Research Article
BibTex RIS Cite

Investigation of The Effects of Ni-Doping on The Structural Properties of Fe2O3

Year 2021, Volume: 5 Issue: 2, 81 - 87, 31.12.2021
https://doi.org/10.46460/ijiea.927843

Abstract

In the present study, the effects of Ni-doping on the structural properties of Fe2O3 samples prepared by a wet chemical method were investigated by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential thermal analysis (DTA), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) techniques. XRD and FTIR results supported the formation of the Fe2O3 structure for each sample. Until 4at.%Ni-doping, no new phase formation was observed, and for this sample, the formation of the secondary phase of NiO was detected. The crystal structure-related parameters and morphology were affected by Ni content. Briefly, Ni may be used to control some properties of the Fe2O3 structure.

References

  • Al-Hakkani, M.F., Gouda, G.A., Hassan, S.H.A., A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications, Heliyon, 7(1), e05806, 2021.
  • El-Shater, R., Fakhry, F., Meaz, T., Amer, M.A., Matsuda, A., Structural and optical properties of chromium-doped hematite (α-Fe2O3) nanoparticles, Optik, 231, 166372, 2021.
  • Domacena, A.M.G., Aquino, C.L.E., Balela, M.D.L., Photo-Fenton Degradation of Methyl Orange Using Hematite (α-Fe2O3) of Various Morphologies, Mater. Today, 22(2), 248-254, 2020.
  • Haridas, V, Sukhananazerin, A., Pullithadathil, B., Narayanan, B.N., Ultrahigh specific capacitance of α-Fe2O3 nanorods-incorporated defect-free graphene nanolayers, Energy, 221, 119743, 2021.
  • Taga, Y., Katayama, K., Sohn, W.Y., Time-resolved spectroscopic study of photo-excited charge carrier dynamics in hematite (α-Fe2O3): Effect of re-growth treatment, J. Photochem. Photobiol. A ., 408, 113107, 2021.
  • Xu, Y.Y., Zhao, D., Zhang, X.J., Jin, W.T., Kashkarov, P., Zhang, H., Synthesis andcharacterizationofsingle-crystalline α-Fe2O3 nanoleaves, Physica E, 41(5), 806-811, 2009.
  • Mizuno, S., Yao, H., On the electronic transitions of α-Fe2O3 hematite nanoparticles with different size and morphology: Analysis by simultaneous deconvolution of UV–vis absorption and MCD spectra, J. Magn. Magn. Mater., 517, 167389, 2021.
  • Popov, N., Bošković, M., Perović, M., Németh, Z., Wang, J., Kuang, Z., Reissner, M., Kuzmann, E., Homonnay, Z., Kubuki, S., Marciuš, M., Ristić, M., Musić, S., Stanković, D., Krehula, S., Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods, J Phys Chem Solids, 152, 109929, 2021.
  • Liu, Z., Cheng, Q., Wang, Y., Zheng, A., Li, K., Zhang, J., Three-body aggregation of Fe2O3 nanoparticles: A molecular dynamics simulation, Chem. Phys. Lett., 760, 137901, 2020.
  • Tokubuchi, T., Arbi, R.I., Zhenhua, P., Katayama, K., Turak, A., Sohn, W.Y., Enhanced photoelectrochemical water splitting efficiency of hematite (α-Fe2O3)-Based photoelectrode by the introduction of maghemite (γ-Fe2O3) nanoparticles, J. Photochem. Photobiol. A, 410, 113179, 2021.
  • Umar, A., Ibrahim, A.A., Kumar, R., Albargi, H., Alsaiari, M.A., Ahmed, F., Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application, Sens. Actuators B Chem., 326, 128851, 2021.
  • Song, J., Lu, Y., Lin, Y., Liu, Q., Wang, X., Su, W., A direct Z-scheme α-Fe2O3/LaTiO2N visible-light photocatalyst for enhanced CO2 reduction activity, Appl. Catal. B, 292, 120185, 2021.
