Research Article
BibTex RIS Cite

Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle

Year 2023, Volume: 26 Issue: 3, 15 - 24, 01.09.2023
https://doi.org/10.5541/ijot.1247392

Abstract

In this paper, new cycle is developed to generate simultaneously electrical and cooling power by placing a turbine between the generator and ejector in the conventional ejector-assisted absorption cooling cycle. The aim of developed cycle is to increase the exergy efficiency of cycle by adding an electrical power generation made it more environmentally friendly and reduce its dependents of fossil energy sources. The first, second laws of thermodynamic, mass and energy balance is applied for each cycle component and the constant mixing pressure ejector model is used to develop a numerical model of proposed cycle. The results depict that the augmentation of generation temperature is positively affected the work produced in the turbine contrary for cycle coefficient of performance, for every working conditions there are a certain value of generation temperature which its exergy performance of cycle achieves the maximum, the augmentation of output pressure of turbine is positively affected the cycle coefficient of performance contrary of the work produced in the turbine and the cycle exergy efficiency and the augmentation of condensation temperature is positively affected the cycle exergy efficiency and the work produced in the turbine contrary for cycle coefficient of performance and the augmentation of evaporation temperature is positively affected the cycle coefficient of performance and the cycle exergy efficiency contrary for the work produced in the turbine The results also show that the improvement of exergy efficiency of proposed cycle is 29.41% and 46% compared with the absorption cooling cycle with double and triple effect under the same operating conditions.

