BibTex RIS Cite

Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules

Year 2014, Volume: 17 Issue: 1, 27 - 32, 01.02.2014
https://doi.org/10.5541/ijot.76993

Abstract

On account of the high accuracy with which spectroscopic data are obtained, thermodynamic parameters estimated from these data are more reliable than those obtained by direct thermal measurements. Spectroscopic data of aluminum based diatomic gas molecules (AlO, AlH, AlD, AlF, AlC) and partition function theory have been used to evaluate the thermodynamical parameters in the temperature range 100 – 3000 K. Equilibrium constants for astrophysically important chemical process have been calculated using partition function theory. It is noticed that for AlC the heat capacity decreases exponentially after the critical temperature 1200 K.

References

  • H. N. Russell, Molecules in the Sun and Stars, Astrophys. J., 79, 317-342, 1934.
  • K. Sadeghipour, R. Solamon, S. Neogi, Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper, Smart. Mater. Struct., 1, 172-179, 1992.
  • P. Kotzian, P. Brazdilova, K. Kalcher, K. Handlir, K. Vytras, Oxides of platinum metal group as potential catalysts in carbonaceous amperometric biosensors based on oxidases, Sens. Actuators B. Chem., 124, 297302, 2006.
  • D. R. Chialvo, Physiology: Unhealthy surprises, Nature, 419, 263-264, 2002.
  • R. C. Tolman, Rotational Specific Heat and Half Quantum Numbers, Phys. Rev., 22, 470-478, 1923.
  • A. J. Sauval, J. B. Tatum, A Set of Partition Functions and Equilibrium Constants for 300 Diatomic Molecules of Astrophysical Interest, Astrophys. J. Sup. Ser., 56, 193-209, 1984.
  • B. H. Cardelino, C. E. Moore, C. A. Cardelinp, D. O. Frazier, K. J. Bechmann, Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapour Deposition. J. Phys. Chem. A, 105, 849-868, 200 D. L. Hildenbrand, K. H. Lau, Dissociation energies of the Cu and Ag monohalides and of Ni monofluoride, J. Phys. Chem. A, 110, 11886-11889, 2006.
  • Pavitra Tandon., K. N. Uttam, Estimation of thermodynamics quantities of tin chalcogenides from spectroscopic data, Indian J. Pure and App. Phys., 47, 725-729, 2009.
  • Pavitra Tandon., K. N. Uttam, Thermodynamic properties of Platimum Diatomics: Properties of PtH, PtC, PtN, and PtO calculated from spectroscopic data, Platinum Metal Review, 53,123-134, 2009.
  • B. Viswanathan, R. Shanmugavel, S. P. Bagare, N. Rajamanickam, P. Sriramachandran, Identification of CrH and CrD Molecular Lines in the Sunspot Umbral Spectrum, Solar Phys., 257,261-269, 2009.
  • Ya. V. Pavlenko, G. J. Harris, J. Tennyson, H. R. A. Jones, J. M. Brown, C. Hill, L. A. Yakovina, The electronic bands of CrD, CrH, MgD and MgH: application to the `deuterium test', Mon. Not. Rom. Astrom. Soc., 386, 1338-1346, 2008.
  • P. Swings, Spectroscopic problems of astronomical interest, J. Opt. Soc. Amer., 41, 153-165, 1951.
  • K. Lodders, Solar system abundances and condensation temperatures of the elements, Astrophys. J., 591, 1220-1247, 2003.
  • B. E. Turner, A molecular line survey of Sagittarius B2 and Orion-KL from 70 to 115 GHz. II - Analysis of the data, Astophys. J. Sup. Ser., 76, 617-686, 1991.
  • E. D. Tenenbaum, L. M. Ziurys, Millimeter Detection of AlO (X 2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris, Astrophys. J., 694, L59-L63, 2009.