  • Khatoon, R., Guo, Y., Attique, S., Khan, K., Treen, A.K., Haq, M.U., Tang, H., Chen, H., Tian, Y., Nisar, M., Din, S.U., Lu, J., Facile synthesis of α-Fe2O3/Nb2O5 heterostructure for advanced Li-Ion batteries, J. Alloys Compd., 837, 155294, 2020.
  • Soranakom, P., Vittayakorn, N., Rakkwamsuk, P., Supothina, S., Seeharaj, P., Effect of surfactant concentration on the formation of Fe2O3@SiO2 NIR-reflective red pigments, Ceram. Int., 47(9), 13147-13155, 2021.
  • Tadic, M., Kopanja, L., Panjan, M., Lazovic, J., Tadic, B.V., Stanojevic, B., Motte, L., Rhombohedron and plate-like hematite (α-Fe2O3) nanoparticles: synthesis, structure, morphology, magnetic properties and potential biomedical applications for MRI, Mater. Res. Bull., 133, 111055, 2021.
  • Tadic, M., Panjan, M., Damnjanovic, V., Milosevic, I., Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Appl. Surf. Sci., 320, 183-187, 2014.
  • Zhang, Z.J., Chen, X.Y., Magnetic greigite (Fe3S4) nanomaterials: Shape-controlled solvothermal synthesis and their calcination conversion into hematite (α-Fe2O3) nanomaterials, J. Alloys Compd., 488(1), 339–345, 2009.
  • Ilmetov, R., Photocatalytic activity of hematite nanoparticles prepared by sol-gel method, Mater. Today, 6, 11-14, 2019.
  • Yadav, A.A., Deshmukh, T.B., Deshmukh, R.V., Patil, D.D., Chavan, U.J., Electrochemical supercapacitive performance of Hematite α-Fe2O3 thin films prepared by spray pyrolysis from non-aqueous medium, Thin Solid Films, 616, 351-358, 2016.
  • Fouad, D.E., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T.D., Shah, A.H., Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor, Results Phys., 12, 1253-1261, 2019.
  • Noukelag, S.K., Arendse, C.J., Maaza, M., Biosynthesis of hematite phase α-Fe2O3 nanoparticles using an aqueous extract of Rosmarinus officinalis leaves, Mater. Today, Article in Press.
  • Stanhaus, C., Alves, L.L.S., Ferrari, J.L., Padilha, J.C., Góes, M.S., Hematite (α-Fe2O3) pure and doped with Eu3+ obtained by high-energy ball milling process, Mater. Chem. Phys., 254, 123385, 2020.
  • Kotrla, T., Paušová, Š., Zlámal, M., Neumann-Spallart, M., Krýsa, J., Preparation of Sn-doped semiconducting Fe2O3 (hematite) layers by aerosol pyrolysis, Catal. Today, 313, 2-5, 2018.
  • Picasso, G., Sun Kou, M.R., Vargasmachuca, O., Rojas, J., Zavala, C., Lopez, A., Irusta, S., Sensors based on porous Pd-doped hematite (α-Fe2O3) for LPG detection, Microporous Mesoporous Mater., 185, 79-85, 2014.
  • Krehula, S., Štefanic´, G., Zadro, K., Krehula, L.K., Marciuš, M., Music, S., Synthesis and properties of iridium-doped hematite (α-Fe2O3), J. Alloys Compd., 545, 200-209, 2012.
  • Lee, M.H., Park, J.H., Han, H.S., Song, H.J. Cho, I.N., Noh, J.H. Hong, K.S., Nanostructured Ti-doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation, Int. J. Hydrog. Energy, 39, 17501-17507, 2014.
  • Varshney, D., Yogi, A., Structural and Electrical conductivity of Mn doped Hematite (α-Fe2O3) phase, J. Mol. Struct., 995, 157-162, 2011.
  • Popov, N., Krehula, S., Ristić, M., Kuzmann, E., Homonnay, Z., Bošković, M., Stanković, D., Kubuki, S., Musić, S., Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods, J Phys Chem Solids, 148, 109699, 2021.