References

  • R. Gomri, ʻʻ Investigation of the potential of application of simple and multiple effect absorption cooling systems,” Energy Conver. Manag., 51, 1629-1636, 2010.
  • N. Meng ,T. Li, X. Gao, Q. Liu, X. Li, H. Gao, ʻʻ Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock,” Appl. Therm. Eng., 200, 117715 , 2022 .
  • E. Cihan and B. Kavasogullari, ʻʻEnergy and exergy analysis of a combined refrigeration and waste heat driven organic rankine cycle system,ʼʼ Therm. Sci., 21, No. 6A, 2621-2631, 2017.
  • T. Li, H. Gao, X. Gao, N. Meng, ʻʻThermodynamic performance comparison of organic Rankine flash cycle with and without ejector for geothermal power output,, Appl. Therm. Eng., 214, 118846, 2022.
  • S. Mondal, D. Sudipta, ʻʻEjector based organic flash combined power and refrigeration cycle (EBOFCP&RC)–A scheme for low grade waste heat recovery,ʼʼ Energy, 134, 638-648, 2017.
  • S. Mondal, D. Sudipta, ʻʻ Performance assessment of a low-grade heat driven dual ejector vapour compression refrigeration cycle,ʼʼ Appl. Therm. Eng., 179, 115782, 2020.
  • S. Mondal, C. Sahana, D. Sudipta, ʻʻOptimum operation of a novel ejector assisted flash steam cycle for better utilization of geothermal heat, ʼʼ, Energy Conver. Manag., 253, 115164, 2022.
  • A. M. Abed, H. SH. Majdi, K. Sopian, F. H. Ali, M. Al Bahrani, Q. R. Al Amir, A. K. Yakoob, ʻʻTechno-Economic Analysis of dual ejectors solar assisted combined absorption cooling cycle,ʼʼ Cas. Stud. Therm. Eng. , 39, 102423, , 2022.
  • T. Hai, M. A. Ali, H. A. Dhahad, A. Alizadeh, K. Sharma, S. F. Almojil, A. I. Almohana, A. F. Alali, E. Attia, ʻʻA novel bi-evaporator cooling system via integration of absorption refrigeration cycle for waste energy recovery from an ejector-expansion trans-critical CO2 (EETRCC) cycle: Proposal and optimization with environmental considerations,ʼʼ Sustain. Energy Technol. Assess., 57, 103118, 2023.
  • S. khalili, L. G. Farshi, ʻʻDesign and performance evaluation of a double ejector boosted multi-pressure level absorption cycle for refrigeration,ʼʼ Sustain. Energy Technolo. Assess., 42, 100836, 2020.
  • K. H. M. Al Hamed, I. Dincer, ʻʻInvestigation of a concentrated solar-geothermal integrated system with a combined ejector-absorption refrigeration cycle for a small community,ʼʼ Int. J. of Refr., 106, 407-426, 2019.
  • S. Göktun,ʻʻ Optimal performance of a combined absorption and ejector refrigerator,” Energy Conver. Manag., 40, 51-58, 1999.
  • H. S. Majdi,ʻʻ Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle,” Cas. Stud. Therm. Eng., 7, 25-35, 2016.
  • L. Jiang, Z. Gu, X. Feng, Y. Li, ʻʻThermo-economical analysis between new absorption–ejector hybrid refrigeration system and small double-effect absorption system,” Appl. Therm. Eng., 22, 1027-1036, 2022.
  • R. Sirwan, M. A. Alghoul, K. Sopian, Y. Ali,ʻʻ Thermodynamic analysis of an ejector- flash tank-absorption cooling system,” Appl. Therm. Eng., 58, 85-97, 2013. A. Sözen, Ö. Mehmet, ʻʻ Performance improvement of absorption refrigeration system using triple-pressure-level,” Appl. Therm. Eng., 23, 1577-1593, 2003.
  • A. M. Abed, J. Huang, S. M. Eldin, Y. Aryanfar, J. L. G. Alcaraz, ʻʻ Exergy analyses and optimization of a single flash geothermal power plant combined with a trans-critical CO2 cycle using genetic algorithm and Nelder-Mead simplex method,” Geotherm. Energy, 11, 4, 2023.
  • S. Yi, Z. Zhang, W. Peng, J. Zhang, H. Yuan, ʻʻ Pre-expansion ejector absorption power cycle for ocean thermal energy conversion,” Energy Conver. manag., 269, 116151, 2022.
  • A. Bhowmick ,B. Kundu, ʻʻExtremum analysis based on exergy and economic principle for ejector-absorption cycles combined with regenerative organic-Rankine and gas-turbine cycles,” Energy Conver. Manag., 253, 115174 , 2022.
  • S.KhaliliL, G. Farshi, ʻʻDesign and performance evaluation of a double ejector boosted multi-pressure level absorption cycle for refrigeration,” Sustain. Energy Technol. Assess. , 42, 2020.
  • D. Sioud, M. Bourouis, A. Bellagi, “Investigation of an ejector powered double-effect absorption/recompression refrigeration cycle,” Int. J. of Refr., 99, 453-468, 2019.
  • C. Vereda, R. Ventas, A. Lecuona, M. Venegas, ʻʻ Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions,” Appl. Energy, 97, 305-312, 2012.
  • Y. Tang, Z. Liu, Y. L. F. Zhao, P. Fan, K. J. Chua, ʻʻMixing process of two streams within a steam ejector from the perspectives of mass, momentum and energy transfer,” Appl. Therm. Eng., 185,116358, 2021.
  • T. Thongtip, S. Aphornratana, “An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator,ʼʼ Appl. Therm. Eng., 110, 89-101, 2017.
  • L. Wang, J. Yan ,C. Wang, X. iLi, “Numerical study on optimization of ejector primary nozzle geometries,” Int. J. of Refr., 76, 219-299, 2017.
  • V. Nguyen, S. Varga, J. Soares, V. Dvorak, A. C. Oliveira, “Applying a variable geometry ejector in a solar ejector refrigeration system,” Int. J. of Refr., 113, 187-195, 2020.
  • Y. H. Liu, ʻʻ Experimental and numerical research on high pumping performance mechanism of lobed exhauster-ejector mixer,ʼʼ Int.Communi. Heat and Mass Transf., 34, 197-209, 2007.
  • B. Kavasoğulları, E. Cihan, H. Demir , ʻʻ Energy and Exergy Analyses of a Refrigerant Pump Integrated Dual-Ejector Refrigeration (DER) System,ʼʼ Arab. J. Sci. Eng., 46, 11633–11644 , 2021.
  • S. Varga, A. C. Oliveira, B. Diaconu,ʻʻ Influence of geometrical factors on steam ejector performance – A numerical assessment,ʼʼ Int. J. of Refri., 32, 1694-1701, 2009.
  • T. siveerakul, S. Aphornratana, K. chunnanond, ʻʻPerformance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries,ʼʼ Int. J. of Therm. Sci., 46, 823-833, 2007.
  • K. Ariafar, ʻʻ Performance evaluation of a model thermocompressor using computational fluid dynamics,ʼʼ Int. J.of Mech., 6, 35-42, , 2012.
  • X. Li, X. Wang, Y. Zhang, L. Fang, N. Deng, Y. Zhang, Z. Jin, X. Yu, S. Yao, ʻʻ Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors,ʼʼ Appl. Energy, 261, 1 ,114395, 2020.
  • B. Tashtoush, Y. Nayfeh,ʻʻ Energy and economic analysis of a variable-geometry ejector in solar cooling systems for residential buildingsʼʼ, J. of Energy Storage, 27, 101061, 2020.
  • B. J. Huang, J. M. Chang, C. P. Wang, and V. A. Petrenko, “A 1-D analysis of ejector performance,” Int. J. of Refr.. 22, 354-364, 1999.
  • H. Keenan, E. P. Neumann, F. Lustwerk, “An investigation of ejector design by analysis and experiment, ʼʼ J. Appl. Mech., Trans. ASME, 72, 299-309, 1950.
  • V. Kumar, K. Yadav, S. Ram, “A comprehensive studies on constant area mixing (CAM) and constant pressure mixing (CPM) Ejectors: A review,ʼʼ Materials Today Proceedings, DOI: https://doi.org/10.1016/j.matpr. 2022.09 .258.
  • Y. Cheng, M. Wang, J. Yu, “Thermodynamic analysis of a novel solar-driven booster-assisted ejector refrigeration cycle,ʼʼ Sol. Energy, 218, 85-94, 2022.
  • J. Patek, J. Klomfar, ʻʻA computationally effective formulation of the thermodynamic properties of LiBr–H 2O solutions from 273 to 500 K over full composition range”, Int. J. of Refr., 29, 566-578, 2006.
  • J. Patek, J. Klomfar ,ʻʻA simple formulation for thermodynamic properties of steam from 273 to 523 K, explicit in temperature and pressure,” Int. J. of Refr., 32, 1123-1125, 2009.
  • J. Q. Deng, P. X. Jiang, T. Lu, W. Lu, ʻʻParticular characteristics of transcritical CO2 refrigeration cycle with an ejector,ʼʼ Appl. Therm. Engi., 381-388, 2007.
Year 2023, Volume: 26 Issue: 3, 15 - 24, 01.09.2023
https://doi.org/10.5541/ijot.1247392

