Research Article
BibTex RIS Cite

Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization

Year 2025, Volume: 28 Issue: 1, 7 - 16, 01.03.2025

Abstract

The gas properties, particularly the pressure within the propellant tanks of a liquid-fueled rocket, play an essential role in the performance of the propulsion system. This study examines the thermodynamic behavior of the gas inside the propellant tanks and gas storage capsules of a class of pressurized systems. To this end, the governing thermodynamic equations were extracted, and exact thermodynamic solutions for the changes in the gas properties were obtained. The changes in the gas properties have been studied during the whole operation of the propulsion system, i.e. in the pre-pressurization period and before and after the gas cut-off time. A comparison of the analytical modelling results with the experimental data indicates a good agreement between the two, with the total mass of gas required for tank pressurization being approximately 4% higher than the experimental data. Additionally, the approximate changes in the throat area of the pressure-reducing valve were obtained. The simple thermodynamic model developed in this study allows for the rapid design and observation of the pressurization system's performance.

References

  • M. Mohseni and M. K. Domfeh, “Numerical analysis of transient vortex formation at the outlet of a tank containing gas-liquid phases,” J. Appl. Fluid Mech., vol. 16, no. 11, pp. 2235–2248, 2023, doi: 10.47176/jafm.16.11.1942.
  • P. Adnani and R. W. Jennings, “Pressurization analysis of cryogenic propulsion systems,” in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit, 2000, doi: 10.2514/6.2000-3788.
  • S. In, S. Jeong, and H. Kim, “Investigation on liquid helium pressurization process using a heater in a liquid propellant rocket,” Cryogenics, vol. 44, no. 6, pp. 467–474, 2004, doi: 10.1016/j.cryogenics.2004.02. 010.
  • A. Majumdar, J. Valenzuela, A. Leclair, and J. Moder, “Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank,” Cryogenics, vol. 74, pp. 113-122, 2016, doi: 10.1016/j.cryogenics.2015.12.001.
  • G. Zilliac and M. Arif Karabeyoglu, “Modeling of propellant tank pressurization,” in Proc 41st AIAA/ASME/ SAE/ASEE Joint Propulsion Conf. and Exhibit, 2005, doi: 10.2514/6.2005-3549.
  • H. Karimi, A. Nassirharand, and M. Mohseni, “Modeling and simulation of a class of liquid propellant engine pressurization systems,” Acta Astronaut, vol. 66, no. 3–4, pp. 539-549, 2010, doi: 10.1016/j.actaastro.2009.07. 018.
  • M. Gieras and A. Gorgeri, “Numerical modelling of the hybrid rocket engine performance,” Propulsion and Power Res., vol. 10, no. 1, pp. 15-22, 2021, doi: 10.1016/ j.jppr.2021.03.001.
  • L. Wang, Y. Li, C. Li, and Z. Zhao, “CFD investigation of thermal and pressurization performance in LH2 tank during discharge,” Cryogenics, vol. 57, pp. 63-73, 2013, doi: 10.1016/j.cryogenics.2013.05.005.
  • L. Wang, Y. Li, Z. Zhao, and J. Zheng, “Numerical investigation of pressurization performance in cryogenic tank of new‐style launch vehicle,” Asia-Pac. J. Chem. Eng., vol. 9, no. 1, pp. 63-74, 2014, doi: 10.1002/apj.1797.
  • Z. Zuo, W. Jiang, X. Qin, and Y. Huang, “A numerical model for liquid–vapor transition in self-pressurized cryogenic containers,” Appl. Therm. Eng. , vol. 193, 2021, Art. no. 117005, doi: 10.1016/j.applthermaleng.2021. 117005.
  • S. Ali, N. Abbas, S. A. Khan, I. Malik, and M. Mansha, “Chemical-based hydrogen storage systems: Recent developments, challenges, and prospectives,” Chem. Asian J., vol. 19, no. 16, p. e202400320, 2024, doi:10.1002/asia.202400320.
  • L. Yin, H. Yang, and Y. Ju, “Review on the key technologies and future development of insulation structure for liquid hydrogen storage tanks,” Int. J. Hydrogen Energy, vol. 57, pp. 1302-1315, 2024, doi: 10.1016/j.ijhydene.2024.01.093.
