Research Article
BibTex RIS Cite
Year 2021, Volume: 24 Issue: 4, 50 - 55, 01.12.2021
https://doi.org/10.5541/ijot.937513

Abstract

References

  • J. Leitner, M. Hampl, K. Růžička, M. Straka, D. Sedmidubský, P. Svoboda., “Heat capacity, enthalpy and entropy of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7,” Thermochim. Acta., 475(1), 33-38, 2008.
  • M. Weiden, A. Grauel, J. Norwig, S. Horn, F. Steglich, “Crystalline structure of the strontium niobates Sr4Nb2O9 and Sr5Nb4O15,” J. Alloy Compd., 218, 13-16, 1995.
  • P.K. Bajpai, K.N. Singh, “Dielectric relaxation and ac conductivity study of Ba(Sr1/3Nb2/3)O3,” Physica B: Condensed Matter; 406, 1226-1232, 2011.
  • H. Sreemoolanadhan, M.T. Sebastian, P. Mohanan, “High permittivity and low loss ceramics in the BaO-SrO-Nb2O5 system,” Mater. Res. Bull., 30, 653-658, 1995.
  • Rajan Jose, Takenobu Suzuki, Yasutake Ohishi, “Thermal and optical properties of TeO2–BaO–SrO–Nb2O5 based glasses: New broadband Raman gain media”, J. Non-Cryst. Solids., 352, 5564-5571, 2006.
  • L. Marta, M. ZaharescuIov, Haidu C. Gh. Macarovici, “Thermal synthesis of Barium and Barium-Strontium metaniobates by using a coprecipitation method,” J. Therm. Anal. Calorim., 28, 175-188, 1983.
  • Verma Maya, Tanwar Amit, Sreenivas K., “Phase evolution of strontium bismuth niobate ceramics by conventional solid-state reaction method,” J. Therm. Anal. Calorim., 135, 2077-2087, 2019.
  • Ismunandar, B.J. Kennedy, Gunawan, Marsongkohardi, “Structure of ABi2Nb2O9 (A = Sr, Ba): refinement of powder neutron diffraction data,” J. Solid State Chem., 126, 135-141, 1996.
  • W. Wu, S. Liang, X. Wang, J. Bi, P. Liu, L. Wu, “Synthesis, structures and photocatalytic activities of microcrystalline ABi2Nb2O9 (A = Sr, Ba) powders,” J. Solid State Chem., 184, 81-88, 2011.
  • V.M. Zhukovsky, A.L. Podkorytov, “Investigation of s, p, d-element niobates and their solid solution formation processes by thermal analysis.” J. Therm. Anal. Calorim., 60, 523-534, 2000.
  • J. R. Carruthers and M. Grasso, “Phase Equilibria Relations in the Ternary System BaO ‐ SrO ‐ Nb2O5,” J. Electrochem. Soc. 117, 1426-1432, 1970.
  • R. Ratheesh, M. Sreemoolanadhan, T. Sebastian, “Vibrational Analysis of Ba5−xSrxNb4O15 Microwave Dielectric Ceramic Resonators,” J. Solid State Chem., 131, 2-8, 1997.
  • H. W. Zandbergen, D.J.W. Ijdo, “Barium strontium niobate and barium strontium tantalate, Ba3SrNb2O9 and Ba3SrTa2O9, a Rietveld refinement of neutron powder diffraction data,” Acta. Cryst., C39, 829-832, 1983.
  • A. Navrotsky, “Progress and new directions in high temperature calorimetry,” Phys. Chem. Miner., 2, 89-104, 1977.
  • M.W. Chase Jr. et al., “JANAF Thermochemical Tables,” 4th ed., J. Phys. Chem. Ref. Data 23 Monograph No. 9, 1995.
  • I. Barin, “Thermochemical Data of Pure Substances,” vol. I & II, 3rd ed., VCH Publishers, New York, 1995.
  • PCPDFWIN Version 2.2, 2001 JCPDS-ICDD. [Acsess Date: ]
  • J. Dicarlo, I. Yazdi, J.A. Jacobson, A. Navrotsky, “Preparation and thermochemical properties of BaNiO2+x,” J. Solid State Chem., 109, 223-226, 1994.
  • Bularzik Joseph, Navrotsky Alexandra, Dicarlo Joseph, “Energetics of La2-xSrxCuO4-x Solid Solutions (0.0 < x < 1.0),” J. Solid State Chem.; 93, 418-429, 1991.
  • J. Leitner, M. Nevřiva, D. Sedmidubský, P. Voňka, “Enthalpy of formation of selected mixed oxides in a CaO–SrO–Bi2O3–Nb2O5 system,” J. Alloy Compd., 509, 4940-4943, 2011.
  • J. Cheng, A. Navrotsky, “Energetics of Magnesium, Strontium, and Barium Doped Lanthanum Gallate Perovskites.” J. Solid State Chem. 177, 126-133, 2004.
  • H. Xu, A. Navrotsky, Y. Su, M.L. Balmer, “Perovskite Solid Solutions along the NaNbO3-SrTiO3 Join: Phase Transitions, Formation Enthalpies and Implications for General Perovskite Energetics.” Chem. Mater. 17, 1880-1886, 2005.
  • J. Leitner, I. Sipula, K. Ruzicka, D. Sedmidubsky, P. Svoboda, “Heat capacity, enthalpy and entropy of strontium niobates Sr2Nb10O27 and Sr5Nb4O15,” J. Alloys Compd. 481, 35-39, 2009.
  • I. Pozdnyakova, A.Navrotsky, L. Shilkina, L. Reznitchenko, “Thermodynamic and structural properties of sodium lithium niobate solid solutions.” J. Am. Ceram. Soc. 85, 379-384, 2002.

Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter

Year 2021, Volume: 24 Issue: 4, 50 - 55, 01.12.2021
https://doi.org/10.5541/ijot.937513

Abstract

In this study, Ba3SrNb2O9(s) was synthesized using conventional solid-state reaction route, characterized by powder XRD and SEM-EDAX. The standard molar enthalpy of formation of Ba3SrNb2O9(s) was determined measuring enthalpies of solution of Ba3SrNb2O9(s) in {PbO + B2O3} solvent (in 2:1 molar ratio) at T = 966 K using an oxide melt solution high temperature calorimeter. The enthalpy increment of Ba3SrNb2O9(s) was measured with same calorimeter. The heat capacity of the Ba3SrNb2O9(s) was also measured employing DSC. Based on the smoothed values of heat capacity, a table of thermodynamic data from 298 to 1000 K for Ba3SrNb2O9(s) was also constructed.

References

  • J. Leitner, M. Hampl, K. Růžička, M. Straka, D. Sedmidubský, P. Svoboda., “Heat capacity, enthalpy and entropy of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7,” Thermochim. Acta., 475(1), 33-38, 2008.
  • M. Weiden, A. Grauel, J. Norwig, S. Horn, F. Steglich, “Crystalline structure of the strontium niobates Sr4Nb2O9 and Sr5Nb4O15,” J. Alloy Compd., 218, 13-16, 1995.
  • P.K. Bajpai, K.N. Singh, “Dielectric relaxation and ac conductivity study of Ba(Sr1/3Nb2/3)O3,” Physica B: Condensed Matter; 406, 1226-1232, 2011.
  • H. Sreemoolanadhan, M.T. Sebastian, P. Mohanan, “High permittivity and low loss ceramics in the BaO-SrO-Nb2O5 system,” Mater. Res. Bull., 30, 653-658, 1995.
  • Rajan Jose, Takenobu Suzuki, Yasutake Ohishi, “Thermal and optical properties of TeO2–BaO–SrO–Nb2O5 based glasses: New broadband Raman gain media”, J. Non-Cryst. Solids., 352, 5564-5571, 2006.
  • L. Marta, M. ZaharescuIov, Haidu C. Gh. Macarovici, “Thermal synthesis of Barium and Barium-Strontium metaniobates by using a coprecipitation method,” J. Therm. Anal. Calorim., 28, 175-188, 1983.
  • Verma Maya, Tanwar Amit, Sreenivas K., “Phase evolution of strontium bismuth niobate ceramics by conventional solid-state reaction method,” J. Therm. Anal. Calorim., 135, 2077-2087, 2019.
  • Ismunandar, B.J. Kennedy, Gunawan, Marsongkohardi, “Structure of ABi2Nb2O9 (A = Sr, Ba): refinement of powder neutron diffraction data,” J. Solid State Chem., 126, 135-141, 1996.
  • W. Wu, S. Liang, X. Wang, J. Bi, P. Liu, L. Wu, “Synthesis, structures and photocatalytic activities of microcrystalline ABi2Nb2O9 (A = Sr, Ba) powders,” J. Solid State Chem., 184, 81-88, 2011.
  • V.M. Zhukovsky, A.L. Podkorytov, “Investigation of s, p, d-element niobates and their solid solution formation processes by thermal analysis.” J. Therm. Anal. Calorim., 60, 523-534, 2000.
  • J. R. Carruthers and M. Grasso, “Phase Equilibria Relations in the Ternary System BaO ‐ SrO ‐ Nb2O5,” J. Electrochem. Soc. 117, 1426-1432, 1970.
  • R. Ratheesh, M. Sreemoolanadhan, T. Sebastian, “Vibrational Analysis of Ba5−xSrxNb4O15 Microwave Dielectric Ceramic Resonators,” J. Solid State Chem., 131, 2-8, 1997.
  • H. W. Zandbergen, D.J.W. Ijdo, “Barium strontium niobate and barium strontium tantalate, Ba3SrNb2O9 and Ba3SrTa2O9, a Rietveld refinement of neutron powder diffraction data,” Acta. Cryst., C39, 829-832, 1983.
  • A. Navrotsky, “Progress and new directions in high temperature calorimetry,” Phys. Chem. Miner., 2, 89-104, 1977.
  • M.W. Chase Jr. et al., “JANAF Thermochemical Tables,” 4th ed., J. Phys. Chem. Ref. Data 23 Monograph No. 9, 1995.
  • I. Barin, “Thermochemical Data of Pure Substances,” vol. I & II, 3rd ed., VCH Publishers, New York, 1995.
  • PCPDFWIN Version 2.2, 2001 JCPDS-ICDD. [Acsess Date: ]
  • J. Dicarlo, I. Yazdi, J.A. Jacobson, A. Navrotsky, “Preparation and thermochemical properties of BaNiO2+x,” J. Solid State Chem., 109, 223-226, 1994.
  • Bularzik Joseph, Navrotsky Alexandra, Dicarlo Joseph, “Energetics of La2-xSrxCuO4-x Solid Solutions (0.0 < x < 1.0),” J. Solid State Chem.; 93, 418-429, 1991.
  • J. Leitner, M. Nevřiva, D. Sedmidubský, P. Voňka, “Enthalpy of formation of selected mixed oxides in a CaO–SrO–Bi2O3–Nb2O5 system,” J. Alloy Compd., 509, 4940-4943, 2011.
  • J. Cheng, A. Navrotsky, “Energetics of Magnesium, Strontium, and Barium Doped Lanthanum Gallate Perovskites.” J. Solid State Chem. 177, 126-133, 2004.
  • H. Xu, A. Navrotsky, Y. Su, M.L. Balmer, “Perovskite Solid Solutions along the NaNbO3-SrTiO3 Join: Phase Transitions, Formation Enthalpies and Implications for General Perovskite Energetics.” Chem. Mater. 17, 1880-1886, 2005.
  • J. Leitner, I. Sipula, K. Ruzicka, D. Sedmidubsky, P. Svoboda, “Heat capacity, enthalpy and entropy of strontium niobates Sr2Nb10O27 and Sr5Nb4O15,” J. Alloys Compd. 481, 35-39, 2009.
  • I. Pozdnyakova, A.Navrotsky, L. Shilkina, L. Reznitchenko, “Thermodynamic and structural properties of sodium lithium niobate solid solutions.” J. Am. Ceram. Soc. 85, 379-384, 2002.
There are 24 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Regular Original Research Article
Authors