Abstract

References

  • R. Gomri, ʻʻ Investigation of the potential of application of simple and multiple effect absorption cooling systems,” Energy Conver. Manag., 51, 1629-1636, 2010.
  • N. Meng ,T. Li, X. Gao, Q. Liu, X. Li, H. Gao, ʻʻ Thermodynamic and techno-economic performance comparison of two-stage series organic Rankine cycle and organic Rankine flash cycle for geothermal power generation from hot dry rock,” Appl. Therm. Eng., 200, 117715 , 2022 .
  • E. Cihan and B. Kavasogullari, ʻʻEnergy and exergy analysis of a combined refrigeration and waste heat driven organic rankine cycle system,ʼʼ Therm. Sci., 21, No. 6A, 2621-2631, 2017.
  • T. Li, H. Gao, X. Gao, N. Meng, ʻʻThermodynamic performance comparison of organic Rankine flash cycle with and without ejector for geothermal power output,, Appl. Therm. Eng., 214, 118846, 2022.
  • S. Mondal, D. Sudipta, ʻʻEjector based organic flash combined power and refrigeration cycle (EBOFCP&RC)–A scheme for low grade waste heat recovery,ʼʼ Energy, 134, 638-648, 2017.
  • S. Mondal, D. Sudipta, ʻʻ Performance assessment of a low-grade heat driven dual ejector vapour compression refrigeration cycle,ʼʼ Appl. Therm. Eng., 179, 115782, 2020.
  • S. Mondal, C. Sahana, D. Sudipta, ʻʻOptimum operation of a novel ejector assisted flash steam cycle for better utilization of geothermal heat, ʼʼ, Energy Conver. Manag., 253, 115164, 2022.
  • A. M. Abed, H. SH. Majdi, K. Sopian, F. H. Ali, M. Al Bahrani, Q. R. Al Amir, A. K. Yakoob, ʻʻTechno-Economic Analysis of dual ejectors solar assisted combined absorption cooling cycle,ʼʼ Cas. Stud. Therm. Eng. , 39, 102423, , 2022.
  • T. Hai, M. A. Ali, H. A. Dhahad, A. Alizadeh, K. Sharma, S. F. Almojil, A. I. Almohana, A. F. Alali, E. Attia, ʻʻA novel bi-evaporator cooling system via integration of absorption refrigeration cycle for waste energy recovery from an ejector-expansion trans-critical CO2 (EETRCC) cycle: Proposal and optimization with environmental considerations,ʼʼ Sustain. Energy Technol. Assess., 57, 103118, 2023.
  • S. khalili, L. G. Farshi, ʻʻDesign and performance evaluation of a double ejector boosted multi-pressure level absorption cycle for refrigeration,ʼʼ Sustain. Energy Technolo. Assess., 42, 100836, 2020.
  • K. H. M. Al Hamed, I. Dincer, ʻʻInvestigation of a concentrated solar-geothermal integrated system with a combined ejector-absorption refrigeration cycle for a small community,ʼʼ Int. J. of Refr., 106, 407-426, 2019.
  • S. Göktun,ʻʻ Optimal performance of a combined absorption and ejector refrigerator,” Energy Conver. Manag., 40, 51-58, 1999.
  • H. S. Majdi,ʻʻ Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle,” Cas. Stud. Therm. Eng., 7, 25-35, 2016.
  • L. Jiang, Z. Gu, X. Feng, Y. Li, ʻʻThermo-economical analysis between new absorption–ejector hybrid refrigeration system and small double-effect absorption system,” Appl. Therm. Eng., 22, 1027-1036, 2022.
  • R. Sirwan, M. A. Alghoul, K. Sopian, Y. Ali,ʻʻ Thermodynamic analysis of an ejector- flash tank-absorption cooling system,” Appl. Therm. Eng., 58, 85-97, 2013. A. Sözen, Ö. Mehmet, ʻʻ Performance improvement of absorption refrigeration system using triple-pressure-level,” Appl. Therm. Eng., 23, 1577-1593, 2003.
  • A. M. Abed, J. Huang, S. M. Eldin, Y. Aryanfar, J. L. G. Alcaraz, ʻʻ Exergy analyses and optimization of a single flash geothermal power plant combined with a trans-critical CO2 cycle using genetic algorithm and Nelder-Mead simplex method,” Geotherm. Energy, 11, 4, 2023.
  • S. Yi, Z. Zhang, W. Peng, J. Zhang, H. Yuan, ʻʻ Pre-expansion ejector absorption power cycle for ocean thermal energy conversion,” Energy Conver. manag., 269, 116151, 2022.
  • A. Bhowmick ,B. Kundu, ʻʻExtremum analysis based on exergy and economic principle for ejector-absorption cycles combined with regenerative organic-Rankine and gas-turbine cycles,” Energy Conver. Manag., 253, 115174 , 2022.
