Research Article
BibTex RIS Cite
Year 2020, Volume: 23 Issue: 3, 147 - 174, 27.08.2020
https://doi.org/10.5541/ijot.756405

Abstract

References

  • [1] K.G. Wilson, J. Kogut, The Renormalization Group and the ε Expansion, Phys. Rep. 12C, 75-199, 1974.
  • [2] J. Goldstone, A. Salam, S. Weinberg, Broken Symmetries, Phys. Rev. 127, 965-970, 1962.
  • [3] A. Hoser, U. Köbler, Boson Fields in Ordered Magnets, Acta Phys. Pol. A 127, 350-352, 2015.
  • [4] E. Brézin, J.C. Le Guillou, J. Zinn-Justin, Discussion of critical phenomena for general n-vector models, Phys. Rev. B 10, 892-900, 1974.
  • [5] U. Köbler, Crossover phenomena in the critical range near magnetic ordering transition, J. Magn. Magn. Mater. 453, 17-29, 2018.
  • [6] U. Köbler, A. Hoser, Experimental Studies of Boson Fields in Solids, World Scientific, Singapore, 2018.
  • [7] U. Köbler, Bosonic and magnonic magnon dispersions, J. Magn. Magn. Mater. 502, 166533, 1-18, 2020. [8] L.J. De Jongh, A.R. Miedema, Experiments on simple magnetic model systems, Adv. Phys. 23,1-260, 1974.
  • [9] J.C. Le Guillou, J. Zinn-Justin, Critical exponents from field theory, Phys. Rev. B 21, 3976-3998, 1980.
  • [10] A. Okazaki, K.C. Turberfield, R.W.H. Stevenson, Neutron Inelastic Scattering Measurements of Antiferromagnetic Excitations in MnF2 at 4.2 K and at Temperatures up to the Néel Point, Phys. Lett. 8, 9-11,1964.
  • [11] Y. Shapira, S. Foner, Magnetic Phase Diagram of MnF2 from Ultrasonic and Differential Magnetization Measurements, Phys. Rev. B 1, 3083-3096, 1970.
  • [12] J.W. Stout, L.M. Matarrese, Magnetic Anisotropy of the Iron-Group Fluorides, Rev. Mod. Phys. 25, 338-343, 1953.
  • [13] C.A.M. Mulder, H.L. Stipdonk, P.H. Kes, A.J. van Duyneveldt, L.J. de Jongh, The Magnetic Phase Diagram of the Quasi Two-Dimensional Heisenberg Antiferromagnet K2MnF4, Physica 113B, 380-390, 1982.
  • [14] A. Hoser, U. Köbler, Functional crossover in the dispersion relations of magnons and phonons, J. Phys.: Conf. Ser. 746, 012062, 1-8, 2016.
  • [15] U. Köbler, One-Dimensional Boson Fields in the Critical Range of EuS and EuO, Acta Phys. Pol. A 128, 398-407, 2015.
  • [16] U. Köbler, A. Hoser, Dimensionality in Field Theory and in Spin Wave Theory, Acta. Phys. Pol. A 127, 356-358, 2015.
  • [17] L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65, 117-149, 1944. [18] H. Ikeda, K. Hirakawa, Neutron Scattering Study of Two-Dimensional Ising Nature of K2CoF4, Sol. State Commun. 14, 529-532, 1974.
  • [19] H. Ikeda, M.T. Hutchings, Spin wave excitations in a two-dimensional Ising-like antiferromagnet, Rb2CoF4, J. Phys. C: Solid State Phys. 11, L529-532, 1978.
  • [20] D.J. Breed, K. Gilijamse, A.R. Miedema, Magnetic Properties of K2CoF4 and Rb2CoF4: Two-Dimensional Ising Antiferromagnets, Physica, 45, 205-216, 1969.
  • [21] A. Kornblit, G. Ahlers, Heat Capacity of RbMnF3 near the Antiferromagnetic Transition Temperature, Phys. Rev. B 8, 5163-5174 1973.
  • [22] A. Kornblit, G. Ahlers, Heat capacity of EuO near the Curie temperature, Phys. Rev. B 11, 2678-2688, 1975.
