Research Article
BibTex RIS Cite

Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions

Year 2024, Volume: 7 Issue: 2, 1 - 15
https://doi.org/10.53508/ijiam.1521667

Abstract

This study aims to investigate the application of perturbed trapezoid inequalities in the numerical integration of n-times differentiable and logarithmically convex functions. The objective is to analyze the accuracy of numerical approximations, such as the trapezoidal and Simpson’s rules, by providing error bounds through these inequalities. By examining how these methods apply to logo-convex functions, the study presents suggestions into optimizing computational approaches and understanding the properties of these functions in various areas. The obtained findings are expected to contribute to the development of more precise and efficient in numerical integration techniques such as the rectangle, the trapezoid, and Simpson rule.

References

  • S. S. Dragomir and B. Mond. Integral inequalities of Hadamard type for log-convex functions. Demonstratio Mathematica, 31(2):355–364, 1998.
  • Sever S. Dragomir. Refinements of the Hermite-Hadamard integral inequality for log-convex functions. RGMIA Research Report Collection, 3(4), 2000.
  • Jaspal Singh Aujla and Jean-Christophe Bourin. Eigenvalue inequalities for convex and log-convex functions. Linear Algebra and Its Applications, 424(1):25–35, 2007.
  • Mohammad Alomari and Maslina Darus. On the Hadamard’s inequality for log-convex functions on the coordinates. Journal of Inequalities and Applications, 2009:1–13, 2009.
  • Xiaoming Zhang and Weidong Jiang. Some properties of log-convex functions and applications for the exponential function. Computers & Mathematics with Applications, 63(6):1111–1116, 2012.
  • Gou-Sheng Yang, Kuei-Lin Tseng, and Hung-Ta Wang. A note on integral inequalities of Hadamard type for log-convex and log-concave functions. Taiwanese Journal of Mathematics, 16(2):479–496, 2012.
  • Constantin P. Niculescu. The Hermite–Hadamard inequality for log-convex functions. Nonlinear Analysis: Theory, Methods & Applications, 75(2):662–669, 2012.
  • Sever S. Dragomir. New inequalities of Hermite-Hadamard type for log-convex functions. Khayyam Journal of Mathematics, 3(2):98–115, 2017.
  • Shilpi Jain, Khaled Mehrez, Dumitru Baleanu, and Praveen Agarwal. Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications. Mathematics, 7(2):163, 2019.
  • Cristian Conde, Nicușor Minculete, Hamid Reza Moradi, and Mohammad Sababheh. Norm inequalities via convex and log-convex functions. Mediterranean Journal of Mathematics, 20(1):6, 2023.
  • Ch. Hermite et al. Sur deux limites d’une intégrale définie. Mathesis, 3(82):1, 1883.
  • Wolfgang W. Breckner. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Math. (Beograd) (NS), 23(37):13–20, 1978.
  • Harold Jeffreys. The Theory of Probability. Oxford University Press, 1998.
  • Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
  • Sever S. Dragomir, Pietro Cerone, and Anthony Sofo. Some remarks on the trapezoid rule in numerical integration. RGMIA Research Report Collection, 2(5), 1999.
  • Pietro Cerone and Sever S. Dragomir. Trapezoidal-type rules from an inequalities point of view. In Handbook of Analytic Computational Methods in Applied Mathematics, pages 65–134. Chapman and Hall/CRC, 2019.
  • Duygu Dönmez Demir and Gülsüm Şanal. Some inequalities for n-times differentiable strongly convex functions. Mathematics and Statistics, 10(2):390–396, 2022.
Year 2024, Volume: 7 Issue: 2, 1 - 15
https://doi.org/10.53508/ijiam.1521667