  • S.KhaliliL, G. Farshi, ʻʻDesign and performance evaluation of a double ejector boosted multi-pressure level absorption cycle for refrigeration,” Sustain. Energy Technol. Assess. , 42, 2020.
  • D. Sioud, M. Bourouis, A. Bellagi, “Investigation of an ejector powered double-effect absorption/recompression refrigeration cycle,” Int. J. of Refr., 99, 453-468, 2019.
  • C. Vereda, R. Ventas, A. Lecuona, M. Venegas, ʻʻ Study of an ejector-absorption refrigeration cycle with an adaptable ejector nozzle for different working conditions,” Appl. Energy, 97, 305-312, 2012.
  • Y. Tang, Z. Liu, Y. L. F. Zhao, P. Fan, K. J. Chua, ʻʻMixing process of two streams within a steam ejector from the perspectives of mass, momentum and energy transfer,” Appl. Therm. Eng., 185,116358, 2021.
  • T. Thongtip, S. Aphornratana, “An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator,ʼʼ Appl. Therm. Eng., 110, 89-101, 2017.
  • L. Wang, J. Yan ,C. Wang, X. iLi, “Numerical study on optimization of ejector primary nozzle geometries,” Int. J. of Refr., 76, 219-299, 2017.
  • V. Nguyen, S. Varga, J. Soares, V. Dvorak, A. C. Oliveira, “Applying a variable geometry ejector in a solar ejector refrigeration system,” Int. J. of Refr., 113, 187-195, 2020.
  • Y. H. Liu, ʻʻ Experimental and numerical research on high pumping performance mechanism of lobed exhauster-ejector mixer,ʼʼ Int.Communi. Heat and Mass Transf., 34, 197-209, 2007.
  • B. Kavasoğulları, E. Cihan, H. Demir , ʻʻ Energy and Exergy Analyses of a Refrigerant Pump Integrated Dual-Ejector Refrigeration (DER) System,ʼʼ Arab. J. Sci. Eng., 46, 11633–11644 , 2021.
  • S. Varga, A. C. Oliveira, B. Diaconu,ʻʻ Influence of geometrical factors on steam ejector performance – A numerical assessment,ʼʼ Int. J. of Refri., 32, 1694-1701, 2009.
  • T. siveerakul, S. Aphornratana, K. chunnanond, ʻʻPerformance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries,ʼʼ Int. J. of Therm. Sci., 46, 823-833, 2007.
  • K. Ariafar, ʻʻ Performance evaluation of a model thermocompressor using computational fluid dynamics,ʼʼ Int. J.of Mech., 6, 35-42, , 2012.
  • X. Li, X. Wang, Y. Zhang, L. Fang, N. Deng, Y. Zhang, Z. Jin, X. Yu, S. Yao, ʻʻ Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors,ʼʼ Appl. Energy, 261, 1 ,114395, 2020.
  • B. Tashtoush, Y. Nayfeh,ʻʻ Energy and economic analysis of a variable-geometry ejector in solar cooling systems for residential buildingsʼʼ, J. of Energy Storage, 27, 101061, 2020.
  • B. J. Huang, J. M. Chang, C. P. Wang, and V. A. Petrenko, “A 1-D analysis of ejector performance,” Int. J. of Refr.. 22, 354-364, 1999.
  • H. Keenan, E. P. Neumann, F. Lustwerk, “An investigation of ejector design by analysis and experiment, ʼʼ J. Appl. Mech., Trans. ASME, 72, 299-309, 1950.
  • V. Kumar, K. Yadav, S. Ram, “A comprehensive studies on constant area mixing (CAM) and constant pressure mixing (CPM) Ejectors: A review,ʼʼ Materials Today Proceedings, DOI: https://doi.org/10.1016/j.matpr. 2022.09 .258.
  • Y. Cheng, M. Wang, J. Yu, “Thermodynamic analysis of a novel solar-driven booster-assisted ejector refrigeration cycle,ʼʼ Sol. Energy, 218, 85-94, 2022.
  • J. Patek, J. Klomfar, ʻʻA computationally effective formulation of the thermodynamic properties of LiBr–H 2O solutions from 273 to 500 K over full composition range”, Int. J. of Refr., 29, 566-578, 2006.
  • J. Patek, J. Klomfar ,ʻʻA simple formulation for thermodynamic properties of steam from 273 to 523 K, explicit in temperature and pressure,” Int. J. of Refr., 32, 1123-1125, 2009.
  • J. Q. Deng, P. X. Jiang, T. Lu, W. Lu, ʻʻParticular characteristics of transcritical CO2 refrigeration cycle with an ejector,ʼʼ Appl. Therm. Engi., 381-388, 2007.
There are 39 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Billal Mebarki 0000-0002-0364-6101