  • J. Bevan Ott, Juliana Boerio–Goates, Chemical Thermodynamics: Principles and Applications, Elsevier Academic Press, San Diego, California, USA, 2000.
  • J. M. Scalo, Studies of evolved stars. II. On the interpretation of the CN/C 2 and CO/C 2 ratios in cool carbon stars, Astrophys. J., 184, 801-813, 1973.
  • A.T. Barrett, On the microwave detection of interstellar CH 4 , SiH 4 , and GeH 4 . Astrophys. J., 220, L81-L85, 1978.
  • D. M. Goldhaber, A. L. Betz, Silane in IRC +10216, Astrophys. J., 279, L55-L58, 1984.
  • M. D. Allen, T. C. Pesch, S. Ziury, The Pure Rotational Spectrum of FeC ( i X  3 ), Astrophys. J., 472, L57-L60, 1996.
  • W. Szajana, M. Zachwieja, Emission spectroscopy of the A 1 Π - X 1 Σ + system of AlH, Eur. Phys. J. D, 55, 549-555, 2009.
  • J. B. White, M. Dulick, P. F. Bernath, High resolution infrared emission spectra of AlH and AlD, J. Chem. Phys., 99, 8371-8378, 1993.
  • R. B. Christopher, A. T. Mickelle, The electronic emission spectrum of aluminum carbide, J. Mol. Spectrosc, 258, 42-49, 2009.
  • M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, C. T. Londe, Fourier transform spectral study of B 2 Σ + X 2 Σ + system of AlO, J. Mol. Spectrosc., 247, 47-56, 200 Table 1. Spectroscopic Constants of Gas Phase Diatomic Molecules. Mol. x ) (cm ω e 1  ) ( 1  cm x e e  ) ( 1  cm B e ) ( 1  cm e  MW (amu) Ref. AlH 1 16374 051 393 0.187 989 AlD 1 12774 064 318 0.069 995 AlC 4 6893 347 0.531 0.005 992 AlO 2 9524 036 0.641 0.005 980 AlF 1 80260 770 0.552 0.004 598 HD 1 38100 650 655 986 022 OH 2 37760 881 910 0.724 007 OD 2 27240 055 020 0.275 013 H 2 1 440210 1330 853 062 015 D 2 1 3500 820 443 078 028
  • Table Calculated Thermodynamic Properties of AlO Molecule T( K) F H S C p 100 -589 908 128 078 200 -211 830 1522 151 300 -383 880 1856 600 400 -638 296 2065 74 500 -819 264 248 528 600 -852 783 2706 639 700 -1676 717 2304 738 800 -1226 891 2211 614 900 -1432 166 2424 185 1000 -1227 452 2993 452 1100 -2549 698 2994 453 1200 -2347 883 2506 236 1300 -2574 002 2603 847 1400 -2193 055 2349 325 1500 -3171 050 2795 700 1600 -3480 993 2985 995 1700 -3097 890 2954 229 1800 -40002 748 2731 415 1900 -4175 572 2339 564 2000 -4602 368 2799 684 2100 -4267 139 2127 780 2200 -5160 888 2336 858 2300 -5268 619 2439 921 2400 -5582 335 2446 973 2500 -600.092 036 2366 014 2600 -6790 726 2205 048 2700 -6667 1404 2971 076 2800 -6718 1074 2669 098 2900 -7936 1735 30305 116 3000 -7315 1389 30882 130
  • Table Calculated Thermodynamic Properties of AlH Molecule. T( K) F H S C p 100 -182 977 1991 859 200 -375 891 1185 997 300 -094 814 1036 077 400 -812 785 1578 234 500 -291 860 1434 538 600 -404 095 1327 006 700 -073 529 1616 626 800 -1250 183 20493 365 900 -1899 058 20054 186 1000 -1990 140 2353 049 1100 -1499 405 2417 922 1200 -2403 828 2264 780 1300 -2682 379 2906 606 1400 -2315 033 2355 387 1500 -2284 766 2620 117 1600 -2570 559 2713 792 1700 -3158 395 2645 414 1800 -3031 260 2426 983 1900 -3176 144 2066 502 2000 -3577 039 2577 974 2100 -4224 938 2967 403 2200 -4104 837 2246 794 2300 -4207 732 2422 148 2400 -4523 620 2502 470 2500 -5042 499 2494 763 2600 -5756 369 2404 030 2700 -5657 229 2238 273 2800 -5738 078 2002 495 2900 -6993 1916 2700 698 3000 -6413 1743 2336 884
