Research Article
BibTex RIS Cite

Year 2025, Volume: 28 Issue: 4, 279 - 291, 01.12.2025
https://doi.org/10.5541/ijot.1681635

Abstract

References

  • S. N. Sinha, A. K. Gupta, and M. M. Oberai, “Laminar separating flow over backsteps and cavities, Part ii: cavities,” AIAA Journal, vol. 20, no. 3, pp. 370-375, Mar. 1982, doi: 10.2514/3.7918.
  • P. S. B. Zdanski, M. A. Ortega, and N. G. C. R. Fico, “Numerical study of the flow over shallow cavities,” Computers & Fluids, vol. 32, no. 7, pp. 953-974, Aug. 2003, doi: 10.1016/S0045-7930(02)00067-1.
  • O. Mesalhy, S. S. A. Aziz, M. M. El-Sayed, “Flow and heat transfer over shallow cavities,” International Journal of Thermal Sciences, vol. 49, no. 3, pp. 514-521, Mar. 2010, doi: 10.1016/j.ijthermalsci.2009.09.007.
  • C. Ozalp, A. Pinarbasi, and B. Sahin, “Experimental measurement of flow past cavities of different shapes,” Experimental Thermal and Fluid Science, vol. 34, no. 5, pp. 505-515, July 2010, doi: 10.1016/j.expthermflusci.2009.11.003.
  • Y. Ma, R. Mohebbi, M. M. Rashidi, Z. Yang, and Y. Fang, “Baffle and geometry effects on nanofluid forced convection over forward- and backward-facing steps channel by means of lattice Boltzmann method,” Physica A: Statistical Mechanics and its Applications, vol. 554, Sept. 2020, Art. no. 124696, doi: 10.1016/j.physa.2020.124696.
  • V. Navaneethakrishnan and M. Muthtamilselvan, “Thermal analysis of magnetohydrodynamic mixed convection in vented channel-driven cavity with corner heater: influence of adiabatic rod and flow parameters,” Journal of Thermal Analysis and Calorimetry, vol. 149, no. 11, pp. 5755–5770, June 2024, doi: 10.1007/s10973-024-13117-4
  • S. Nouraei et al., “Heat transfer and entropy analysis for nanofluid flow in a semi-circular open cavity under mixed convection,” Alexandria Engineering Journal, vol. 64, pp. 309–334, Feb. 2023, doi: 10.1016/j.aej.2022.09.007
  • S.M. Aminossadati, and B. Ghasemi, “A numerical study of mixed convection in a horizontal channel with a discrete heat source in an open cavity,” European Journal of Mechanics - B/Fluids, vol. 28, no. 4, pp. 590-598, 2009, doi: 10.1016/j.euromechflu.2009.01.001.
  • O. Manca, S. Nardini, K. Khanafer, and K. Vafai, “Effect of heated wall position on mixed convection in a channel with an open cavity,” Numerical Heat Transfer, Part A: Applications, vol. 43, no. 3, pp. 259-282, 2003, doi: 10.1080/10407780307310.
  • Z. Mehrez, M. Bouterra, A.E. Cafsi, and A. Belghith, “Heat transfer and entropy generation analysis of nanofluids flow in an open cavity,” Computers & Fluids, vol. 88, pp. 363-373, Dec. 2013, doi: 10.1016/j.compfluid.2013.09.026.
  • ASHRAE Handbook – Fundamentals (SI Edition), American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 2009.
  • X. Xu, C. Xu, J. Liu, X. Fang, and Z. Zhang, “A direct absorption solar collector based on a water-ethylene glycol based nanofluid with anti-freeze property and excellent dispersion stability,” Renewable Energy, vol. 133, pp. 760-769, Apr. 2019, doi: 10.1016/j.renene.2018.10.073.
  • S. M. Peyghambarzadeh, S. H. Hashemabadi, S.M. Hoseini, and M. S. Jamnani, “Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators,” International Communications in Heat and Mass Transfer, vol. 38, no. 9, pp. 1283-1290, Nov. 2011, doi: 10.1016/j.icheatmasstransfer.2011.07.001.
  • T. Yiamsawas, O. Mahian, A. S. Dalkilic, S. Kaewnai, and S. Wongwises, “Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications,” Applied Energy, vol. 111, pp. 40-45, Nov. 2013, doi: 10.1016/j.apenergy.2013.04.068.
