528-535.
  • [61] Wildman, R. E. (2016). Handbook of nutraceuticals and functional foods: CRC press.
  • [62] Ortiz, M. E., Bleckwedel, J., Raya, R. R. & Mozzi, F. (2013). Biotechnological and in situ food production of polyols by lactic acid bacteria. Applied microbiology and biotechnology, 97(11), 4713-4726.
  • [63] Jonas, R. & Silveira, M. M. (2004). Sorbitol can be produced not only chemically but also biotechnologically. Applied biochemistry and biotechnology, 118(1-3), 321-336.
  • [64] Association, J. o. t. A. D. (2004). Position of the American Dietetic Association: use of nutritive and nonnutritive sweeteners. Journal of the American Dietetic Association, 2(104), 255-275.
  • [65] Ladero, V., Ramos, A., Wiersma, A., Goffin, P., Schanck, A., Kleerebezem, M. & Hols, P. (2007). High-level production of the low-calorie sugar sorbitol by Lactobacillus plantarum through metabolic engineering. Applied and environmental microbiology, 73(6), 1864-1872.
  • [66] Loos, H., Krämer, R., Sahm, H. & Sprenger, G. A. (1994). Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. Journal of bacteriology, 176(24), 7688-7693.
  • [67] Yebra, M. a. J. & Pérez-Martı́nez, G. (2002). Cross-talk between the L-sorbose and D-sorbitol (D-glucitol) metabolic pathways in Lactobacillus caseiaaThe GenBank accession number for the sequence reported in this paper is AF396831. Microbiology, 148(8), 2351- 2359.
There are 67 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Elif Çakır This is me 0000-0003-4343-3706

Publication Date October 1, 2019
Published in Issue Year 2019 Volume: 5 Issue: 2

Cite

APA Çakır, E. (2019). PRODUCTION OF SUGAR ALCOHOLS WITH BIOTECHNOLOGICAL METHODS. International Journal of Food Engineering Research, 5(2), 47-58.

All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png