  • [23] E. Scheer, J. Wosnitza, H. v. Löhneysen, Specific heat of EuxSr1-xTe, Z. Physik B 85, 79-86, 1991.
  • [24] A. Kornblit, G. Ahlers, E. Buehler, Heat capacity of EuS near the ferromagnetic transition, Phys. Rev. B 17, 282-292, 1978.
  • [25] W.S. Corak, M.P. Garfunkel, C.B. Satterthwaite, A. Wexler, Atomic Heats of Copper, Silver and Gold from 1oK to 5oK, Phys. Rev. 98, 1699-1708, 1955.
  • [26] U. Köbler, On the Thermal Conductivity of Metals and of Insulators, Int. J. Therm. 20, 210-218, 2017.
  • [27] U. Köbler, The importance of the Debye bosons (sound waves) for the lattice dynamics of solids, Int. J. Therm. 23, 59-79, 2020. [28] W.L. Roth, Magnetic Structures of MnO, FeO, CoO and NiO, Phys. Rev. 110, 1333-1341, 1958.
  • [29] W. Jauch, M. Reehuis, H.J. Bleif, F. Kubanek, P. Pattison, Crystallographic symmetry and magnetic structure of CoO, Phys. Rev. B 64, 052102, 1-3, 2001.
  • [30] U. Köbler, On the Distinction between Debye Bosons and Acoustic Phonons, Int. J. Therm. 18, 277-284, 2015.
  • [31] W. Jauch, M. Reehuis, Electron density distribution in paramagnetic and antiferromagnetic NiO: A γ-ray diffraction study, Phys. Rev. B 70, 195121, 1-8, 2004.
  • [32] U. Köber, Sample-size dependent temperature dependence of the spontaneous magnetization, J. Magn. Magn. Mater., 165632, 1-16, 2019.
  • [33] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1956.
  • [34] F. Bloch, Zur Theorie des Ferromagnetismus, Z. Physik 61, 206-219, 1930.
  • [35] R.F.S. Hearmon in: Ladoldt-Börnstein, vol. III/11, p.1 ed. by K.-H. Hellwege and A.M. Hellwege, Springer, Berlin, 1984.
  • [36] I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 1995.
  • [37] C. Enss, S. Hunklinger, Low-temperature physics, Springer, Berlin, 2005.
  • [38] U. Köbler, A. Hoser, Magnetic Interaction by Exchange of Field Bosons, Acta Phys. Pol. A 121, 1176-1178, 2012.
  • [39] Y.S. Touloukian, E.H. Buyco, Thermophysical Properties of Matter, vol. 5, Specific Heat of Nonmetallic Solids, IFI/Plenum, New-York, 1970.
  • [40] Y.S. Touloukian, E.H. Buyco, Thermophysical Properties of Matter, vol. 4, Specific Heat of Metallic Elements and Alloys, IFI/Plenum, New-York, 1970.
  • [41] U. Köbler, V.Yu. Bodryakov, On the Melting Process of Solids, Int. J. Therm. 18, 200-204, 2015.
  • [42] S. Klemme, H.S.C. O´Neill, W. Schnelle, E. Gmelin, The heat capacity of MgCr2O4, FeCr2O4 and Cr2O3 at low temperatures and derived thermodynamic properties, Amer. Mineralogist, 85, 1686-1693, 2000. [43] L.M. Corliss, J.M. Hastings, Magnetic Structure Studies at Brookhaven National Laboratory, J. Physique, 25, 557-562, 1964.
  • [44] L.M. Corliss, J.M. Hastings, R. Nathans, G. Shirane, Magnetic Structure of Cr2O3, J. Appl. Phys. 36, 1099-1100, 1965.
  • [45] U. Köbler, I. Radelytskyi, H. Szymczak, Relevant crystal field interaction in the magnetically ordered state, J. Magn. Magn. Mater. 474, 254-268, 2019.
  • [46] M. Griffel, R.F. Skochdopole, F.H. Spedding, The Heat Capacity of Gadolinium from 15 to 355 oK, Phys. Rev. 93, 657-661, 1954.
  • [47] H.E. Nigh, S. Legvold, F.H. Spedding, Magnetization and Electrical Resistivity of Gadolinium Single Crystals, Phys. Rev. 132, 1092-1097, 1963.