  • V. Kumaresan, and R. Velraj, “Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids,” Thermochimica Acta, vol. 545, 180-186, Oct. 2012. doi: 10.1016/j.tca.2012.07.017.
  • L. S. Sundar, M. K. Singh, and A. C. Sousa, “Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid,” International Communications in Heat and Mass Transfer, vol. 49, pp. 17-24, Dec. 2013, doi: 10.1016/j.icheatmasstransfer.2013.08.026.
  • B. A. Bhanvase, M. R. Sarode, L. A. Putterwar, A. K. A., M. P. Deosarkar, and S. H. Sonawane, “Intensification of convective heat transfer in water/ethylene glycol-based nanofluids containing TiO2 nanoparticles,” Chemical Engineering and Processing: Process Intensification, vol. 82, pp. 123-131, Aug. 2014, doi: 10.1016/j.cep.2014.06.009.
  • M. F. Nabil, W. H. Azmi, K. A. Hamid, R. Mamat, and F. Y. Hagos, “An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture,” International Communications in Heat and Mass Transfer, vol. 86, pp. 181-189, Aug. 2017, doi: 10.1016/j.icheatmasstransfer.2017.05.024.
  • M. Michael, A. Zagabathuni, S. Ghosh, and S. K. Pabi, “Thermo-physical properties of pure ethylene glycol and water–ethylene glycol mixture-based boron nitride nanofluids: an experimental investigation,” Journal of Thermal Analysis and Calorimetry, vol. 137, no. 2, pp. 369-380, 2019, doi: 10.1007/s10973-018-7965-5.
  • K. A. Hamid, W. H. Azmi, M. F. Nabil, R. Mamat, and K. V. Sharma, “Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids,” International Journal of Heat and Mass Transfer, vol. 116, pp. 1143-1152, Jan. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.09.087.
  • S. S. S. Sen, R. Mahato, S. Shaw, and M. Das, “Simulation of entropy and heat and mass transfer in Water-EG based hybrid nanoliquid flow with MHD and nonlinear radiation,” Numerical Heat Transfer, Part A: Applications, vol. 85, no. 19, pp. 3253–3267, Oct. 2024, doi: 10.1080/10407782.2023.2233736.
  • W. H. Azmi, K. A. Hamid, N. A. Usri, R. Mamat, and K. V. Sharma, “Heat transfer augmentation of ethylene glycol: water nanofluids and applications — A review,” International Communications in Heat and Mass Transfer, vol. 75, pp. 13–23, July 2016, doi: 10.1016/j.icheatmasstransfer.2016.03.018.
  • R. Shi, J. Lin, and H. Yang, “Particle Distribution and Heat Transfer of SiO2/Water Nanofluid in the Turbulent Tube Flow,” Nanomaterials, vol. 12, no. 16, p. 2803, Aug. 2022, doi: 10.3390/nano12162803.
  • M. Torabi, M. Torabi, M. E. Yazdi, and G. P. Peterson, “Fluid flow, heat transfer and entropy generation analyses of turbulent forced convection through isotropic porous media using RANS models,” International Journal of Heat and Mass Transfer, vol. 132, pp. 443–461, Apr. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.12.020.
  • F. Iachachene, Z. Haddad, M. Arıcı, M. Jamei, and A. Mataoui, “Turbulent forced convective flow in a conical diffuser: Hybrid and single nanofluids,” Engineering Analysis with Boundary Elements, vol. 148, pp. 205–219, Mar. 2023, doi: 10.1016/j.enganabound.2022.12.027.
  • N. Al-Zurfi, A. Alhusseny, and A. Nasser, “Effect of rotation on forced convection in wavy wall channels,” International Journal of Heat and Mass Transfer, vol. 149, Mar. 2020, Art. no. 119177, doi: 10.1016/j.ijheatmasstransfer.2019.119177.
  • Md. S. Shuvo, T. H. Ruvo, and S. Saha, “Characteristics of turbulent forced convective nanofluid flow and heat transfer in a 2D axisymmetric corrugated pipe,” Thermal Science and Engineering Progress, vol. 41, June 2023, Art. no. 101838, doi: 10.1016/j.tsep.2023.101838.
  • F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598-1605, Aug. 1994, doi: 10.2514/3.12149.