  • W. Fan, Y. Ding, and Z. Xiao, “A brand new green coating technology for realizing the regulation of spherical propellant energy release process,” Def. Technology, vol. 36, pp. 78-94, 2024, doi: 10.1016/j.dt.2024.02. 008.
  • L. Wang, Y. Ma, Y. Wang, F. Xie, and Y. Li, “Investigation on pressurization behaviors of two-side-insulated cryogenic tank during discharge,” Int. J. Heat Mass Transf., vol. 102, pp. 703-712, 2016, doi: 10.1016/j. ijheatmasstransfer.2016.06. 045.
  • J. Li, G. Liang, P. Zhu, and X. Wang, “Numerical investigation of the operating process of the liquid hydrogen tank under gaseous hydrogen pressurization,” Aerosp. Sci. Technol., vol. 93, 2019, Art. no. 105327, doi: 10.1016/j.ast.2019.105327.
  • J. Li and G. LIANG, “Simulation of mass and heat transfer in liquid hydrogen tanks during pressurizing,” Chin. J. Aeronaut., vol. 32, no. 9, pp. 2068-2084, 2019, doi: 10.1016/j.cja.2019.05.008.
  • L. Wang, Y. Li, Z. Zhao, and Z. Liu, “Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating,” Int. J. Heat Mass Transf., vol. 62, no. 1, pp. 263-271, 2013, doi: 10.1016/j.ijheatmasstransfer.2013.03.021.
  • Y. Mitikov and O. Shynkarenko, “Reduction of the Pressurization System Final Mass for a Modern Rocket Launcher,” J. Aerosp. Technol. Manage., vol. 14, 2022, Art. No. e0122, doi: 10.1590/ jatm.v14.1238.
  • S. H. Yilmaz, E. Taskesen, K. Roshanaei, and M. Ozkaymak, “Energy Management with Intelligent Plug and Socket,” Gazi Univ. J. Sci., vol. 35, no. 3, pp. 969-978, 2022, doi: 10.35378/gujs.933310.
  • S. Barsi and M. Kassemi, “Numerical and experimental comparisons of the self-pressurization behavior of an LH2 tank in normal gravity,” Cryogenics, vol. 48, no. 3, pp. 122-129, 2008, doi: 10.1016/j.cryogenics. 2008.01.003.
  • C. H. Panzarella and M. Kassemi, “Self-pressurization of large spherical cryogenic tanks in space,” J. Spacecr. Rockets, vol. 42, no. 2, pp. 299-308, 2005, doi: 10.2514/1.4571.
  • D. A. Fester and P. E. Bingham, “Main Tank Injection (MTI) pressurization of liquid rocket propellant tanks,” in Proc. 54th Int. Astronaut. Congr. Int. Astronaut. Fed. (IAF), Int. Acad. Astronaut., Int. Inst. Space Law, 2003, doi: 10.2514/6.iac-03-iaa.2.3.06.
  • L. C. Yang, “Relevant mechanisms affecting the efficiency in detonation of energetic gaseous mixtures,” in Proc. AIAA SciTech Forum Expo., 2024, doi: 10.2514/6.2024-2161.
  • R. Scholl, D. Freudenmann, and S. Schlechtriem, “Microencapsulation of hydrocarbon fuels for monopropellant creation with hydrogen peroxide,” Fuel, vol. 356, p. 129520, 2024, doi: 10.1016/j.fuel.2023. 129520.
  • F. W. Childs, T. R. Horowitz, W. Jenisch, and B. Sugarman, “Design guide for pressurization system evaluation liquid propulsion rocket engines,” NASA, Tech. Rep. 2334, Nov. 1962.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 9th ed. New York, NY, USA: McGraw-Hill, 2019.
  • M. R. Spiegel, S. Lipschutz, and J. Liu, Schaum’s Outline: Mathematical Handbook of Formulas and Tables, 2nd ed. New York, NY, USA: McGraw-Hill, 1998.
  • G. F. Pinder, Numerical Methods for Solving Partial Differential Equations: A Comprehensive Introduction for Scientists and Engineers, 1st ed. Hoboken, NJ, USA: Wiley, 2018.
  • A. F. El-Sayed, Aircraft Propulsion and Gas Turbine Engines, 2nd ed. New York, NY, USA: CRC Press, 2017, doi:10.1201/9781315156743.
  • C. Borgnakke and R. E. Sonntag, Fundamentals of Thermodynamics, 8th ed. Hoboken, NJ, USA: Wiley, 2013.
  • Z. Wang, Z. Shao, and H. Chen, “Robust sensor optimization for liquid propellant rocket engine model parameter estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 60, no. 4, pp. 4994–5009, 2024, doi:10.1109/TAES.2024.3384176.
Year 2025, Volume: 28 Issue: 1, 7 - 16, 01.03.2025