  • Table Calculated Thermodynamic Properties of AlD Molecule. T( K) F H S C p 100 -756 989 1851 98 200 -535 905 106 071 300 -847 871 1073 267 400 -187 989 1027 744 500 -342 353 1522 523 600 -202 014 200.189 539 700 -698 975 20288 691 800 -1781 201 2928 887 900 -1407 644 2159 058 1000 -1537 251 2012 16 1100 -1135 978 2516 169 1200 -2167 784 2697 077 1300 -2602 641 2585 884 1400 -2412 526 2205 596 1500 -2572 424 2584 222 1600 -3059 325 2747 771 1700 -3852 22 2715 252 1800 -3933 105 2507 674 1900 -3285 977 2142 045 2000 -40894 836 2634 372 2100 -4745 679 2997 661 2200 -4826 508 2243 917 2300 -4127 322 2383 144 2400 -5637 121 2426 346 2500 -5346 908 238 527 2600 -5247 681 2252 688 2700 -5331 443 2049 834 2800 -6592 1193 2776 965 2900 -6022 1933 244 084 3000 -6615 1664 2044 191
  • Table Calculated Thermodynamic Properties of AlC Molecule. T( K) F H S C p 100 -632 000 1731 092 200 -320 035 1634 720 300 -737 908 200.162 722 400 -668 053 2889 404 500 -989 827 2763 471 600 -477 571 2242 133 700 -1908 065 2716 677 800 -1109 314 2729 528 900 -1956 377 2694 984 1000 -20359 308 2890 217 1100 -2252 147 2503 323 1200 -2582 921 2657 358 1300 -2308 649 2442 352 1400 -3397 343 2920 323 1500 -3821 012 2142 281 1600 -3555 663 2144 232 1700 -3580 299 2955 181 1800 -4878 925 2598 130 1900 -4432 542 2095 079 2000 -4229 151 2459 030 2100 -5257 756 2705 983 2200 -5504 355 30845 938 2300 -5960 951 30888 896 2400 -60616 544 30843 855 2500 -6463 135 30717 817 2600 -6494 1723 30516 781 2700 -6701 1309 3247 747 2800 -7078 1894 3915 715 2900 -7619 1478 3523 685 3000 -7318 106 3077 656
  • Table Calculated Thermodynamic Properties of AlF Molecule. T( K) F H S C p 100 -805 000 1445 084 200 -648 945 1823 269 300 -070 108 1603 056 400 -624 674 2083 457 500 -13 681 2755 18 600 -48 054 2719 938 700 -1584 681 2848 557 800 -1362 462 223 964 900 -1745 325 2957 149 1000 -20671 222 2117 131 1100 -2089 124 2789 939 1200 -2953 017 2046 605 1300 -2224 891 2948 154 1400 -30869 744 2544 609 1500 -3861 574 2877 988 1600 -3174 382 298 307 1700 -3787 170 2883 576 1800 -40682 940 2609 805 1900 -4841 692 2178 000 2000 -425 429 2608 169 2100 -4895 152 2913 315 2200 -5766 863 2104 442 2300 -585 562 2193 553 2400 -5138 252 2189 65 2500 -60622 933 21 737 2600 -6293 606 2933 813 2700 -6143 1271 2693 881 2800 -6166 1930 2388 942 2900 -7356 1583 30021 997 3000 -7706 1231 30596 047
  • Note: In Tables 1 – 6, T – Temperature ( K) F - Free energy (KJ/mole) H - Enthalpy (KJ/mole), S - Entropy (KJ/mole) C P - Heat capacity (J/ K mole) Table Equilibrium Constants of Reactions. T( K) [a] [b] [c] 100 87E-09 29E-09 33E-09 200 79E-05 60E-05 55E-05 300 88E-04 01E-04 62E-03 400 45E-03 47E-03 15E-03 500 18E-03 15E-02 17E-02 600 79E-02 14E-02 24E-02 700 92E-02 28E-02 91E-02 800 27E-02 47E-02 01E-01 900 79E-02 64E-02 36E-01 1000 43E-02 77E-02 73E-01 1100 16E-02 81E-02 11E-01 1200 09E-01 79E-02 49E-01 1300 27E-01 70E-02 86E-01 1400 45E-01 05E-01 20E-01 1500 63E-01 14E-01 53E-01 1600 80E-01 21E-01 83E-01 1700 96E-01 28E-01 10E-01 1800 12E-01 36E-01 35E-01 1900 27E-01 42E-01 57E-01 2000 41E-01 49E-01 76E-01 2100 55E-01 55E-01 93E-01 2200 67E-01 62E-01 09E-01 2300 79E-01 68E-01 23E-01 2400 90E-01 74E-01 35E-01 2500 00E-01 79E-01 46E-01 2600 10E-01 85E-01 57E-01 2700 19E-01 90E-01 66E-01 2800 28E-01 96E-01 75E-01 2900 36E-01 01E-01 83E-01 3000 43E-01 06E-01 90E-01 Note: In Table 7, T – Temperature ( K) [a] 2 H AlD HD AlH    [b] 2 D AlH HD AlD    [c] OH AlD OD AlH   
Year 2014, Volume: 17 Issue: 1, 27 - 32, 01.02.2014
https://doi.org/10.5541/ijot.76993