  • [48] U. Köbler, Magnetism of powder samples and of single Crystals, J. Magn. Magn. Mater. 349, 88-94, 2014. [49] H. Kondoh, Antiferromagnetic Resonance in NiO in Far-infrared Region, J. Phys. Soc. Jpn. 15, 1970-1975, 1960.
  • [50] A. Tucciarone, H.Y. Lau, L.M. Corliss, A. Delapalme, J.M. Hastings, Quantitative Analysis of Inelastic Scattering in Two-Crystal and Three-Crystal Neutron Spectroscopy; Critical Scattering from RbMnF3, Phys. Rev. B 4, 3206-3245, 1971.
  • [51] M.P. Schulhof, R. Nathans, P. Heller, A. Linz, Inelastic Neutron Scattering from MnF2 in the Critical Region, Phys. Rev. B 4, 2254-2276, 1971.
  • [52] B.J.C. van der Hoeven, Jr., D.T. Teaney, V.L. Moruzzi, Magnetic Equation of State and Specific Heat of EuS near the Curie Point, Phys. Rev. Lett. 20, 719-721, 1968.
  • [53] U. Köbler, Ch. Sauer in: Landolt-Börnstein, vol. III/12c, ed. by K.-H. Hellwege, Springer, Berlin, p. 159-371, 1982.
  • [54] W.K. Robinson, S.A. Friedberg, Specific Heats of NiCl2‧6H2O and CoCl2‧6H2O between 1.4o and 20o K, Phys. Rev. 117, 402-408, 1960.
  • [55] R.A. Cowley, W.J.L. Buyers, P. Martel, R.W.H. Stevenson, Magnetic excitations and magnetic critical scattering in cobalt fluoride, J. Phys. C: Solid State Phys. 6, 2997-3019, 1973.
  • [56] J.W. Stout, E. Catalano, Heat Capacity of Zinc Fluoride from 11 to 300oK. Thermodynamic Functions of Zinc Fluoride. Entropy and Heat Capacity Associated with the Antiferromagnetic Ordering of Manganous Fluoride, Ferrous Fluoride, Cobaltous Fluoride and Nickelous Fluoride, J. Chem. Phys. 23, 2013-2022, 1955.
  • [57] J. Strempfer, U. Rütt, S.P. Bayrakci, Th. Brückel, W. Jauch, Magnetic properties of transition metal fluorides MF2 (M= Mn, Fe, Co, Ni) via high-energy photon diffraction, Phys. Rev. B 69, 014417, 1-9, 2004.
  • [58] T. Shinoda, H. Chihara, S. Seki, Heat Capacity of CoCl2‧2H2O between 7 and 120 oK and its Anomaly Associated with Magnetic Transition, J. Phys. Soc. Jpn. 19, 1637-1648, 1964.
  • [59] E. Catalano, J.W. Stout, Heat Capacity and Entropy of FeF2 and CoF2 from 11 to 300 oK. Thermal Anomalies Associated with Antiferromagnetic Ordering, J. Chem. Phys. 23, 1803-1808, 1955.
  • [60] E. Catalano, J.W. Stout, Heat Capacity of NiF2 from 12 to 300 oK. Thermodynamic Functions of NiF2. The Thermal Anomaly Associated with the Antiferromagnetic Ordering, J. Chem. Phys. 23, 1284-1289, 1955.
  • [61] W.O.J. Boo, J.W. Stout, Heat capacity and entropy of MnF2 from 10 t0 300 oK. Evaluation of the contributions associated with magnetic ordering, J. Chem. Phys. 65, 3929-3934, 1976.
  • [62] W.O.J. Boo, J.W. Stout, Heat capacity and entropy of CuF2 and CrF2 from 10 to 300 oK. Anomalies associated with magnetic ordering and evaluation of magnetic contributions to the heat capacity, J. Chem. Phys. 71, 9-16, 1979.
  • [63] J.W. Cable, M.K. Wilkinson, E.O. Wollan, Neutron Diffraction Studies of Antiferromagnetism in CrF2 and CrCl2, Phys. Rev. 118, 950-955, 1960.
  • [64] A.K. Cheetham, D.A.O. Hope, Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1-xO, Phys. Rev. B 27, 6964-6967, 1983.