Abstract

References

  • S. S. Dragomir and B. Mond. Integral inequalities of Hadamard type for log-convex functions. Demonstratio Mathematica, 31(2):355–364, 1998.
  • Sever S. Dragomir. Refinements of the Hermite-Hadamard integral inequality for log-convex functions. RGMIA Research Report Collection, 3(4), 2000.
  • Jaspal Singh Aujla and Jean-Christophe Bourin. Eigenvalue inequalities for convex and log-convex functions. Linear Algebra and Its Applications, 424(1):25–35, 2007.
  • Mohammad Alomari and Maslina Darus. On the Hadamard’s inequality for log-convex functions on the coordinates. Journal of Inequalities and Applications, 2009:1–13, 2009.
  • Xiaoming Zhang and Weidong Jiang. Some properties of log-convex functions and applications for the exponential function. Computers & Mathematics with Applications, 63(6):1111–1116, 2012.
  • Gou-Sheng Yang, Kuei-Lin Tseng, and Hung-Ta Wang. A note on integral inequalities of Hadamard type for log-convex and log-concave functions. Taiwanese Journal of Mathematics, 16(2):479–496, 2012.
  • Constantin P. Niculescu. The Hermite–Hadamard inequality for log-convex functions. Nonlinear Analysis: Theory, Methods & Applications, 75(2):662–669, 2012.
  • Sever S. Dragomir. New inequalities of Hermite-Hadamard type for log-convex functions. Khayyam Journal of Mathematics, 3(2):98–115, 2017.
  • Shilpi Jain, Khaled Mehrez, Dumitru Baleanu, and Praveen Agarwal. Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications. Mathematics, 7(2):163, 2019.
  • Cristian Conde, Nicușor Minculete, Hamid Reza Moradi, and Mohammad Sababheh. Norm inequalities via convex and log-convex functions. Mediterranean Journal of Mathematics, 20(1):6, 2023.
  • Ch. Hermite et al. Sur deux limites d’une intégrale définie. Mathesis, 3(82):1, 1883.
  • Wolfgang W. Breckner. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Math. (Beograd) (NS), 23(37):13–20, 1978.
  • Harold Jeffreys. The Theory of Probability. Oxford University Press, 1998.
  • Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
  • Sever S. Dragomir, Pietro Cerone, and Anthony Sofo. Some remarks on the trapezoid rule in numerical integration. RGMIA Research Report Collection, 2(5), 1999.
  • Pietro Cerone and Sever S. Dragomir. Trapezoidal-type rules from an inequalities point of view. In Handbook of Analytic Computational Methods in Applied Mathematics, pages 65–134. Chapman and Hall/CRC, 2019.
  • Duygu Dönmez Demir and Gülsüm Şanal. Some inequalities for n-times differentiable strongly convex functions. Mathematics and Statistics, 10(2):390–396, 2022.
There are 17 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Articles
Authors

Duygu Dönmez Demir

Gülsüm Şanal This is me

Early Pub Date January 30, 2025
Publication Date
Submission Date July 29, 2024
Acceptance Date October 22, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Dönmez Demir, D., & Şanal, G. (2025). Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions. International Journal of Informatics and Applied Mathematics, 7(2), 1-15. https://doi.org/10.53508/ijiam.1521667
AMA Dönmez Demir D, Şanal G. Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions. IJIAM. January 2025;7(2):1-15. doi:10.53508/ijiam.1521667
Chicago Dönmez Demir, Duygu, and Gülsüm Şanal. “Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions”. International Journal of Informatics and Applied Mathematics 7, no. 2 (January 2025): 1-15. https://doi.org/10.53508/ijiam.1521667.
EndNote Dönmez Demir D, Şanal G (January 1, 2025) Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions. International Journal of Informatics and Applied Mathematics 7 2 1–15.
IEEE D. Dönmez Demir and G. Şanal, “Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions”, IJIAM, vol. 7, no. 2, pp. 1–15, 2025, doi: 10.53508/ijiam.1521667.
ISNAD Dönmez Demir, Duygu - Şanal, Gülsüm. “Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions”. International Journal of Informatics and Applied Mathematics 7/2 (January 2025), 1-15. https://doi.org/10.53508/ijiam.1521667.
JAMA Dönmez Demir D, Şanal G. Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions. IJIAM. 2025;7:1–15.
MLA Dönmez Demir, Duygu and Gülsüm Şanal. “Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions”. International Journal of Informatics and Applied Mathematics, vol. 7, no. 2, 2025, pp. 1-15, doi:10.53508/ijiam.1521667.
Vancouver Dönmez Demir D, Şanal G. Analysis of the Error Bounds in Numerical Integration for Log-Convex Functions. IJIAM. 2025;7(2):1-15.

International Journal of Informatics and Applied Mathematics