Abstract

References

  • H. N. Russell, Molecules in the Sun and Stars, Astrophys. J., 79, 317-342, 1934.
  • K. Sadeghipour, R. Solamon, S. Neogi, Development of a novel electrochemically active membrane and 'smart' material based vibration sensor/damper, Smart. Mater. Struct., 1, 172-179, 1992.
  • P. Kotzian, P. Brazdilova, K. Kalcher, K. Handlir, K. Vytras, Oxides of platinum metal group as potential catalysts in carbonaceous amperometric biosensors based on oxidases, Sens. Actuators B. Chem., 124, 297302, 2006.
  • D. R. Chialvo, Physiology: Unhealthy surprises, Nature, 419, 263-264, 2002.
  • R. C. Tolman, Rotational Specific Heat and Half Quantum Numbers, Phys. Rev., 22, 470-478, 1923.
  • A. J. Sauval, J. B. Tatum, A Set of Partition Functions and Equilibrium Constants for 300 Diatomic Molecules of Astrophysical Interest, Astrophys. J. Sup. Ser., 56, 193-209, 1984.
  • B. H. Cardelino, C. E. Moore, C. A. Cardelinp, D. O. Frazier, K. J. Bechmann, Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapour Deposition. J. Phys. Chem. A, 105, 849-868, 200 D. L. Hildenbrand, K. H. Lau, Dissociation energies of the Cu and Ag monohalides and of Ni monofluoride, J. Phys. Chem. A, 110, 11886-11889, 2006.
  • Pavitra Tandon., K. N. Uttam, Estimation of thermodynamics quantities of tin chalcogenides from spectroscopic data, Indian J. Pure and App. Phys., 47, 725-729, 2009.
  • Pavitra Tandon., K. N. Uttam, Thermodynamic properties of Platimum Diatomics: Properties of PtH, PtC, PtN, and PtO calculated from spectroscopic data, Platinum Metal Review, 53,123-134, 2009.
  • B. Viswanathan, R. Shanmugavel, S. P. Bagare, N. Rajamanickam, P. Sriramachandran, Identification of CrH and CrD Molecular Lines in the Sunspot Umbral Spectrum, Solar Phys., 257,261-269, 2009.
  • Ya. V. Pavlenko, G. J. Harris, J. Tennyson, H. R. A. Jones, J. M. Brown, C. Hill, L. A. Yakovina, The electronic bands of CrD, CrH, MgD and MgH: application to the `deuterium test', Mon. Not. Rom. Astrom. Soc., 386, 1338-1346, 2008.
  • P. Swings, Spectroscopic problems of astronomical interest, J. Opt. Soc. Amer., 41, 153-165, 1951.
  • K. Lodders, Solar system abundances and condensation temperatures of the elements, Astrophys. J., 591, 1220-1247, 2003.
  • B. E. Turner, A molecular line survey of Sagittarius B2 and Orion-KL from 70 to 115 GHz. II - Analysis of the data, Astophys. J. Sup. Ser., 76, 617-686, 1991.
  • E. D. Tenenbaum, L. M. Ziurys, Millimeter Detection of AlO (X 2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris, Astrophys. J., 694, L59-L63, 2009.
  • J. Bevan Ott, Juliana Boerio–Goates, Chemical Thermodynamics: Principles and Applications, Elsevier Academic Press, San Diego, California, USA, 2000.
  • J. M. Scalo, Studies of evolved stars. II. On the interpretation of the CN/C 2 and CO/C 2 ratios in cool carbon stars, Astrophys. J., 184, 801-813, 1973.
  • A.T. Barrett, On the microwave detection of interstellar CH 4 , SiH 4 , and GeH 4 . Astrophys. J., 220, L81-L85, 1978.
  • D. M. Goldhaber, A. L. Betz, Silane in IRC +10216, Astrophys. J., 279, L55-L58, 1984.