Pradeep Samui

B. Singh This is me

H. Khadilkar This is me

S. Rakshit This is me

S. Parida This is me

Publication Date December 1, 2021
Published in Issue Year 2021 Volume: 24 Issue: 4

Cite

APA Samui, P., Singh, B., Khadilkar, H., Rakshit, S., et al. (2021). Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter. International Journal of Thermodynamics, 24(4), 50-55. https://doi.org/10.5541/ijot.937513
AMA Samui P, Singh B, Khadilkar H, Rakshit S, Parida S. Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter. International Journal of Thermodynamics. December 2021;24(4):50-55. doi:10.5541/ijot.937513
Chicago Samui, Pradeep, B. Singh, H. Khadilkar, S. Rakshit, and S. Parida. “Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter”. International Journal of Thermodynamics 24, no. 4 (December 2021): 50-55. https://doi.org/10.5541/ijot.937513.
EndNote Samui P, Singh B, Khadilkar H, Rakshit S, Parida S (December 1, 2021) Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter. International Journal of Thermodynamics 24 4 50–55.
IEEE P. Samui, B. Singh, H. Khadilkar, S. Rakshit, and S. Parida, “Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter”, International Journal of Thermodynamics, vol. 24, no. 4, pp. 50–55, 2021, doi: 10.5541/ijot.937513.
ISNAD Samui, Pradeep et al. “Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter”. International Journal of Thermodynamics 24/4 (December 2021), 50-55. https://doi.org/10.5541/ijot.937513.
JAMA Samui P, Singh B, Khadilkar H, Rakshit S, Parida S. Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter. International Journal of Thermodynamics. 2021;24:50–55.
MLA Samui, Pradeep et al. “Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter”. International Journal of Thermodynamics, vol. 24, no. 4, 2021, pp. 50-55, doi:10.5541/ijot.937513.
Vancouver Samui P, Singh B, Khadilkar H, Rakshit S, Parida S. Thermodynamic Studies on Ba3SrNb2O9 Employing Calorimeter. International Journal of Thermodynamics. 2021;24(4):50-5.

Cited By