  • A. Hellsten, “Some improvements in Menter’s k-omega SST turbulence model,” in 29th AIAA, Fluid Dynamics Conference, Albuquerque, NM, U.S.A.: American Institute of Aeronautics and Astronautics, June 1998. doi: 10.2514/6.1998-2554
  • P. Pires Araujo and A. L. Tenório Rezende, “Comparison of Turbulence Models in the Flow over a Backward Facing Step,” IJOER, vol. 3, no. 11, pp. 88–93, Nov. 2017, doi: 10.25125/engineering-journal-IJOER-NOV-2017-19.
  • G. Sekrani, S. Poncet, and P. Proulx, “Modeling of convective turbulent heat transfer of water-based Al 2 O 3 nanofluids in an uniformly heated pipe,” Chemical Engineering Science, vol. 176, pp. 205–219, Feb. 2018, doi: 10.1016/j.ces.2017.10.044.
  • D. G. Jehad, G. A. Hashim, A. K. Zarzoor, and C. S. Nor Azwadi, “Numerical study of turbulent flow over backward-facing step with different turbulence models,” Journal of Advanced Research Design, vol. 4, no. 1, pp. 20-27, 2015.
  • J. Kim, S.J. Kline, and J.P. Johnston, “Investigation of a reattaching turbulent shear layer: flow over a backward-facing step,” Journal of Fluids Engineering, vol. 102, no. 3, pp. 302-308, Sep. 1980, doi: 10.1115/1.3240686.
  • “OpenFOAM | Free CFD Software | The OpenFOAM Foundation.” Accessed: Nov. 17, 2025. [Online]. Available: https://openfoam.org/
  • E. YousefiMiab, S. Baheri Islami, and R. Gharraei, “Feasibility assessment of using nanofluids in shell and tube heat exchanger of gas pressure reducing stations through a new developed OpenFOAM solver,” International Journal of Heat and Fluid Flow, vol. 96, Aug. 2022, Art. no. 108985, doi: 10.1016/j.ijheatfluidflow.2022.108985.
  • A. Safari, M. Saffar-Avval, and E. Amani, “Numerical investigation of turbulent forced convection flow of nano fluid in curved and helical pipe using four-equation model,” Powder Technology, vol. 328, pp. 47-53, Apr. 2018, doi: 10.1016/j.powtec.2018.01.025.
  • K. Akselvoll, and P. Moin, “Large-eddy simulation of turbulent confined coannular jets,” Journal of Fluid Mechanics, vol. 315, pp. 387-411, May 1996, doi: 10.1017/S0022112096002479.
  • M. Jourabian, and M. Raeesi, “Turbulent forced convection flow of water-based nanofluids with temperature-dependent properties over backward-facing step channel with upwardly deflected downstream wall,” Numerical Heat Transfer, Part A: Applications, vol. 86, no. 7, pp. 2125-2154, Apr. 2025, doi: 10.1080/10407782.2023.2287541.
  • W. A. Xie, and G. N. Xi, “Geometry effect on flow fluctuation and heat transfer in unsteady forced convection over backward and forward facing steps,” Energy, vol. 132, pp. 49-56, Aug. 2017, doi: 10.1016/j.energy.2017.05.072.
  • C. Abdellahoum, A. Mataoui, and H. F. Oztop, “Turbulent forced convection of nanofluid over a heated shallow cavity in a duct,” Powder Technology, vol. 277, pp. 126-134, June 2015, doi: 10.1016/j.powtec.2015.02.048.
  • C. Abdellahoum, and A. Mataoui, “Numerical analysis of turbulent forced convection of nanofluid flow over a heated shallow cavity,” Heat Transfer Asian Research, vol. 45, no. 5, pp. 434-450, July 2016, doi: 10.1002/htj.21170.
  • P. S. B. Zdanski, M. A. Ortega, and N. G. C. R. Fico, “Heat transfer studies in the flow over shallow cavities,” Journal of Heat Transfer, vol. 127, no.7, pp. 699-712, July 2005, doi: 10.1115/1.1924630.
  • D. Cornu, L. Keirsbulck, F. Kerhervé, F. Aloui, M. Lippert, “On the vortex dynamics of shear-driven deep cavity flows with asymmetrical walls,” Canadian Journal of Physics, vol. 94, no. 12, pp. 1344-1352, Dec. 2016, doi:10.1139/cjp-2016-0305.