Abstract

References

  • M. Mohseni and M. K. Domfeh, “Numerical analysis of transient vortex formation at the outlet of a tank containing gas-liquid phases,” J. Appl. Fluid Mech., vol. 16, no. 11, pp. 2235–2248, 2023, doi: 10.47176/jafm.16.11.1942.
  • P. Adnani and R. W. Jennings, “Pressurization analysis of cryogenic propulsion systems,” in Proc. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. Exhibit, 2000, doi: 10.2514/6.2000-3788.
  • S. In, S. Jeong, and H. Kim, “Investigation on liquid helium pressurization process using a heater in a liquid propellant rocket,” Cryogenics, vol. 44, no. 6, pp. 467–474, 2004, doi: 10.1016/j.cryogenics.2004.02. 010.
  • A. Majumdar, J. Valenzuela, A. Leclair, and J. Moder, “Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank,” Cryogenics, vol. 74, pp. 113-122, 2016, doi: 10.1016/j.cryogenics.2015.12.001.
  • G. Zilliac and M. Arif Karabeyoglu, “Modeling of propellant tank pressurization,” in Proc 41st AIAA/ASME/ SAE/ASEE Joint Propulsion Conf. and Exhibit, 2005, doi: 10.2514/6.2005-3549.
  • H. Karimi, A. Nassirharand, and M. Mohseni, “Modeling and simulation of a class of liquid propellant engine pressurization systems,” Acta Astronaut, vol. 66, no. 3–4, pp. 539-549, 2010, doi: 10.1016/j.actaastro.2009.07. 018.
  • M. Gieras and A. Gorgeri, “Numerical modelling of the hybrid rocket engine performance,” Propulsion and Power Res., vol. 10, no. 1, pp. 15-22, 2021, doi: 10.1016/ j.jppr.2021.03.001.
  • L. Wang, Y. Li, C. Li, and Z. Zhao, “CFD investigation of thermal and pressurization performance in LH2 tank during discharge,” Cryogenics, vol. 57, pp. 63-73, 2013, doi: 10.1016/j.cryogenics.2013.05.005.
  • L. Wang, Y. Li, Z. Zhao, and J. Zheng, “Numerical investigation of pressurization performance in cryogenic tank of new‐style launch vehicle,” Asia-Pac. J. Chem. Eng., vol. 9, no. 1, pp. 63-74, 2014, doi: 10.1002/apj.1797.
  • Z. Zuo, W. Jiang, X. Qin, and Y. Huang, “A numerical model for liquid–vapor transition in self-pressurized cryogenic containers,” Appl. Therm. Eng. , vol. 193, 2021, Art. no. 117005, doi: 10.1016/j.applthermaleng.2021. 117005.
  • S. Ali, N. Abbas, S. A. Khan, I. Malik, and M. Mansha, “Chemical-based hydrogen storage systems: Recent developments, challenges, and prospectives,” Chem. Asian J., vol. 19, no. 16, p. e202400320, 2024, doi:10.1002/asia.202400320.
  • L. Yin, H. Yang, and Y. Ju, “Review on the key technologies and future development of insulation structure for liquid hydrogen storage tanks,” Int. J. Hydrogen Energy, vol. 57, pp. 1302-1315, 2024, doi: 10.1016/j.ijhydene.2024.01.093.
  • W. Fan, Y. Ding, and Z. Xiao, “A brand new green coating technology for realizing the regulation of spherical propellant energy release process,” Def. Technology, vol. 36, pp. 78-94, 2024, doi: 10.1016/j.dt.2024.02. 008.
  • L. Wang, Y. Ma, Y. Wang, F. Xie, and Y. Li, “Investigation on pressurization behaviors of two-side-insulated cryogenic tank during discharge,” Int. J. Heat Mass Transf., vol. 102, pp. 703-712, 2016, doi: 10.1016/j. ijheatmasstransfer.2016.06. 045.
  • J. Li, G. Liang, P. Zhu, and X. Wang, “Numerical investigation of the operating process of the liquid hydrogen tank under gaseous hydrogen pressurization,” Aerosp. Sci. Technol., vol. 93, 2019, Art. no. 105327, doi: 10.1016/j.ast.2019.105327.
  • J. Li and G. LIANG, “Simulation of mass and heat transfer in liquid hydrogen tanks during pressurizing,” Chin. J. Aeronaut., vol. 32, no. 9, pp. 2068-2084, 2019, doi: 10.1016/j.cja.2019.05.008.
  • L. Wang, Y. Li, Z. Zhao, and Z. Liu, “Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating,” Int. J. Heat Mass Transf., vol. 62, no. 1, pp. 263-271, 2013, doi: 10.1016/j.ijheatmasstransfer.2013.03.021.
  • Y. Mitikov and O. Shynkarenko, “Reduction of the Pressurization System Final Mass for a Modern Rocket Launcher,” J. Aerosp. Technol. Manage., vol. 14, 2022, Art. No. e0122, doi: 10.1590/ jatm.v14.1238.
  • S. H. Yilmaz, E. Taskesen, K. Roshanaei, and M. Ozkaymak, “Energy Management with Intelligent Plug and Socket,” Gazi Univ. J. Sci., vol. 35, no. 3, pp. 969-978, 2022, doi: 10.35378/gujs.933310.
  • S. Barsi and M. Kassemi, “Numerical and experimental comparisons of the self-pressurization behavior of an LH2 tank in normal gravity,” Cryogenics, vol. 48, no. 3, pp. 122-129, 2008, doi: 10.1016/j.cryogenics. 2008.01.003.
  • C. H. Panzarella and M. Kassemi, “Self-pressurization of large spherical cryogenic tanks in space,” J. Spacecr. Rockets, vol. 42, no. 2, pp. 299-308, 2005, doi: 10.2514/1.4571.
  • D. A. Fester and P. E. Bingham, “Main Tank Injection (MTI) pressurization of liquid rocket propellant tanks,” in Proc. 54th Int. Astronaut. Congr. Int. Astronaut. Fed. (IAF), Int. Acad. Astronaut., Int. Inst. Space Law, 2003, doi: 10.2514/6.iac-03-iaa.2.3.06.
  • L. C. Yang, “Relevant mechanisms affecting the efficiency in detonation of energetic gaseous mixtures,” in Proc. AIAA SciTech Forum Expo., 2024, doi: 10.2514/6.2024-2161.
  • R. Scholl, D. Freudenmann, and S. Schlechtriem, “Microencapsulation of hydrocarbon fuels for monopropellant creation with hydrogen peroxide,” Fuel, vol. 356, p. 129520, 2024, doi: 10.1016/j.fuel.2023. 129520.
  • F. W. Childs, T. R. Horowitz, W. Jenisch, and B. Sugarman, “Design guide for pressurization system evaluation liquid propulsion rocket engines,” NASA, Tech. Rep. 2334, Nov. 1962.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 9th ed. New York, NY, USA: McGraw-Hill, 2019.
  • M. R. Spiegel, S. Lipschutz, and J. Liu, Schaum’s Outline: Mathematical Handbook of Formulas and Tables, 2nd ed. New York, NY, USA: McGraw-Hill, 1998.
  • G. F. Pinder, Numerical Methods for Solving Partial Differential Equations: A Comprehensive Introduction for Scientists and Engineers, 1st ed. Hoboken, NJ, USA: Wiley, 2018.
  • A. F. El-Sayed, Aircraft Propulsion and Gas Turbine Engines, 2nd ed. New York, NY, USA: CRC Press, 2017, doi:10.1201/9781315156743.
  • C. Borgnakke and R. E. Sonntag, Fundamentals of Thermodynamics, 8th ed. Hoboken, NJ, USA: Wiley, 2013.
  • Z. Wang, Z. Shao, and H. Chen, “Robust sensor optimization for liquid propellant rocket engine model parameter estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. 60, no. 4, pp. 4994–5009, 2024, doi:10.1109/TAES.2024.3384176.
There are 31 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Mahdi Mohseni 0000-0003-2604-9286