  • [65] B. Morosin, Exchange Striction Effects in MnO and MnS, Phys. Rev. B 1, 236-243, 1970.
  • [66] M.K. Wilkinson, J.W. Cable, E.O. Wollan, W.C. Koehler, Neutron Diffraction Investigations of the Magnetic Ordering in FeBr2, CoBr2, FeCl2 and CoCl2, Phys. Rev. 113, 497-507, 1959.
  • [67] R.C. Chisholm, J.W. Stout, Heat Capacity and Entropy of CoCl2 and MnCl2 from 11o to 300oK. Thermal Anomaly Associated with Antiferromagnetic Ordering in CoCl2. J. Chem. Phys. 36, 972-979, 1962.
  • [68] J.W. Stout, R.C. Chisholm, Heat Capacity and Entropy of CuCl2 and CrCl2 from 11o to 300oK. Magnetic Ordering in Linear Chain Crystals, J. Chem. Phys. 36, 979-991, 1962.
  • [69] C.H. Shomate, Heat Capacities at Low Temperatures of VCl2 and VCl3, J. Am. Chem. Soc. 69, 220-221, 1947.
  • [70] H. Kubo, K. Shimohigashi, I. Yamada, Magnetization of Two-Dimensional Ferromagnet K2CuF4, J. Phys. Soc. Jpn. 34, 1687-1687, 1973.
  • [71] G.A. Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, in: Physical Acoustics, ed. by W.P. Mason, vol III B, Academic Press, New-York,1-42, 1965.
  • [72] K.K. Kelley, G.E. Moore, Specific Heats at Low Temperatures of Manganese Carbide and Manganese Dioxide, J. Am. Chem. Soc. 65, 782-785, 1943.
  • [73] B.C. Frazer, G. Shirane, D.E. Cox, C.E. Olsen, Neutron-Diffraction Study of Antiferromagnetism in UO2, Phys. Rev. 140, A1448-A1452, 1965.
  • [74] E. Fatuzzo, W.J. Merz: Ferroelectricity, North-Holland, Amsterdam, 1967.
  • [75] J. Singleton: Band Theory and Electronic Properties of Solids, Oxford Univ. Press, 2014.
  • [76] R.K. Pathria: Statistical Mechanics, 2th edition, Butterworth-Heinemann, Oxford 1996.
  • [77] P. Heller, Experimental investigations of critical phenomena, Rep. Prog. Phys. 30, 731-826, 1967.

Universality in the temperature dependence of the heat capacity of magnetic solids

Year 2020, Volume: 23 Issue: 3, 147 - 174, 27.08.2020
https://doi.org/10.5541/ijot.756405

Abstract

It is shown that the temperature dependence of the heat capacity of the magnetic solids can completely be described by a sequence of universal power functions of temperature. Characteristic for universality is that each power function holds over a finite temperature range and has a rational exponent. The analytical change from one to the adjacent power function is a typical crossover event. Universality reveals that the temperature dependence of the heat capacity is determined by a boson field whereas the absolute values are given by all magnetic and non-magnetic inter-atomic interactions. Universality for temperatures outside the critical range at Tc, i.e. for temperatures for which the phonons dominate the heat capacity has to be characterized as non-intrinsic, arising from interactions of the phonons with the bosons of the continuous magnetic medium. As we have shown earlier, the bosons of the continuous magnetic solid are essentially magnetic dipole radiation generated via stimulated emission by the precessing spins. We have called them Goldstone bosons. The interactions of the Goldstone bosons with the magnons modify the wave-vector dependence of the magnons. For cubic crystals the dispersions along [ζ, 0, 0] direction are essentially as for the linear spin chain, i.e. one-dimensional. As the different rational exponent values in the temperature power function of the heat capacity show, there exists a number of distinct modes of interaction between the Goldstone boson field and the phonons. The actual exponent depends additionally on the proportion between the magnetic and the non-magnetic energy contributions and therefore changes with temperature. The observed exponents are, however, difficult to interpret.

References

  • [1] K.G. Wilson, J. Kogut, The Renormalization Group and the ε Expansion, Phys. Rep. 12C, 75-199, 1974.