Numerical Study on Channel-Driven U-Shaped Cavity Flow with Adiabatic Baffles: PEC For W/EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid

Year 2025, Volume: 28 Issue: 4, 279 - 291, 01.12.2025
https://doi.org/10.5541/ijot.1681635

Abstract

Turbulent forced convection over asymmetrical cavity flows is encountered in numerous industrial applications. The importance of heat exchange or minimizing the encapsulating phenomenon has inspired thermal engineers to rely on altering the geometry of the heat transfer component (passive technique). Besides, the heat transfer capability of water and ethylene glycol (EG) solution is limited, and it depends on the working temperature and composition of the mixture. Hence, in this study, the influences of adiabatic baffles and TiO2-SiO2 hybrid nanoparticles (NPs) on the thermal performance of binary fluid in a 2D channel-driven U-shaped cavity flow are examined using the single-phase k-ω SST model. The results indicate that for the pure aqueous solution of EG, using elongated baffles increases the average Nu number (ANN) by 87% and 67%, respectively, compared to the plain cavity flow at Re=5000 and 30000. For the cavity flow without baffles at U0=0.6 m/s, the value of ANN decreases by 14% using TiO2-SiO2 (mixing ratio 50:50%) hybrid nanofluid (HyNf) with ϕ=0.01 compared to the pure mixture flow. Inserting smaller baffles in the U-shaped cavity flow is always advantageous at all velocities of the incoming flow. It confirms that dispersing TiO2-SiO2 NPs does not enhance the heat transfer capability of the binary mixture, especially at higher Re numbers. Moreover, the simultaneous substitution of the pure mixture in the plain cavity flow with the TiO2-SiO2 HyNf in the cavity flow equipped with baffles cannot be recommended.

References

  • S. N. Sinha, A. K. Gupta, and M. M. Oberai, “Laminar separating flow over backsteps and cavities, Part ii: cavities,” AIAA Journal, vol. 20, no. 3, pp. 370-375, Mar. 1982, doi: 10.2514/3.7918.
  • P. S. B. Zdanski, M. A. Ortega, and N. G. C. R. Fico, “Numerical study of the flow over shallow cavities,” Computers & Fluids, vol. 32, no. 7, pp. 953-974, Aug. 2003, doi: 10.1016/S0045-7930(02)00067-1.
  • O. Mesalhy, S. S. A. Aziz, M. M. El-Sayed, “Flow and heat transfer over shallow cavities,” International Journal of Thermal Sciences, vol. 49, no. 3, pp. 514-521, Mar. 2010, doi: 10.1016/j.ijthermalsci.2009.09.007.
  • C. Ozalp, A. Pinarbasi, and B. Sahin, “Experimental measurement of flow past cavities of different shapes,” Experimental Thermal and Fluid Science, vol. 34, no. 5, pp. 505-515, July 2010, doi: 10.1016/j.expthermflusci.2009.11.003.
  • Y. Ma, R. Mohebbi, M. M. Rashidi, Z. Yang, and Y. Fang, “Baffle and geometry effects on nanofluid forced convection over forward- and backward-facing steps channel by means of lattice Boltzmann method,” Physica A: Statistical Mechanics and its Applications, vol. 554, Sept. 2020, Art. no. 124696, doi: 10.1016/j.physa.2020.124696.
  • V. Navaneethakrishnan and M. Muthtamilselvan, “Thermal analysis of magnetohydrodynamic mixed convection in vented channel-driven cavity with corner heater: influence of adiabatic rod and flow parameters,” Journal of Thermal Analysis and Calorimetry, vol. 149, no. 11, pp. 5755–5770, June 2024, doi: 10.1007/s10973-024-13117-4
  • S. Nouraei et al., “Heat transfer and entropy analysis for nanofluid flow in a semi-circular open cavity under mixed convection,” Alexandria Engineering Journal, vol. 64, pp. 309–334, Feb. 2023, doi: 10.1016/j.aej.2022.09.007
  • S.M. Aminossadati, and B. Ghasemi, “A numerical study of mixed convection in a horizontal channel with a discrete heat source in an open cavity,” European Journal of Mechanics - B/Fluids, vol. 28, no. 4, pp. 590-598, 2009, doi: 10.1016/j.euromechflu.2009.01.001.