  • M. D. Allen, T. C. Pesch, S. Ziury, The Pure Rotational Spectrum of FeC ( i X  3 ), Astrophys. J., 472, L57-L60, 1996.
  • W. Szajana, M. Zachwieja, Emission spectroscopy of the A 1 Π - X 1 Σ + system of AlH, Eur. Phys. J. D, 55, 549-555, 2009.
  • J. B. White, M. Dulick, P. F. Bernath, High resolution infrared emission spectra of AlH and AlD, J. Chem. Phys., 99, 8371-8378, 1993.
  • R. B. Christopher, A. T. Mickelle, The electronic emission spectrum of aluminum carbide, J. Mol. Spectrosc, 258, 42-49, 2009.
  • M. D. Saksena, M. N. Deo, K. Sunanda, S. H. Behere, C. T. Londe, Fourier transform spectral study of B 2 Σ + X 2 Σ + system of AlO, J. Mol. Spectrosc., 247, 47-56, 200 Table 1. Spectroscopic Constants of Gas Phase Diatomic Molecules. Mol. x ) (cm ω e 1  ) ( 1  cm x e e  ) ( 1  cm B e ) ( 1  cm e  MW (amu) Ref. AlH 1 16374 051 393 0.187 989 AlD 1 12774 064 318 0.069 995 AlC 4 6893 347 0.531 0.005 992 AlO 2 9524 036 0.641 0.005 980 AlF 1 80260 770 0.552 0.004 598 HD 1 38100 650 655 986 022 OH 2 37760 881 910 0.724 007 OD 2 27240 055 020 0.275 013 H 2 1 440210 1330 853 062 015 D 2 1 3500 820 443 078 028
  • Table Calculated Thermodynamic Properties of AlO Molecule T( K) F H S C p 100 -589 908 128 078 200 -211 830 1522 151 300 -383 880 1856 600 400 -638 296 2065 74 500 -819 264 248 528 600 -852 783 2706 639 700 -1676 717 2304 738 800 -1226 891 2211 614 900 -1432 166 2424 185 1000 -1227 452 2993 452 1100 -2549 698 2994 453 1200 -2347 883 2506 236 1300 -2574 002 2603 847 1400 -2193 055 2349 325 1500 -3171 050 2795 700 1600 -3480 993 2985 995 1700 -3097 890 2954 229 1800 -40002 748 2731 415 1900 -4175 572 2339 564 2000 -4602 368 2799 684 2100 -4267 139 2127 780 2200 -5160 888 2336 858 2300 -5268 619 2439 921 2400 -5582 335 2446 973 2500 -600.092 036 2366 014 2600 -6790 726 2205 048 2700 -6667 1404 2971 076 2800 -6718 1074 2669 098 2900 -7936 1735 30305 116 3000 -7315 1389 30882 130
  • Table Calculated Thermodynamic Properties of AlH Molecule. T( K) F H S C p 100 -182 977 1991 859 200 -375 891 1185 997 300 -094 814 1036 077 400 -812 785 1578 234 500 -291 860 1434 538 600 -404 095 1327 006 700 -073 529 1616 626 800 -1250 183 20493 365 900 -1899 058 20054 186 1000 -1990 140 2353 049 1100 -1499 405 2417 922 1200 -2403 828 2264 780 1300 -2682 379 2906 606 1400 -2315 033 2355 387 1500 -2284 766 2620 117 1600 -2570 559 2713 792 1700 -3158 395 2645 414 1800 -3031 260 2426 983 1900 -3176 144 2066 502 2000 -3577 039 2577 974 2100 -4224 938 2967 403 2200 -4104 837 2246 794 2300 -4207 732 2422 148 2400 -4523 620 2502 470 2500 -5042 499 2494 763 2600 -5756 369 2404 030 2700 -5657 229 2238 273 2800 -5738 078 2002 495 2900 -6993 1916 2700 698 3000 -6413 1743 2336 884
  • Table Calculated Thermodynamic Properties of AlD Molecule. T( K) F H S C p 100 -756 989 1851 98 200 -535 905 106 071 300 -847 871 1073 267 400 -187 989 1027 744 500 -342 353 1522 523 600 -202 014 200.189 539 700 -698 975 20288 691 800 -1781 201 2928 887 900 -1407 644 2159 058 1000 -1537 251 2012 16 1100 -1135 978 2516 169 1200 -2167 784 2697 077 1300 -2602 641 2585 884 1400 -2412 526 2205 596 1500 -2572 424 2584 222 1600 -3059 325 2747 771 1700 -3852 22 2715 252 1800 -3933 105 2507 674 1900 -3285 977 2142 045 2000 -40894 836 2634 372 2100 -4745 679 2997 661 2200 -4826 508 2243 917 2300 -4127 322 2383 144 2400 -5637 121 2426 346 2500 -5346 908 238 527 2600 -5247 681 2252 688 2700 -5331 443 2049 834 2800 -6592 1193 2776 965 2900 -6022 1933 244 084 3000 -6615 1664 2044 191