  • Bhowmik, R.N. , Lone,A.G., Electric field controlled magnetic exchange bias and magnetic state switching at room temperature in Ga-doped α-Fe2O3 oxide, J. Magn. Magn. Mater., 462, 105-118, 2018.
  • Lemine, O.M., Ghiloufi, I., Bououdina, M., Khezami, L., M'Hamed, M.O., Hassan, A.T., Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous solution, J. Alloys Compd., 588, 592-595, 2014.
  • Sivakumar, S., Anusuya, D., Khatiwada, C.P., Sivasubramanian, J., Venkatesan, A., Soundhirarajan, P., Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 69-75, 2014.
  • Liu, Y., Yu, Y.-X., Zhang, W.-D., Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition, Electrochim. Acta, 59, 121-127, 2012.
  • Wang, D., Zhang, M., Yuan, J., Lin, Y., Song, C., Facile route to Ni-doped α-FeOOH and α-Fe2O3 nanostructures and their properties, Mater. Lett., 157, 147-150, 2015.
  • Qi, X., Yan, Z., Liu, Y., Li, X., He, G., Komarneni, S., Ni and Co doped yolk-shell type Fe2O3 hollow microspheres as anode materials for lithium-ion batteries, Mater. Chem. Phys. 211, 452-461, 2018.
  • Fouda, A., Hassan, S.E., Abdel-Rahman, M.A., Farag, M.M.S., Shehal-deen, A., Mohamed, A.A., Alsharif, S.M., Saied, E., Moghanim, S.A., Azab, M.S., Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles, Current Research in Biotechnology, 3, 29-41, 2021.
  • Pourghahramani, P., Altin, E., Mallembakam, M.R., Peukert, W., Forssberg, E., Microstructural characterization of hematite during wet and dry millings using Rietveld and XRD line profile analyses, Powder Technol., 186, 9-21, 2008.
  • Naz, S., Islam, M., Tabassum, S., Fernandes, N.F., Carcache de Blanco, E.J., Zia, M., Green synthesis of hematite (a-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer, J. Mol. Struct., 1185, 1-7, 2019.
  • Mir, J.F., Rubab, S., Shah, M.A., Hematite (α-Fe2O3) nanosheets with enhanced photo-electrochemical ability fabricated via single step anodization, Chem. Phys. Lett., 753, 137584, 2020.
  • Cullity, B.D. Elements of X-Ray Diffraction. 2nd edn. Addison–Wesley Publishing Company, Massachusetts; 1978.
  • Tadic, M., Trpkov, D., Kopanja, L., Vojnovic, S., Panjan, M., Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties, J. Alloys Compd., 792, 599-609, 2019.
  • Liu, X., Zhan, F., Li, D., Xue, M., α-Fe2O3 nanoarrays photoanodes decorated with Ni-MOFs for enhancing photoelectrochemical water oxidation, Int. J. Hydrog. Energy, 45, 28836-28846, 2020.
  • Suresh, R., Giribabu, K., Manigandan, R., Stephen, A., Narayanan, V., Fabrication of Ni–Fe2O3 magnetic nanorods and application to the detection of uric acid, RSC Adv., 4, 17146, 2014.
  • Yan, Y., Tang, H., Li, J., Wu, F., Wu, T., Wang, R., Liu, D., Pan, M., Xie, Z., Qu, D., Self-assembly synthesis of a unique stable cocoon-like hematite @C nanoparticle and its application in lithium ion batteries, J. Colloid Interface Sci., 495, 157-167, 2017.
  • Darezereshki, E., One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite, Mater. Lett., 65, 642-645, 2011.
  • El Afifi, E.M., Attallah, M.F., Borai, E.H., Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste, J. Environ. Radioact., 151, 156-165, 2016.
  • Lassoued, A., Lassoued, M.S., Garcia‑Granda, S., Dkhil, B., Ammar, S., Gadri, A., Synthesis and characterization of Ni-doped α- Fe2O3 nanoparticles through co-precipitation method with enhanced photocatalytic activities, J Mater Sci: Mater Electron, 29, 5726–5737, 2018.

Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması

Year 2021, Volume: 5 Issue: 2, 81 - 87, 31.12.2021
https://doi.org/10.46460/ijiea.927843

Abstract

Sunulan çalışmada, Ni katkısının yaş kimyasal yöntemle hazırlanan Fe2O3’ün yapısal özellikleri üzerine etkileri X-ışını kırınımı (XRD), Fourier dönüşümlü kızılötesi (FTIR), diferansiyel termal analiz (DTA), termogravimetrik analiz (TGA) ve taramalı elektron mikroskopisi (SEM) teknikleri kullanılarak araştırıldı. XRD ve FTIR sonuçları her bir numune için Fe2O3 yapının oluşumunu destekledi. 4at.%Ni katkısına kadar yeni bir faz oluşumu gözlenmedi ve bu numune için NiO ikincil fazının oluşumu tespit edildi. Kristal yapı ilişkili parametreler ve morfoloji, Ni içeriğinden etkilendi. Özetle Ni, Fe2O3 yapının bazı özelliklerini kontrol etmek için kullanılabilir.

References

  • Al-Hakkani, M.F., Gouda, G.A., Hassan, S.H.A., A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications, Heliyon, 7(1), e05806, 2021.
  • El-Shater, R., Fakhry, F., Meaz, T., Amer, M.A., Matsuda, A., Structural and optical properties of chromium-doped hematite (α-Fe2O3) nanoparticles, Optik, 231, 166372, 2021.
  • Domacena, A.M.G., Aquino, C.L.E., Balela, M.D.L., Photo-Fenton Degradation of Methyl Orange Using Hematite (α-Fe2O3) of Various Morphologies, Mater. Today, 22(2), 248-254, 2020.
  • Haridas, V, Sukhananazerin, A., Pullithadathil, B., Narayanan, B.N., Ultrahigh specific capacitance of α-Fe2O3 nanorods-incorporated defect-free graphene nanolayers, Energy, 221, 119743, 2021.
  • Taga, Y., Katayama, K., Sohn, W.Y., Time-resolved spectroscopic study of photo-excited charge carrier dynamics in hematite (α-Fe2O3): Effect of re-growth treatment, J. Photochem. Photobiol. A ., 408, 113107, 2021.
  • Xu, Y.Y., Zhao, D., Zhang, X.J., Jin, W.T., Kashkarov, P., Zhang, H., Synthesis andcharacterizationofsingle-crystalline α-Fe2O3 nanoleaves, Physica E, 41(5), 806-811, 2009.
  • Mizuno, S., Yao, H., On the electronic transitions of α-Fe2O3 hematite nanoparticles with different size and morphology: Analysis by simultaneous deconvolution of UV–vis absorption and MCD spectra, J. Magn. Magn. Mater., 517, 167389, 2021.
  • Popov, N., Bošković, M., Perović, M., Németh, Z., Wang, J., Kuang, Z., Reissner, M., Kuzmann, E., Homonnay, Z., Kubuki, S., Marciuš, M., Ristić, M., Musić, S., Stanković, D., Krehula, S., Influence of low-spin Co3+ for high-spin Fe3+ substitution on the structural, magnetic, optical and catalytic properties of hematite (α-Fe2O3) nanorods, J Phys Chem Solids, 152, 109929, 2021.
  • Liu, Z., Cheng, Q., Wang, Y., Zheng, A., Li, K., Zhang, J., Three-body aggregation of Fe2O3 nanoparticles: A molecular dynamics simulation, Chem. Phys. Lett., 760, 137901, 2020.
  • Tokubuchi, T., Arbi, R.I., Zhenhua, P., Katayama, K., Turak, A., Sohn, W.Y., Enhanced photoelectrochemical water splitting efficiency of hematite (α-Fe2O3)-Based photoelectrode by the introduction of maghemite (γ-Fe2O3) nanoparticles, J. Photochem. Photobiol. A, 410, 113179, 2021.
  • Umar, A., Ibrahim, A.A., Kumar, R., Albargi, H., Alsaiari, M.A., Ahmed, F., Cubic shaped hematite (α-Fe2O3) micro-structures composed of stacked nanosheets for rapid ethanol sensor application, Sens. Actuators B Chem., 326, 128851, 2021.
  • Song, J., Lu, Y., Lin, Y., Liu, Q., Wang, X., Su, W., A direct Z-scheme α-Fe2O3/LaTiO2N visible-light photocatalyst for enhanced CO2 reduction activity, Appl. Catal. B, 292, 120185, 2021.