  • O. Manca, S. Nardini, K. Khanafer, and K. Vafai, “Effect of heated wall position on mixed convection in a channel with an open cavity,” Numerical Heat Transfer, Part A: Applications, vol. 43, no. 3, pp. 259-282, 2003, doi: 10.1080/10407780307310.
  • Z. Mehrez, M. Bouterra, A.E. Cafsi, and A. Belghith, “Heat transfer and entropy generation analysis of nanofluids flow in an open cavity,” Computers & Fluids, vol. 88, pp. 363-373, Dec. 2013, doi: 10.1016/j.compfluid.2013.09.026.
  • ASHRAE Handbook – Fundamentals (SI Edition), American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 2009.
  • X. Xu, C. Xu, J. Liu, X. Fang, and Z. Zhang, “A direct absorption solar collector based on a water-ethylene glycol based nanofluid with anti-freeze property and excellent dispersion stability,” Renewable Energy, vol. 133, pp. 760-769, Apr. 2019, doi: 10.1016/j.renene.2018.10.073.
  • S. M. Peyghambarzadeh, S. H. Hashemabadi, S.M. Hoseini, and M. S. Jamnani, “Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators,” International Communications in Heat and Mass Transfer, vol. 38, no. 9, pp. 1283-1290, Nov. 2011, doi: 10.1016/j.icheatmasstransfer.2011.07.001.
  • T. Yiamsawas, O. Mahian, A. S. Dalkilic, S. Kaewnai, and S. Wongwises, “Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications,” Applied Energy, vol. 111, pp. 40-45, Nov. 2013, doi: 10.1016/j.apenergy.2013.04.068.
  • V. Kumaresan, and R. Velraj, “Experimental investigation of the thermo-physical properties of water-ethylene glycol mixture based CNT nanofluids,” Thermochimica Acta, vol. 545, 180-186, Oct. 2012. doi: 10.1016/j.tca.2012.07.017.
  • L. S. Sundar, M. K. Singh, and A. C. Sousa, “Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid,” International Communications in Heat and Mass Transfer, vol. 49, pp. 17-24, Dec. 2013, doi: 10.1016/j.icheatmasstransfer.2013.08.026.
  • B. A. Bhanvase, M. R. Sarode, L. A. Putterwar, A. K. A., M. P. Deosarkar, and S. H. Sonawane, “Intensification of convective heat transfer in water/ethylene glycol-based nanofluids containing TiO2 nanoparticles,” Chemical Engineering and Processing: Process Intensification, vol. 82, pp. 123-131, Aug. 2014, doi: 10.1016/j.cep.2014.06.009.
  • M. F. Nabil, W. H. Azmi, K. A. Hamid, R. Mamat, and F. Y. Hagos, “An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: ethylene glycol mixture,” International Communications in Heat and Mass Transfer, vol. 86, pp. 181-189, Aug. 2017, doi: 10.1016/j.icheatmasstransfer.2017.05.024.
  • M. Michael, A. Zagabathuni, S. Ghosh, and S. K. Pabi, “Thermo-physical properties of pure ethylene glycol and water–ethylene glycol mixture-based boron nitride nanofluids: an experimental investigation,” Journal of Thermal Analysis and Calorimetry, vol. 137, no. 2, pp. 369-380, 2019, doi: 10.1007/s10973-018-7965-5.
  • K. A. Hamid, W. H. Azmi, M. F. Nabil, R. Mamat, and K. V. Sharma, “Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids,” International Journal of Heat and Mass Transfer, vol. 116, pp. 1143-1152, Jan. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.09.087.
  • S. S. S. Sen, R. Mahato, S. Shaw, and M. Das, “Simulation of entropy and heat and mass transfer in Water-EG based hybrid nanoliquid flow with MHD and nonlinear radiation,” Numerical Heat Transfer, Part A: Applications, vol. 85, no. 19, pp. 3253–3267, Oct. 2024, doi: 10.1080/10407782.2023.2233736.
  • W. H. Azmi, K. A. Hamid, N. A. Usri, R. Mamat, and K. V. Sharma, “Heat transfer augmentation of ethylene glycol: water nanofluids and applications — A review,” International Communications in Heat and Mass Transfer, vol. 75, pp. 13–23, July 2016, doi: 10.1016/j.icheatmasstransfer.2016.03.018.