Publication Date September 1, 2023
Published in Issue Year 2023 Volume: 26 Issue: 3

Cite

APA Mebarki, B. (2023). Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle. International Journal of Thermodynamics, 26(3), 15-24. https://doi.org/10.5541/ijot.1247392
AMA Mebarki B. Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle. International Journal of Thermodynamics. September 2023;26(3):15-24. doi:10.5541/ijot.1247392
Chicago Mebarki, Billal. “Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle”. International Journal of Thermodynamics 26, no. 3 (September 2023): 15-24. https://doi.org/10.5541/ijot.1247392.
EndNote Mebarki B (September 1, 2023) Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle. International Journal of Thermodynamics 26 3 15–24.
IEEE B. Mebarki, “Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle”, International Journal of Thermodynamics, vol. 26, no. 3, pp. 15–24, 2023, doi: 10.5541/ijot.1247392.
ISNAD Mebarki, Billal. “Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle”. International Journal of Thermodynamics 26/3 (September 2023), 15-24. https://doi.org/10.5541/ijot.1247392.
JAMA Mebarki B. Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle. International Journal of Thermodynamics. 2023;26:15–24.
MLA Mebarki, Billal. “Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle”. International Journal of Thermodynamics, vol. 26, no. 3, 2023, pp. 15-24, doi:10.5541/ijot.1247392.
Vancouver Mebarki B. Performance Investigation of Ejector Assisted Power Cooling Absorption Cycle. International Journal of Thermodynamics. 2023;26(3):15-24.