  • [2] J. Goldstone, A. Salam, S. Weinberg, Broken Symmetries, Phys. Rev. 127, 965-970, 1962.
  • [3] A. Hoser, U. Köbler, Boson Fields in Ordered Magnets, Acta Phys. Pol. A 127, 350-352, 2015.
  • [4] E. Brézin, J.C. Le Guillou, J. Zinn-Justin, Discussion of critical phenomena for general n-vector models, Phys. Rev. B 10, 892-900, 1974.
  • [5] U. Köbler, Crossover phenomena in the critical range near magnetic ordering transition, J. Magn. Magn. Mater. 453, 17-29, 2018.
  • [6] U. Köbler, A. Hoser, Experimental Studies of Boson Fields in Solids, World Scientific, Singapore, 2018.
  • [7] U. Köbler, Bosonic and magnonic magnon dispersions, J. Magn. Magn. Mater. 502, 166533, 1-18, 2020. [8] L.J. De Jongh, A.R. Miedema, Experiments on simple magnetic model systems, Adv. Phys. 23,1-260, 1974.
  • [9] J.C. Le Guillou, J. Zinn-Justin, Critical exponents from field theory, Phys. Rev. B 21, 3976-3998, 1980.
  • [10] A. Okazaki, K.C. Turberfield, R.W.H. Stevenson, Neutron Inelastic Scattering Measurements of Antiferromagnetic Excitations in MnF2 at 4.2 K and at Temperatures up to the Néel Point, Phys. Lett. 8, 9-11,1964.
  • [11] Y. Shapira, S. Foner, Magnetic Phase Diagram of MnF2 from Ultrasonic and Differential Magnetization Measurements, Phys. Rev. B 1, 3083-3096, 1970.
  • [12] J.W. Stout, L.M. Matarrese, Magnetic Anisotropy of the Iron-Group Fluorides, Rev. Mod. Phys. 25, 338-343, 1953.
  • [13] C.A.M. Mulder, H.L. Stipdonk, P.H. Kes, A.J. van Duyneveldt, L.J. de Jongh, The Magnetic Phase Diagram of the Quasi Two-Dimensional Heisenberg Antiferromagnet K2MnF4, Physica 113B, 380-390, 1982.
  • [14] A. Hoser, U. Köbler, Functional crossover in the dispersion relations of magnons and phonons, J. Phys.: Conf. Ser. 746, 012062, 1-8, 2016.
  • [15] U. Köbler, One-Dimensional Boson Fields in the Critical Range of EuS and EuO, Acta Phys. Pol. A 128, 398-407, 2015.
  • [16] U. Köbler, A. Hoser, Dimensionality in Field Theory and in Spin Wave Theory, Acta. Phys. Pol. A 127, 356-358, 2015.
  • [17] L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev. 65, 117-149, 1944. [18] H. Ikeda, K. Hirakawa, Neutron Scattering Study of Two-Dimensional Ising Nature of K2CoF4, Sol. State Commun. 14, 529-532, 1974.
  • [19] H. Ikeda, M.T. Hutchings, Spin wave excitations in a two-dimensional Ising-like antiferromagnet, Rb2CoF4, J. Phys. C: Solid State Phys. 11, L529-532, 1978.
  • [20] D.J. Breed, K. Gilijamse, A.R. Miedema, Magnetic Properties of K2CoF4 and Rb2CoF4: Two-Dimensional Ising Antiferromagnets, Physica, 45, 205-216, 1969.
  • [21] A. Kornblit, G. Ahlers, Heat Capacity of RbMnF3 near the Antiferromagnetic Transition Temperature, Phys. Rev. B 8, 5163-5174 1973.
  • [22] A. Kornblit, G. Ahlers, Heat capacity of EuO near the Curie temperature, Phys. Rev. B 11, 2678-2688, 1975.
  • [23] E. Scheer, J. Wosnitza, H. v. Löhneysen, Specific heat of EuxSr1-xTe, Z. Physik B 85, 79-86, 1991.
  • [24] A. Kornblit, G. Ahlers, E. Buehler, Heat capacity of EuS near the ferromagnetic transition, Phys. Rev. B 17, 282-292, 1978.