  • Khatoon, R., Guo, Y., Attique, S., Khan, K., Treen, A.K., Haq, M.U., Tang, H., Chen, H., Tian, Y., Nisar, M., Din, S.U., Lu, J., Facile synthesis of α-Fe2O3/Nb2O5 heterostructure for advanced Li-Ion batteries, J. Alloys Compd., 837, 155294, 2020.
  • Soranakom, P., Vittayakorn, N., Rakkwamsuk, P., Supothina, S., Seeharaj, P., Effect of surfactant concentration on the formation of Fe2O3@SiO2 NIR-reflective red pigments, Ceram. Int., 47(9), 13147-13155, 2021.
  • Tadic, M., Kopanja, L., Panjan, M., Lazovic, J., Tadic, B.V., Stanojevic, B., Motte, L., Rhombohedron and plate-like hematite (α-Fe2O3) nanoparticles: synthesis, structure, morphology, magnetic properties and potential biomedical applications for MRI, Mater. Res. Bull., 133, 111055, 2021.
  • Tadic, M., Panjan, M., Damnjanovic, V., Milosevic, I., Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Appl. Surf. Sci., 320, 183-187, 2014.
  • Zhang, Z.J., Chen, X.Y., Magnetic greigite (Fe3S4) nanomaterials: Shape-controlled solvothermal synthesis and their calcination conversion into hematite (α-Fe2O3) nanomaterials, J. Alloys Compd., 488(1), 339–345, 2009.
  • Ilmetov, R., Photocatalytic activity of hematite nanoparticles prepared by sol-gel method, Mater. Today, 6, 11-14, 2019.
  • Yadav, A.A., Deshmukh, T.B., Deshmukh, R.V., Patil, D.D., Chavan, U.J., Electrochemical supercapacitive performance of Hematite α-Fe2O3 thin films prepared by spray pyrolysis from non-aqueous medium, Thin Solid Films, 616, 351-358, 2016.
  • Fouad, D.E., Zhang, C., El-Didamony, H., Yingnan, L., Mekuria, T.D., Shah, A.H., Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor, Results Phys., 12, 1253-1261, 2019.
  • Noukelag, S.K., Arendse, C.J., Maaza, M., Biosynthesis of hematite phase α-Fe2O3 nanoparticles using an aqueous extract of Rosmarinus officinalis leaves, Mater. Today, Article in Press.
  • Stanhaus, C., Alves, L.L.S., Ferrari, J.L., Padilha, J.C., Góes, M.S., Hematite (α-Fe2O3) pure and doped with Eu3+ obtained by high-energy ball milling process, Mater. Chem. Phys., 254, 123385, 2020.
  • Kotrla, T., Paušová, Š., Zlámal, M., Neumann-Spallart, M., Krýsa, J., Preparation of Sn-doped semiconducting Fe2O3 (hematite) layers by aerosol pyrolysis, Catal. Today, 313, 2-5, 2018.
  • Picasso, G., Sun Kou, M.R., Vargasmachuca, O., Rojas, J., Zavala, C., Lopez, A., Irusta, S., Sensors based on porous Pd-doped hematite (α-Fe2O3) for LPG detection, Microporous Mesoporous Mater., 185, 79-85, 2014.
  • Krehula, S., Štefanic´, G., Zadro, K., Krehula, L.K., Marciuš, M., Music, S., Synthesis and properties of iridium-doped hematite (α-Fe2O3), J. Alloys Compd., 545, 200-209, 2012.
  • Lee, M.H., Park, J.H., Han, H.S., Song, H.J. Cho, I.N., Noh, J.H. Hong, K.S., Nanostructured Ti-doped hematite (α-Fe2O3) photoanodes for efficient photoelectrochemical water oxidation, Int. J. Hydrog. Energy, 39, 17501-17507, 2014.
  • Varshney, D., Yogi, A., Structural and Electrical conductivity of Mn doped Hematite (α-Fe2O3) phase, J. Mol. Struct., 995, 157-162, 2011.
  • Popov, N., Krehula, S., Ristić, M., Kuzmann, E., Homonnay, Z., Bošković, M., Stanković, D., Kubuki, S., Musić, S., Influence of Cr doping on the structural, magnetic, optical and photocatalytic properties of α-Fe2O3 nanorods, J Phys Chem Solids, 148, 109699, 2021.
  • Bhowmik, R.N. , Lone,A.G., Electric field controlled magnetic exchange bias and magnetic state switching at room temperature in Ga-doped α-Fe2O3 oxide, J. Magn. Magn. Mater., 462, 105-118, 2018.
