BibTex RIS Cite

A thermodynamic Metric for Assessing Sustainable Use of Natural Resources

Year 2015, Volume: 18 Issue: 1, 66 - 72, 13.01.2015
https://doi.org/10.5541/ijot.5000086729

Abstract

A thermodynamic metric is proposed to supplement existing scales in the assessment of the way we use our natural resources. This metric has the advantage of being absolute and independent of economy, suitable for comparison of technologies, and can be used at molecular level as well as process-units and systems levels. It measures loss of useful work (exergy) in cradle-to-grave or complete recycling systems in terms of generalized friction or entropy production and may deliver realistic targets for process operations. This absolute scale can be useful also for international legislation and to foster a development in direction of more sustainable technologies. In an extended perspective, the presented approach may form a universal basis for analysis and development of national economies and policies regarding industry, engineering and environment. This may give new opportunities to put political resource discussions on a solid objective footing

References

  • Key World Energy Statistics, Technical Report, International Energy Agency, 2011.
  • Directive 2012/27/EU of the European Parliament and of the Council of Energy Efficiency, 2012.
  • T. E. Graedel, R. Barr, C. Chandler, T. Chase, J. Choi, L. Christoffersen, E. Friedlander, C. Henly, C. Jun, N. T. Nassar, D. Schechner, S. Warren, M. Yang, and C. Zhu, “Methodology of metal criticality determination,” Environ. Sci. & Techn., 46, 1063−1070, 2012.
  • A. Valer, A. Valero. Thanatia: The Destiny of the Earth's Mineral Resources A Thermodynamic Cradle-to- Cradle Assessment, Imperial College Press. 2014.
  • Appeal to UN and EU by 33 researchers, J. Int. Thermodynamics, 16, Sept. 2013
  • N. Georgescu-Roegen, The entropy law and the economic process, Harvard University Press, Cambridge. 1971.
  • M. J. Molina, F. S. Rowland, Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone, Nature, 249, 810-812, 1974.
  • J. Dewulf, H. Van Langenhove, E.J. Vandamme. Resource Technology - a challenge for scientists and engineers. Chem Technol Biotechnol., 85, 1299–1300, 2010.
  • J. Dewulf, H. Van Langenhove, J. Mulder, M.M.D. van den Berg, H.J. van der Kooi, J. de Swaan Arons. “Illustrations towards quantifying the sustainability of technology”. Green Chemistry, 2, 108-114, 2000.
  • Erkman S. “Industrial ecology: An historical view”, Journal of Cleaner Production, 5, 1–10, 1997.
  • S. Hellweg, L. Milà i Canals, “Emerging approaches, challenges and opportunities in life cycle assessment”, Science, 344, 1109-1113, 2014.
  • Online: Available
  • http://epp.eurostat.ec.europa.eu/portal/page/portal/europe_2 020_indicators/ree_scoreboard. Oct. 2014
  • Huysman S., Sala S., Mancini L., Ardente F., Matthieux F., Alvarenga R.A.F., De Meester S., Dewulf J. Towards a systematized framework for resource efficiency indicators, Submitted to Resources, Conservation and Recycling, 2014.
  • J. Szargut, D.R. Morris, F.R. Steward. Exergy Analysis of Thermal, Chemical and Metallurgical Processes, Hemisphere, New York, 1988.
  • J. Dewulf, H. Van Langenhove, B. Muys, S. Bruers, B.R. Bakshi, G. Grubb, D.M. Paulus, E. Sciubba. Exergy: Its Potential and Limitations. Environ. Sci. & Techn., 42, 2221-2232, 2008.
  • A. Zvolinschi, S. Kjelstrup, O. Bolland, H. van der Kooi, “Exergy Sustainability Indicators as a Tool in Industrial Ecology: Application to Two Gas-Fired Combined Cycle Power Plants”, J. Industrial Ecology, 11, 85-98, 2007.
  • A. Zvolinschi, S. Kjelstrup, “A process maturity indicator for industrial ecology”, J. Industrial Ecology, 12, 159-172, 2008.
  • J. Humphrey, A. Siebert, “Separation technologies: an opportunity for energy savings”, Chem. Eng. Progress, 88, 32-41, 1992.
  • G. de Koeijer, A. Rİsjorde, S. Kjelstrup, «Distribution of heat exchange in optimum diabatic distillation columns», Energy, 29, 2425- 2440, 2004.
  • A. Rİsjorde, M. Nakaiwa, K. Huang, K. Iwakabe and S. Kjelstrup, «Second law analysis of an internal heat-integrated distillation column”, In: Energy-Efficient, Cost-Effective and Environmentally-Sustainable
  • Proceedings of ECOS 2004, Guanajuato, Mexico, July 7-9, ed. R. Rivero, L. Monroy, R. Pulido, G. Tsatsaronis, Vol. I, Instituto Mexicano del Petroleo, Mexico City, 107-115, 2004. Systems and
  • Processes, [21] S. Kjelstrup, D. Bedeaux, E. Johannessen, Non- equilibrium Thermodynamics for Engineers, World Scientific, Singapore, 2010.
  • Y. Demirel, “Sustainable Operations for Distillation Columns”, Chem. Eng. Process Tech.,1, 1005, 2013.
  • A. Valero, A. Valero, A. Martinez, “Inventory of the exergy resources on earth including its mineral capital”, Energy, 35, 989-995, 2010.
  • Huijbregts, M.A.J, Hellweg, S., Frischknecht, R., Hendriks, H,W.M., Hungerbühler, K., Hendriks, A.J., Cumulative energy demand as predictor for the environmental burden of commodity production, Environ. Sci. Technol., 44, 2189–2196, 2010.
  • USDOE Industrial Technologies Program Chemical Bandwidth Study. Exergy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry. Summary Report December 2004. Study conducted for the U.S. Department of Energy by JVP International, Incorporated and Psage Research, LLC. 37 p., 2004.
  • R.U. Ayres, L. Talens Peiro, G. Villalba Mendez. “Exergy Efficiency in Industry: Where Do We Stand?” Environ. Sci. and Techn., 45, 10634–10641, 2011.
  • P.E. Brockway, J.R. Barrett, T.J. Foxon, J.K. Steinberger. “Divergence of Trends in US and UK Aggregate Exergy Efficiencies 1960-2010”, Environ. Sci. and Techn., 48, 9874−9881, 2014.
  • D. Favrat, F. Marechal, O. Epelly «The challenge of introducing an exergy indicator in a local low on energy”, Energy, 33, 130-136, 2008.[29] O. Ignatenko, A. van Schaik, M.A. Reuter. Exergy as a tool for evaluation of the resource efficiency of recycling systems. Minerals Engineering, 20, 862-874, 2007.
Year 2015, Volume: 18 Issue: 1, 66 - 72, 13.01.2015
https://doi.org/10.5541/ijot.5000086729