Publication Date March 1, 2025
Submission Date July 20, 2024
Acceptance Date November 15, 2024
Published in Issue Year 2025 Volume: 28 Issue: 1

Cite

APA Mohseni, M. (2025). Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization. International Journal of Thermodynamics, 28(1), 7-16.
AMA Mohseni M. Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization. International Journal of Thermodynamics. March 2025;28(1):7-16.
Chicago Mohseni, Mahdi. “Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization”. International Journal of Thermodynamics 28, no. 1 (March 2025): 7-16.
EndNote Mohseni M (March 1, 2025) Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization. International Journal of Thermodynamics 28 1 7–16.
IEEE M. Mohseni, “Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization”, International Journal of Thermodynamics, vol. 28, no. 1, pp. 7–16, 2025.
ISNAD Mohseni, Mahdi. “Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization”. International Journal of Thermodynamics 28/1 (March 2025), 7-16.
JAMA Mohseni M. Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization. International Journal of Thermodynamics. 2025;28:7–16.
MLA Mohseni, Mahdi. “Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization”. International Journal of Thermodynamics, vol. 28, no. 1, 2025, pp. 7-16.
Vancouver Mohseni M. Exact Thermodynamic Solution of Gas Behavior in Propellant Tanks and Storage Capsules During Pressurization. International Journal of Thermodynamics. 2025;28(1):7-16.