  • Lemine, O.M., Ghiloufi, I., Bououdina, M., Khezami, L., M'Hamed, M.O., Hassan, A.T., Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous solution, J. Alloys Compd., 588, 592-595, 2014.
  • Sivakumar, S., Anusuya, D., Khatiwada, C.P., Sivasubramanian, J., Venkatesan, A., Soundhirarajan, P., Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route, Spectrochim. Acta A Mol. Biomol. Spectrosc., 128, 69-75, 2014.
  • Liu, Y., Yu, Y.-X., Zhang, W.-D., Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition, Electrochim. Acta, 59, 121-127, 2012.
  • Wang, D., Zhang, M., Yuan, J., Lin, Y., Song, C., Facile route to Ni-doped α-FeOOH and α-Fe2O3 nanostructures and their properties, Mater. Lett., 157, 147-150, 2015.
  • Qi, X., Yan, Z., Liu, Y., Li, X., He, G., Komarneni, S., Ni and Co doped yolk-shell type Fe2O3 hollow microspheres as anode materials for lithium-ion batteries, Mater. Chem. Phys. 211, 452-461, 2018.
  • Fouda, A., Hassan, S.E., Abdel-Rahman, M.A., Farag, M.M.S., Shehal-deen, A., Mohamed, A.A., Alsharif, S.M., Saied, E., Moghanim, S.A., Azab, M.S., Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles, Current Research in Biotechnology, 3, 29-41, 2021.
  • Pourghahramani, P., Altin, E., Mallembakam, M.R., Peukert, W., Forssberg, E., Microstructural characterization of hematite during wet and dry millings using Rietveld and XRD line profile analyses, Powder Technol., 186, 9-21, 2008.
  • Naz, S., Islam, M., Tabassum, S., Fernandes, N.F., Carcache de Blanco, E.J., Zia, M., Green synthesis of hematite (a-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer, J. Mol. Struct., 1185, 1-7, 2019.
  • Mir, J.F., Rubab, S., Shah, M.A., Hematite (α-Fe2O3) nanosheets with enhanced photo-electrochemical ability fabricated via single step anodization, Chem. Phys. Lett., 753, 137584, 2020.
  • Cullity, B.D. Elements of X-Ray Diffraction. 2nd edn. Addison–Wesley Publishing Company, Massachusetts; 1978.
  • Tadic, M., Trpkov, D., Kopanja, L., Vojnovic, S., Panjan, M., Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties, J. Alloys Compd., 792, 599-609, 2019.
  • Liu, X., Zhan, F., Li, D., Xue, M., α-Fe2O3 nanoarrays photoanodes decorated with Ni-MOFs for enhancing photoelectrochemical water oxidation, Int. J. Hydrog. Energy, 45, 28836-28846, 2020.
  • Suresh, R., Giribabu, K., Manigandan, R., Stephen, A., Narayanan, V., Fabrication of Ni–Fe2O3 magnetic nanorods and application to the detection of uric acid, RSC Adv., 4, 17146, 2014.
  • Yan, Y., Tang, H., Li, J., Wu, F., Wu, T., Wang, R., Liu, D., Pan, M., Xie, Z., Qu, D., Self-assembly synthesis of a unique stable cocoon-like hematite @C nanoparticle and its application in lithium ion batteries, J. Colloid Interface Sci., 495, 157-167, 2017.
  • Darezereshki, E., One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite, Mater. Lett., 65, 642-645, 2011.
  • El Afifi, E.M., Attallah, M.F., Borai, E.H., Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste, J. Environ. Radioact., 151, 156-165, 2016.
  • Lassoued, A., Lassoued, M.S., Garcia‑Granda, S., Dkhil, B., Ammar, S., Gadri, A., Synthesis and characterization of Ni-doped α- Fe2O3 nanoparticles through co-precipitation method with enhanced photocatalytic activities, J Mater Sci: Mater Electron, 29, 5726–5737, 2018.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tankut Ateş 0000-0002-4519-2953