  • [25] W.S. Corak, M.P. Garfunkel, C.B. Satterthwaite, A. Wexler, Atomic Heats of Copper, Silver and Gold from 1oK to 5oK, Phys. Rev. 98, 1699-1708, 1955.
  • [26] U. Köbler, On the Thermal Conductivity of Metals and of Insulators, Int. J. Therm. 20, 210-218, 2017.
  • [27] U. Köbler, The importance of the Debye bosons (sound waves) for the lattice dynamics of solids, Int. J. Therm. 23, 59-79, 2020. [28] W.L. Roth, Magnetic Structures of MnO, FeO, CoO and NiO, Phys. Rev. 110, 1333-1341, 1958.
  • [29] W. Jauch, M. Reehuis, H.J. Bleif, F. Kubanek, P. Pattison, Crystallographic symmetry and magnetic structure of CoO, Phys. Rev. B 64, 052102, 1-3, 2001.
  • [30] U. Köbler, On the Distinction between Debye Bosons and Acoustic Phonons, Int. J. Therm. 18, 277-284, 2015.
  • [31] W. Jauch, M. Reehuis, Electron density distribution in paramagnetic and antiferromagnetic NiO: A γ-ray diffraction study, Phys. Rev. B 70, 195121, 1-8, 2004.
  • [32] U. Köber, Sample-size dependent temperature dependence of the spontaneous magnetization, J. Magn. Magn. Mater., 165632, 1-16, 2019.
  • [33] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1956.
  • [34] F. Bloch, Zur Theorie des Ferromagnetismus, Z. Physik 61, 206-219, 1930.
  • [35] R.F.S. Hearmon in: Ladoldt-Börnstein, vol. III/11, p.1 ed. by K.-H. Hellwege and A.M. Hellwege, Springer, Berlin, 1984.
  • [36] I. Barin, Thermochemical Data of Pure Substances, VCH, Weinheim, 1995.
  • [37] C. Enss, S. Hunklinger, Low-temperature physics, Springer, Berlin, 2005.
  • [38] U. Köbler, A. Hoser, Magnetic Interaction by Exchange of Field Bosons, Acta Phys. Pol. A 121, 1176-1178, 2012.
  • [39] Y.S. Touloukian, E.H. Buyco, Thermophysical Properties of Matter, vol. 5, Specific Heat of Nonmetallic Solids, IFI/Plenum, New-York, 1970.
  • [40] Y.S. Touloukian, E.H. Buyco, Thermophysical Properties of Matter, vol. 4, Specific Heat of Metallic Elements and Alloys, IFI/Plenum, New-York, 1970.
  • [41] U. Köbler, V.Yu. Bodryakov, On the Melting Process of Solids, Int. J. Therm. 18, 200-204, 2015.
  • [42] S. Klemme, H.S.C. O´Neill, W. Schnelle, E. Gmelin, The heat capacity of MgCr2O4, FeCr2O4 and Cr2O3 at low temperatures and derived thermodynamic properties, Amer. Mineralogist, 85, 1686-1693, 2000. [43] L.M. Corliss, J.M. Hastings, Magnetic Structure Studies at Brookhaven National Laboratory, J. Physique, 25, 557-562, 1964.
  • [44] L.M. Corliss, J.M. Hastings, R. Nathans, G. Shirane, Magnetic Structure of Cr2O3, J. Appl. Phys. 36, 1099-1100, 1965.
  • [45] U. Köbler, I. Radelytskyi, H. Szymczak, Relevant crystal field interaction in the magnetically ordered state, J. Magn. Magn. Mater. 474, 254-268, 2019.
  • [46] M. Griffel, R.F. Skochdopole, F.H. Spedding, The Heat Capacity of Gadolinium from 15 to 355 oK, Phys. Rev. 93, 657-661, 1954.
  • [47] H.E. Nigh, S. Legvold, F.H. Spedding, Magnetization and Electrical Resistivity of Gadolinium Single Crystals, Phys. Rev. 132, 1092-1097, 1963.
  • [48] U. Köbler, Magnetism of powder samples and of single Crystals, J. Magn. Magn. Mater. 349, 88-94, 2014. [49] H. Kondoh, Antiferromagnetic Resonance in NiO in Far-infrared Region, J. Phys. Soc. Jpn. 15, 1970-1975, 1960.