Abstract

References

  • Key World Energy Statistics, Technical Report, International Energy Agency, 2011.
  • Directive 2012/27/EU of the European Parliament and of the Council of Energy Efficiency, 2012.
  • T. E. Graedel, R. Barr, C. Chandler, T. Chase, J. Choi, L. Christoffersen, E. Friedlander, C. Henly, C. Jun, N. T. Nassar, D. Schechner, S. Warren, M. Yang, and C. Zhu, “Methodology of metal criticality determination,” Environ. Sci. & Techn., 46, 1063−1070, 2012.
  • A. Valer, A. Valero. Thanatia: The Destiny of the Earth's Mineral Resources A Thermodynamic Cradle-to- Cradle Assessment, Imperial College Press. 2014.
  • Appeal to UN and EU by 33 researchers, J. Int. Thermodynamics, 16, Sept. 2013
  • N. Georgescu-Roegen, The entropy law and the economic process, Harvard University Press, Cambridge. 1971.
  • M. J. Molina, F. S. Rowland, Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone, Nature, 249, 810-812, 1974.
  • J. Dewulf, H. Van Langenhove, E.J. Vandamme. Resource Technology - a challenge for scientists and engineers. Chem Technol Biotechnol., 85, 1299–1300, 2010.
  • J. Dewulf, H. Van Langenhove, J. Mulder, M.M.D. van den Berg, H.J. van der Kooi, J. de Swaan Arons. “Illustrations towards quantifying the sustainability of technology”. Green Chemistry, 2, 108-114, 2000.
  • Erkman S. “Industrial ecology: An historical view”, Journal of Cleaner Production, 5, 1–10, 1997.
  • S. Hellweg, L. Milà i Canals, “Emerging approaches, challenges and opportunities in life cycle assessment”, Science, 344, 1109-1113, 2014.
  • Online: Available
  • http://epp.eurostat.ec.europa.eu/portal/page/portal/europe_2 020_indicators/ree_scoreboard. Oct. 2014
  • Huysman S., Sala S., Mancini L., Ardente F., Matthieux F., Alvarenga R.A.F., De Meester S., Dewulf J. Towards a systematized framework for resource efficiency indicators, Submitted to Resources, Conservation and Recycling, 2014.
  • J. Szargut, D.R. Morris, F.R. Steward. Exergy Analysis of Thermal, Chemical and Metallurgical Processes, Hemisphere, New York, 1988.
  • J. Dewulf, H. Van Langenhove, B. Muys, S. Bruers, B.R. Bakshi, G. Grubb, D.M. Paulus, E. Sciubba. Exergy: Its Potential and Limitations. Environ. Sci. & Techn., 42, 2221-2232, 2008.
  • A. Zvolinschi, S. Kjelstrup, O. Bolland, H. van der Kooi, “Exergy Sustainability Indicators as a Tool in Industrial Ecology: Application to Two Gas-Fired Combined Cycle Power Plants”, J. Industrial Ecology, 11, 85-98, 2007.
  • A. Zvolinschi, S. Kjelstrup, “A process maturity indicator for industrial ecology”, J. Industrial Ecology, 12, 159-172, 2008.
  • J. Humphrey, A. Siebert, “Separation technologies: an opportunity for energy savings”, Chem. Eng. Progress, 88, 32-41, 1992.
  • G. de Koeijer, A. Rİsjorde, S. Kjelstrup, «Distribution of heat exchange in optimum diabatic distillation columns», Energy, 29, 2425- 2440, 2004.
  • A. Rİsjorde, M. Nakaiwa, K. Huang, K. Iwakabe and S. Kjelstrup, «Second law analysis of an internal heat-integrated distillation column”, In: Energy-Efficient, Cost-Effective and Environmentally-Sustainable
  • Proceedings of ECOS 2004, Guanajuato, Mexico, July 7-9, ed. R. Rivero, L. Monroy, R. Pulido, G. Tsatsaronis, Vol. I, Instituto Mexicano del Petroleo, Mexico City, 107-115, 2004. Systems and
  • Processes, [21] S. Kjelstrup, D. Bedeaux, E. Johannessen, Non- equilibrium Thermodynamics for Engineers, World Scientific, Singapore, 2010.
  • Y. Demirel, “Sustainable Operations for Distillation Columns”, Chem. Eng. Process Tech.,1, 1005, 2013.
  • A. Valero, A. Valero, A. Martinez, “Inventory of the exergy resources on earth including its mineral capital”, Energy, 35, 989-995, 2010.
  • Huijbregts, M.A.J, Hellweg, S., Frischknecht, R., Hendriks, H,W.M., Hungerbühler, K., Hendriks, A.J., Cumulative energy demand as predictor for the environmental burden of commodity production, Environ. Sci. Technol., 44, 2189–2196, 2010.
  • USDOE Industrial Technologies Program Chemical Bandwidth Study. Exergy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry. Summary Report December 2004. Study conducted for the U.S. Department of Energy by JVP International, Incorporated and Psage Research, LLC. 37 p., 2004.
  • R.U. Ayres, L. Talens Peiro, G. Villalba Mendez. “Exergy Efficiency in Industry: Where Do We Stand?” Environ. Sci. and Techn., 45, 10634–10641, 2011.
  • P.E. Brockway, J.R. Barrett, T.J. Foxon, J.K. Steinberger. “Divergence of Trends in US and UK Aggregate Exergy Efficiencies 1960-2010”, Environ. Sci. and Techn., 48, 9874−9881, 2014.
  • D. Favrat, F. Marechal, O. Epelly «The challenge of introducing an exergy indicator in a local low on energy”, Energy, 33, 130-136, 2008.[29] O. Ignatenko, A. van Schaik, M.A. Reuter. Exergy as a tool for evaluation of the resource efficiency of recycling systems. Minerals Engineering, 20, 862-874, 2007.
There are 30 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Signe Kjelstrup