Süleyman Köytepe 0000-0002-4788-278X

Niyazi Bulut 0000-0003-2863-7700

Omer Kaygili 0000-0002-2321-1455

Early Pub Date December 30, 2021
Publication Date December 31, 2021
Submission Date April 26, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Ateş, T., Köytepe, S., Bulut, N., Kaygili, O. (2021). Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. International Journal of Innovative Engineering Applications, 5(2), 81-87. https://doi.org/10.46460/ijiea.927843
AMA Ateş T, Köytepe S, Bulut N, Kaygili O. Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. IJIEA. December 2021;5(2):81-87. doi:10.46460/ijiea.927843
Chicago Ateş, Tankut, Süleyman Köytepe, Niyazi Bulut, and Omer Kaygili. “Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması”. International Journal of Innovative Engineering Applications 5, no. 2 (December 2021): 81-87. https://doi.org/10.46460/ijiea.927843.
EndNote Ateş T, Köytepe S, Bulut N, Kaygili O (December 1, 2021) Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. International Journal of Innovative Engineering Applications 5 2 81–87.
IEEE T. Ateş, S. Köytepe, N. Bulut, and O. Kaygili, “Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması”, IJIEA, vol. 5, no. 2, pp. 81–87, 2021, doi: 10.46460/ijiea.927843.
ISNAD Ateş, Tankut et al. “Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması”. International Journal of Innovative Engineering Applications 5/2 (December 2021), 81-87. https://doi.org/10.46460/ijiea.927843.
JAMA Ateş T, Köytepe S, Bulut N, Kaygili O. Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. IJIEA. 2021;5:81–87.
MLA Ateş, Tankut et al. “Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması”. International Journal of Innovative Engineering Applications, vol. 5, no. 2, 2021, pp. 81-87, doi:10.46460/ijiea.927843.
Vancouver Ateş T, Köytepe S, Bulut N, Kaygili O. Ni Katkısının Fe2O3’ün Yapısal Özellikleri Üzerine Etkilerinin Araştırılması. IJIEA. 2021;5(2):81-7.

This work is licensed under CC BY-NC 4.0