  • [50] A. Tucciarone, H.Y. Lau, L.M. Corliss, A. Delapalme, J.M. Hastings, Quantitative Analysis of Inelastic Scattering in Two-Crystal and Three-Crystal Neutron Spectroscopy; Critical Scattering from RbMnF3, Phys. Rev. B 4, 3206-3245, 1971.
  • [51] M.P. Schulhof, R. Nathans, P. Heller, A. Linz, Inelastic Neutron Scattering from MnF2 in the Critical Region, Phys. Rev. B 4, 2254-2276, 1971.
  • [52] B.J.C. van der Hoeven, Jr., D.T. Teaney, V.L. Moruzzi, Magnetic Equation of State and Specific Heat of EuS near the Curie Point, Phys. Rev. Lett. 20, 719-721, 1968.
  • [53] U. Köbler, Ch. Sauer in: Landolt-Börnstein, vol. III/12c, ed. by K.-H. Hellwege, Springer, Berlin, p. 159-371, 1982.
  • [54] W.K. Robinson, S.A. Friedberg, Specific Heats of NiCl2‧6H2O and CoCl2‧6H2O between 1.4o and 20o K, Phys. Rev. 117, 402-408, 1960.
  • [55] R.A. Cowley, W.J.L. Buyers, P. Martel, R.W.H. Stevenson, Magnetic excitations and magnetic critical scattering in cobalt fluoride, J. Phys. C: Solid State Phys. 6, 2997-3019, 1973.
  • [56] J.W. Stout, E. Catalano, Heat Capacity of Zinc Fluoride from 11 to 300oK. Thermodynamic Functions of Zinc Fluoride. Entropy and Heat Capacity Associated with the Antiferromagnetic Ordering of Manganous Fluoride, Ferrous Fluoride, Cobaltous Fluoride and Nickelous Fluoride, J. Chem. Phys. 23, 2013-2022, 1955.
  • [57] J. Strempfer, U. Rütt, S.P. Bayrakci, Th. Brückel, W. Jauch, Magnetic properties of transition metal fluorides MF2 (M= Mn, Fe, Co, Ni) via high-energy photon diffraction, Phys. Rev. B 69, 014417, 1-9, 2004.
  • [58] T. Shinoda, H. Chihara, S. Seki, Heat Capacity of CoCl2‧2H2O between 7 and 120 oK and its Anomaly Associated with Magnetic Transition, J. Phys. Soc. Jpn. 19, 1637-1648, 1964.
  • [59] E. Catalano, J.W. Stout, Heat Capacity and Entropy of FeF2 and CoF2 from 11 to 300 oK. Thermal Anomalies Associated with Antiferromagnetic Ordering, J. Chem. Phys. 23, 1803-1808, 1955.
  • [60] E. Catalano, J.W. Stout, Heat Capacity of NiF2 from 12 to 300 oK. Thermodynamic Functions of NiF2. The Thermal Anomaly Associated with the Antiferromagnetic Ordering, J. Chem. Phys. 23, 1284-1289, 1955.
  • [61] W.O.J. Boo, J.W. Stout, Heat capacity and entropy of MnF2 from 10 t0 300 oK. Evaluation of the contributions associated with magnetic ordering, J. Chem. Phys. 65, 3929-3934, 1976.
  • [62] W.O.J. Boo, J.W. Stout, Heat capacity and entropy of CuF2 and CrF2 from 10 to 300 oK. Anomalies associated with magnetic ordering and evaluation of magnetic contributions to the heat capacity, J. Chem. Phys. 71, 9-16, 1979.
  • [63] J.W. Cable, M.K. Wilkinson, E.O. Wollan, Neutron Diffraction Studies of Antiferromagnetism in CrF2 and CrCl2, Phys. Rev. 118, 950-955, 1960.
  • [64] A.K. Cheetham, D.A.O. Hope, Magnetic ordering and exchange effects in the antiferromagnetic solid solutions MnxNi1-xO, Phys. Rev. B 27, 6964-6967, 1983.
  • [65] B. Morosin, Exchange Striction Effects in MnO and MnS, Phys. Rev. B 1, 236-243, 1970.