  • R. Shi, J. Lin, and H. Yang, “Particle Distribution and Heat Transfer of SiO2/Water Nanofluid in the Turbulent Tube Flow,” Nanomaterials, vol. 12, no. 16, p. 2803, Aug. 2022, doi: 10.3390/nano12162803.
  • M. Torabi, M. Torabi, M. E. Yazdi, and G. P. Peterson, “Fluid flow, heat transfer and entropy generation analyses of turbulent forced convection through isotropic porous media using RANS models,” International Journal of Heat and Mass Transfer, vol. 132, pp. 443–461, Apr. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.12.020.
  • F. Iachachene, Z. Haddad, M. Arıcı, M. Jamei, and A. Mataoui, “Turbulent forced convective flow in a conical diffuser: Hybrid and single nanofluids,” Engineering Analysis with Boundary Elements, vol. 148, pp. 205–219, Mar. 2023, doi: 10.1016/j.enganabound.2022.12.027.
  • N. Al-Zurfi, A. Alhusseny, and A. Nasser, “Effect of rotation on forced convection in wavy wall channels,” International Journal of Heat and Mass Transfer, vol. 149, Mar. 2020, Art. no. 119177, doi: 10.1016/j.ijheatmasstransfer.2019.119177.
  • Md. S. Shuvo, T. H. Ruvo, and S. Saha, “Characteristics of turbulent forced convective nanofluid flow and heat transfer in a 2D axisymmetric corrugated pipe,” Thermal Science and Engineering Progress, vol. 41, June 2023, Art. no. 101838, doi: 10.1016/j.tsep.2023.101838.
  • F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598-1605, Aug. 1994, doi: 10.2514/3.12149.
  • A. Hellsten, “Some improvements in Menter’s k-omega SST turbulence model,” in 29th AIAA, Fluid Dynamics Conference, Albuquerque, NM, U.S.A.: American Institute of Aeronautics and Astronautics, June 1998. doi: 10.2514/6.1998-2554
  • P. Pires Araujo and A. L. Tenório Rezende, “Comparison of Turbulence Models in the Flow over a Backward Facing Step,” IJOER, vol. 3, no. 11, pp. 88–93, Nov. 2017, doi: 10.25125/engineering-journal-IJOER-NOV-2017-19.
  • G. Sekrani, S. Poncet, and P. Proulx, “Modeling of convective turbulent heat transfer of water-based Al 2 O 3 nanofluids in an uniformly heated pipe,” Chemical Engineering Science, vol. 176, pp. 205–219, Feb. 2018, doi: 10.1016/j.ces.2017.10.044.
  • D. G. Jehad, G. A. Hashim, A. K. Zarzoor, and C. S. Nor Azwadi, “Numerical study of turbulent flow over backward-facing step with different turbulence models,” Journal of Advanced Research Design, vol. 4, no. 1, pp. 20-27, 2015.
  • J. Kim, S.J. Kline, and J.P. Johnston, “Investigation of a reattaching turbulent shear layer: flow over a backward-facing step,” Journal of Fluids Engineering, vol. 102, no. 3, pp. 302-308, Sep. 1980, doi: 10.1115/1.3240686.
  • “OpenFOAM | Free CFD Software | The OpenFOAM Foundation.” Accessed: Nov. 17, 2025. [Online]. Available: https://openfoam.org/
  • E. YousefiMiab, S. Baheri Islami, and R. Gharraei, “Feasibility assessment of using nanofluids in shell and tube heat exchanger of gas pressure reducing stations through a new developed OpenFOAM solver,” International Journal of Heat and Fluid Flow, vol. 96, Aug. 2022, Art. no. 108985, doi: 10.1016/j.ijheatfluidflow.2022.108985.
  • A. Safari, M. Saffar-Avval, and E. Amani, “Numerical investigation of turbulent forced convection flow of nano fluid in curved and helical pipe using four-equation model,” Powder Technology, vol. 328, pp. 47-53, Apr. 2018, doi: 10.1016/j.powtec.2018.01.025.
  • K. Akselvoll, and P. Moin, “Large-eddy simulation of turbulent confined coannular jets,” Journal of Fluid Mechanics, vol. 315, pp. 387-411, May 1996, doi: 10.1017/S0022112096002479.