Jo Dewulf This is me

Bengt Norden This is me

Publication Date January 13, 2015
Published in Issue Year 2015 Volume: 18 Issue: 1

Cite

APA Kjelstrup, S., Dewulf, J., & Norden, B. (2015). A thermodynamic Metric for Assessing Sustainable Use of Natural Resources. International Journal of Thermodynamics, 18(1), 66-72. https://doi.org/10.5541/ijot.5000086729
AMA Kjelstrup S, Dewulf J, Norden B. A thermodynamic Metric for Assessing Sustainable Use of Natural Resources. International Journal of Thermodynamics. March 2015;18(1):66-72. doi:10.5541/ijot.5000086729
Chicago Kjelstrup, Signe, Jo Dewulf, and Bengt Norden. “A Thermodynamic Metric for Assessing Sustainable Use of Natural Resources”. International Journal of Thermodynamics 18, no. 1 (March 2015): 66-72. https://doi.org/10.5541/ijot.5000086729.
EndNote Kjelstrup S, Dewulf J, Norden B (March 1, 2015) A thermodynamic Metric for Assessing Sustainable Use of Natural Resources. International Journal of Thermodynamics 18 1 66–72.
IEEE S. Kjelstrup, J. Dewulf, and B. Norden, “A thermodynamic Metric for Assessing Sustainable Use of Natural Resources”, International Journal of Thermodynamics, vol. 18, no. 1, pp. 66–72, 2015, doi: 10.5541/ijot.5000086729.
ISNAD Kjelstrup, Signe et al. “A Thermodynamic Metric for Assessing Sustainable Use of Natural Resources”. International Journal of Thermodynamics 18/1 (March 2015), 66-72. https://doi.org/10.5541/ijot.5000086729.
JAMA Kjelstrup S, Dewulf J, Norden B. A thermodynamic Metric for Assessing Sustainable Use of Natural Resources. International Journal of Thermodynamics. 2015;18:66–72.
MLA Kjelstrup, Signe et al. “A Thermodynamic Metric for Assessing Sustainable Use of Natural Resources”. International Journal of Thermodynamics, vol. 18, no. 1, 2015, pp. 66-72, doi:10.5541/ijot.5000086729.
Vancouver Kjelstrup S, Dewulf J, Norden B. A thermodynamic Metric for Assessing Sustainable Use of Natural Resources. International Journal of Thermodynamics. 2015;18(1):66-72.