  • [66] M.K. Wilkinson, J.W. Cable, E.O. Wollan, W.C. Koehler, Neutron Diffraction Investigations of the Magnetic Ordering in FeBr2, CoBr2, FeCl2 and CoCl2, Phys. Rev. 113, 497-507, 1959.
  • [67] R.C. Chisholm, J.W. Stout, Heat Capacity and Entropy of CoCl2 and MnCl2 from 11o to 300oK. Thermal Anomaly Associated with Antiferromagnetic Ordering in CoCl2. J. Chem. Phys. 36, 972-979, 1962.
  • [68] J.W. Stout, R.C. Chisholm, Heat Capacity and Entropy of CuCl2 and CrCl2 from 11o to 300oK. Magnetic Ordering in Linear Chain Crystals, J. Chem. Phys. 36, 979-991, 1962.
  • [69] C.H. Shomate, Heat Capacities at Low Temperatures of VCl2 and VCl3, J. Am. Chem. Soc. 69, 220-221, 1947.
  • [70] H. Kubo, K. Shimohigashi, I. Yamada, Magnetization of Two-Dimensional Ferromagnet K2CuF4, J. Phys. Soc. Jpn. 34, 1687-1687, 1973.
  • [71] G.A. Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, in: Physical Acoustics, ed. by W.P. Mason, vol III B, Academic Press, New-York,1-42, 1965.
  • [72] K.K. Kelley, G.E. Moore, Specific Heats at Low Temperatures of Manganese Carbide and Manganese Dioxide, J. Am. Chem. Soc. 65, 782-785, 1943.
  • [73] B.C. Frazer, G. Shirane, D.E. Cox, C.E. Olsen, Neutron-Diffraction Study of Antiferromagnetism in UO2, Phys. Rev. 140, A1448-A1452, 1965.
  • [74] E. Fatuzzo, W.J. Merz: Ferroelectricity, North-Holland, Amsterdam, 1967.
  • [75] J. Singleton: Band Theory and Electronic Properties of Solids, Oxford Univ. Press, 2014.
  • [76] R.K. Pathria: Statistical Mechanics, 2th edition, Butterworth-Heinemann, Oxford 1996.
  • [77] P. Heller, Experimental investigations of critical phenomena, Rep. Prog. Phys. 30, 731-826, 1967.
There are 72 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Ulrich Köbler

Publication Date August 27, 2020
Published in Issue Year 2020 Volume: 23 Issue: 3

Cite

APA Köbler, U. (2020). Universality in the temperature dependence of the heat capacity of magnetic solids. International Journal of Thermodynamics, 23(3), 147-174. https://doi.org/10.5541/ijot.756405
AMA Köbler U. Universality in the temperature dependence of the heat capacity of magnetic solids. International Journal of Thermodynamics. August 2020;23(3):147-174. doi:10.5541/ijot.756405
Chicago Köbler, Ulrich. “Universality in the Temperature Dependence of the Heat Capacity of Magnetic Solids”. International Journal of Thermodynamics 23, no. 3 (August 2020): 147-74. https://doi.org/10.5541/ijot.756405.
EndNote Köbler U (August 1, 2020) Universality in the temperature dependence of the heat capacity of magnetic solids. International Journal of Thermodynamics 23 3 147–174.
IEEE U. Köbler, “Universality in the temperature dependence of the heat capacity of magnetic solids”, International Journal of Thermodynamics, vol. 23, no. 3, pp. 147–174, 2020, doi: 10.5541/ijot.756405.
ISNAD Köbler, Ulrich. “Universality in the Temperature Dependence of the Heat Capacity of Magnetic Solids”. International Journal of Thermodynamics 23/3 (August 2020), 147-174. https://doi.org/10.5541/ijot.756405.
JAMA Köbler U. Universality in the temperature dependence of the heat capacity of magnetic solids. International Journal of Thermodynamics. 2020;23:147–174.
MLA Köbler, Ulrich. “Universality in the Temperature Dependence of the Heat Capacity of Magnetic Solids”. International Journal of Thermodynamics, vol. 23, no. 3, 2020, pp. 147-74, doi:10.5541/ijot.756405.
Vancouver Köbler U. Universality in the temperature dependence of the heat capacity of magnetic solids. International Journal of Thermodynamics. 2020;23(3):147-74.