  • Table Calculated Thermodynamic Properties of AlC Molecule. T( K) F H S C p 100 -632 000 1731 092 200 -320 035 1634 720 300 -737 908 200.162 722 400 -668 053 2889 404 500 -989 827 2763 471 600 -477 571 2242 133 700 -1908 065 2716 677 800 -1109 314 2729 528 900 -1956 377 2694 984 1000 -20359 308 2890 217 1100 -2252 147 2503 323 1200 -2582 921 2657 358 1300 -2308 649 2442 352 1400 -3397 343 2920 323 1500 -3821 012 2142 281 1600 -3555 663 2144 232 1700 -3580 299 2955 181 1800 -4878 925 2598 130 1900 -4432 542 2095 079 2000 -4229 151 2459 030 2100 -5257 756 2705 983 2200 -5504 355 30845 938 2300 -5960 951 30888 896 2400 -60616 544 30843 855 2500 -6463 135 30717 817 2600 -6494 1723 30516 781 2700 -6701 1309 3247 747 2800 -7078 1894 3915 715 2900 -7619 1478 3523 685 3000 -7318 106 3077 656
  • Table Calculated Thermodynamic Properties of AlF Molecule. T( K) F H S C p 100 -805 000 1445 084 200 -648 945 1823 269 300 -070 108 1603 056 400 -624 674 2083 457 500 -13 681 2755 18 600 -48 054 2719 938 700 -1584 681 2848 557 800 -1362 462 223 964 900 -1745 325 2957 149 1000 -20671 222 2117 131 1100 -2089 124 2789 939 1200 -2953 017 2046 605 1300 -2224 891 2948 154 1400 -30869 744 2544 609 1500 -3861 574 2877 988 1600 -3174 382 298 307 1700 -3787 170 2883 576 1800 -40682 940 2609 805 1900 -4841 692 2178 000 2000 -425 429 2608 169 2100 -4895 152 2913 315 2200 -5766 863 2104 442 2300 -585 562 2193 553 2400 -5138 252 2189 65 2500 -60622 933 21 737 2600 -6293 606 2933 813 2700 -6143 1271 2693 881 2800 -6166 1930 2388 942 2900 -7356 1583 30021 997 3000 -7706 1231 30596 047
  • Note: In Tables 1 – 6, T – Temperature ( K) F - Free energy (KJ/mole) H - Enthalpy (KJ/mole), S - Entropy (KJ/mole) C P - Heat capacity (J/ K mole) Table Equilibrium Constants of Reactions. T( K) [a] [b] [c] 100 87E-09 29E-09 33E-09 200 79E-05 60E-05 55E-05 300 88E-04 01E-04 62E-03 400 45E-03 47E-03 15E-03 500 18E-03 15E-02 17E-02 600 79E-02 14E-02 24E-02 700 92E-02 28E-02 91E-02 800 27E-02 47E-02 01E-01 900 79E-02 64E-02 36E-01 1000 43E-02 77E-02 73E-01 1100 16E-02 81E-02 11E-01 1200 09E-01 79E-02 49E-01 1300 27E-01 70E-02 86E-01 1400 45E-01 05E-01 20E-01 1500 63E-01 14E-01 53E-01 1600 80E-01 21E-01 83E-01 1700 96E-01 28E-01 10E-01 1800 12E-01 36E-01 35E-01 1900 27E-01 42E-01 57E-01 2000 41E-01 49E-01 76E-01 2100 55E-01 55E-01 93E-01 2200 67E-01 62E-01 09E-01 2300 79E-01 68E-01 23E-01 2400 90E-01 74E-01 35E-01 2500 00E-01 79E-01 46E-01 2600 10E-01 85E-01 57E-01 2700 19E-01 90E-01 66E-01 2800 28E-01 96E-01 75E-01 2900 36E-01 01E-01 83E-01 3000 43E-01 06E-01 90E-01 Note: In Table 7, T – Temperature ( K) [a] 2 H AlD HD AlH    [b] 2 D AlH HD AlD    [c] OH AlD OD AlH   
There are 30 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