  • M. Jourabian, and M. Raeesi, “Turbulent forced convection flow of water-based nanofluids with temperature-dependent properties over backward-facing step channel with upwardly deflected downstream wall,” Numerical Heat Transfer, Part A: Applications, vol. 86, no. 7, pp. 2125-2154, Apr. 2025, doi: 10.1080/10407782.2023.2287541.
  • W. A. Xie, and G. N. Xi, “Geometry effect on flow fluctuation and heat transfer in unsteady forced convection over backward and forward facing steps,” Energy, vol. 132, pp. 49-56, Aug. 2017, doi: 10.1016/j.energy.2017.05.072.
  • C. Abdellahoum, A. Mataoui, and H. F. Oztop, “Turbulent forced convection of nanofluid over a heated shallow cavity in a duct,” Powder Technology, vol. 277, pp. 126-134, June 2015, doi: 10.1016/j.powtec.2015.02.048.
  • C. Abdellahoum, and A. Mataoui, “Numerical analysis of turbulent forced convection of nanofluid flow over a heated shallow cavity,” Heat Transfer Asian Research, vol. 45, no. 5, pp. 434-450, July 2016, doi: 10.1002/htj.21170.
  • P. S. B. Zdanski, M. A. Ortega, and N. G. C. R. Fico, “Heat transfer studies in the flow over shallow cavities,” Journal of Heat Transfer, vol. 127, no.7, pp. 699-712, July 2005, doi: 10.1115/1.1924630.
  • D. Cornu, L. Keirsbulck, F. Kerhervé, F. Aloui, M. Lippert, “On the vortex dynamics of shear-driven deep cavity flows with asymmetrical walls,” Canadian Journal of Physics, vol. 94, no. 12, pp. 1344-1352, Dec. 2016, doi:10.1139/cjp-2016-0305.
There are 43 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Article
Authors

Mahmoud Jourabian 0000-0003-4830-2000

Early Pub Date November 20, 2025
Publication Date December 1, 2025
Submission Date April 22, 2025
Acceptance Date November 11, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Jourabian, M. (2025). Numerical Study on Channel-Driven U-Shaped Cavity Flow with Adiabatic Baffles: PEC For W/EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid. International Journal of Thermodynamics, 28(4), 279-291. https://doi.org/10.5541/ijot.1681635
AMA Jourabian M. Numerical Study on Channel-Driven U-Shaped Cavity Flow with Adiabatic Baffles: PEC For W/EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid. International Journal of Thermodynamics. December 2025;28(4):279-291. doi:10.5541/ijot.1681635
Chicago Jourabian, Mahmoud. “Numerical Study on Channel-Driven U-Shaped Cavity Flow With Adiabatic Baffles: PEC For W EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid”. International Journal of Thermodynamics 28, no. 4 (December 2025): 279-91. https://doi.org/10.5541/ijot.1681635.
EndNote Jourabian M (December 1, 2025) Numerical Study on Channel-Driven U-Shaped Cavity Flow with Adiabatic Baffles: PEC For W/EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid. International Journal of Thermodynamics 28 4 279–291.
IEEE M. Jourabian, “Numerical Study on Channel-Driven U-Shaped Cavity Flow with Adiabatic Baffles: PEC For W/EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid”, International Journal of Thermodynamics, vol. 28, no. 4, pp. 279–291, 2025, doi: 10.5541/ijot.1681635.
ISNAD Jourabian, Mahmoud. “Numerical Study on Channel-Driven U-Shaped Cavity Flow With Adiabatic Baffles: PEC For W EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid”. International Journal of Thermodynamics 28/4 (December2025), 279-291. https://doi.org/10.5541/ijot.1681635.
JAMA Jourabian M. Numerical Study on Channel-Driven U-Shaped Cavity Flow with Adiabatic Baffles: PEC For W/EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid. International Journal of Thermodynamics. 2025;28:279–291.
MLA Jourabian, Mahmoud. “Numerical Study on Channel-Driven U-Shaped Cavity Flow With Adiabatic Baffles: PEC For W EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid”. International Journal of Thermodynamics, vol. 28, no. 4, 2025, pp. 279-91, doi:10.5541/ijot.1681635.
Vancouver Jourabian M. Numerical Study on Channel-Driven U-Shaped Cavity Flow with Adiabatic Baffles: PEC For W/EG Mixture-Based TiO2-SiO2 Hybrid Nanofluid. International Journal of Thermodynamics. 2025;28(4):279-91.