B. Viswanathan This is me

R. Shanmugavel This is me

P. Sriramachandran

Publication Date February 1, 2014
Published in Issue Year 2014 Volume: 17 Issue: 1

Cite

APA Viswanathan, B., Shanmugavel, R., & Sriramachandran, P. (2014). Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules. International Journal of Thermodynamics, 17(1), 27-32. https://doi.org/10.5541/ijot.76993
AMA Viswanathan B, Shanmugavel R, Sriramachandran P. Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules. International Journal of Thermodynamics. February 2014;17(1):27-32. doi:10.5541/ijot.76993
Chicago Viswanathan, B., R. Shanmugavel, and P. Sriramachandran. “Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules”. International Journal of Thermodynamics 17, no. 1 (February 2014): 27-32. https://doi.org/10.5541/ijot.76993.
EndNote Viswanathan B, Shanmugavel R, Sriramachandran P (February 1, 2014) Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules. International Journal of Thermodynamics 17 1 27–32.
IEEE B. Viswanathan, R. Shanmugavel, and P. Sriramachandran, “Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules”, International Journal of Thermodynamics, vol. 17, no. 1, pp. 27–32, 2014, doi: 10.5541/ijot.76993.
ISNAD Viswanathan, B. et al. “Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules”. International Journal of Thermodynamics 17/1 (February 2014), 27-32. https://doi.org/10.5541/ijot.76993.
JAMA Viswanathan B, Shanmugavel R, Sriramachandran P. Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules. International Journal of Thermodynamics. 2014;17:27–32.
MLA Viswanathan, B. et al. “Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules”. International Journal of Thermodynamics, vol. 17, no. 1, 2014, pp. 27-32, doi:10.5541/ijot.76993.
Vancouver Viswanathan B, Shanmugavel R, Sriramachandran P. Spectroscopic Evaluation of Thermodynamic Parameters for Aluminum Based Diatomic Gas Molecules. International Journal of Thermodynamics. 2014;17(1):27-32.