Review
BibTex RIS Cite

Year 2025, Volume: 28 Issue: 4, 308 - 319, 01.12.2025
https://doi.org/10.5541/ijot.1729632

Abstract

References

  • P. M. Kadam, D. R. Dolas, S. Pal, and S. S. Gajghate, “Impact of Soybean Biodiesel Blends with Mixed Graphene Nanoparticles on Compression Ignition Engine Performance and Emission: An Experimental and ANN Analysis,” Int. J. Automot. Mech. Eng., vol. 21, no. 3, pp. 11512–11525, 2024, doi: 10.15282/ijame.21.3.2024.5.0888.
  • A. Valera-Medina et al., “Ammonia–methane combustion in tangential swirl burners for gas turbine power generation,” Applied Energy, vol. 185, pp. 1362–1371, 2017, doi: 10.1016/j.apenergy.2016.02.073.
  • E. Spatolisano, L. A. Pellegrini, A. R. de Angelis, S. Cattaneo, and E. Roccaro, “Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2,” Ind. Eng. Chem. Res., vol. 62, no. 28, pp. 10813–10827, 2023, doi: 10.1021/acs.iecr.3c01419.
  • M. Zhou et al., “Ammonia as an environmentally benign energy carrier for the fast growth of China,” Energy Procedia, vol. 158, pp. 4986–4991, 2019, doi: 10.1016/j.egypro.2019.01.668.
  • G. Langella, M. De Joannon, P. Sabia, P. Iodice, and A. Amoresano, “Ammonia as a fuel for internal combustion engines: Latest advances and future challenges,” J. Phys. Conf. Ser., vol. 2385, no. 1, 2022, Art. no. 012036, doi: 10.1088/1742-6596/2385/1/012036.
  • A. Yapicioglu and I. Dincer, “A review on clean ammonia as a potential fuel for power generators,” Renew. Sustain. Energy Rev., vol. 103, pp. 96–108, 2019, doi: 10.1016/j.rser.2018.12.023.
  • W. Tutak, M. Pyrc, M. Gruca, and A. Jamrozik, “Ammonia Combustion in a Spark-Ignition Engine Supported with Dimethyl Ether,” Energies, vol. 16, no. 21, p. 7383, 2023, doi: 10.3390/en16217283.
  • A. Valera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, “Ammonia for power,” Prog. Energy Combust. Sci., vol. 69, pp. 63–102, 2018, doi: 10.1016/j.pecs.2018.07.001.
  • M. Vijay Kumar, A. Veeresh Babu, and P. Ravi Kumar, “The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine,” Alexandria Eng. J., vol. 57, no. 1, pp. 509–516, 2018, doi: 10.1016/j.aej.2016.12.016.
  • L. Razzaq et al., “Response Surface Methodology and Artificial Neural Networks-Based Yield Optimization of Biodiesel Sourced from Mixture of Palm and Cotton Seed Oil,” Sustain., vol. 14, no. 10, p. 6130, 2022, doi: 10.3390/su14106130.
  • İ. Temizer, Ö. Cihan, and B. Eskici, “Numerical and experimental investigation of the effect of biodiesel/diesel fuel on combustion characteristics in CI engine,” Fuel, vol. 270, no. 3, 2020, Art. no. 117523, doi: 10.1016/j.fuel.2020.117523.
  • Y. Wang, X. Zhou, and L. Liu, “Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine,” Int. J. Hydrogen Energy, vol. 46, no. 27, pp. 14805–14812, 2021, doi: 10.1016/j.ijhydene.2021.01.233.
  • S. Semin, A. Iswantoro, and F. Faris, “Performance and NOx Investigation on Diesel Engine using Cold EGR Spiral Tube: A Review,” Int. J. Mar. Eng. Innov. Res., vol. 1, no. 3, pp. 213–220, 2017, doi: 10.12962/j25481479.v1i3.2372.
  • K. Uddeen, Q. Tang, H. Shi, and J. W. G. Turner, “Ammonia-methanol and ammonia-ethanol dual-fuel combustion in an optical spark-ignition engine: A multiple flame generation approach,” Appl. Therm. Eng., vol. 265, 2025, Art. no. 125544, doi: 10.1016/j.applthermaleng.2025.125544.
  • A. A. Levikhin and A. A. Boryaev, “Low-carbon ammonia-based fuel for maritime transport,” Results Eng., vol. 25, 2025, Art. no. 104175, doi: 10.1016/j.rineng.2025.104175.
  • M. Alnajideen et al., “Ammonia combustion and emissions in practical applications: a review,” Carbon Neutrality, vol. 3, no. 1, p. 13, 2024, doi: 10.1007/s43979-024-00088-6.
  • C. Park et al., “Investigation on the reduction in unburned ammonia and nitrogen oxide emissions from ammonia direct injection SI engine by using SCR after-treatment system,” Heliyon, vol. 10, no. 18, 2024, doi: 10.1016/j.heliyon.2024.e37684.
  • M. A. Asokan, S. S. Prabu, S. Prathiba, V. S. Akhil, L. D. Abishai, and M. E. Surejlal, “Emission and performance behaviour of flax seed oil biodiesel/diesel blends in di diesel engine,” Mater. Today Proc., vol. 46, no. 17, pp. 8148–8152, 2021, doi: 10.1016/j.matpr.2021.03.108.
  • S. S. Wirawan, M. D. Solikhah, H. Setiapraja, and A. Sugiyono, “Biodiesel implementation in Indonesia: Experiences and future perspectives,” Renew. Sustain. Energy Rev., vol. 189, no. 6, 2024, Art. no. 113911, doi: 10.1016/j.rser.2023.113911.
  • V. K. Shahir, C. P. Jawahar, and P. R. Suresh, “Comparative study of diesel and biodiesel on CI engine with emphasis to emissions - A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 686–697, 2015, doi: 10.1016/j.rser.2015.02.042.
  • E. Nadimi, G. Przybyła, T. Løvås, and W. Adamczyk, “Effects of biodiesel injector configuration and its injection timing on performance, combustion and emissions characteristics of liquid ammonia dual direct injection engine,” J. Energy Inst., vol. 114, 2024, Art. no. 101605, doi: 10.1016/j.joei.2024.101605.
  • P. Dimitriou and R. Javaid, “A review of ammonia as a compression ignition engine fuel,” Int. J. Hydrogen Energy, vol. 45, no. 11, pp. 7098–7118, 2020, doi: 10.1016/j.ijhydene.2019.12.209.
  • S. Babamohammadi, A. R. Birss, H. Pouran, J. Pandhal, and T. N. Borhani, “Emission control and carbon capture from diesel generators and engines: A decade-long perspective,” Carbon Capture Sci. Technol., vol. 14, 2025, Art. no. 100379, doi: 10.1016/j.ccst.2025.100379.
  • A. Valera-Medina et al., “Review on ammonia as a potential fuel: From synthesis to economics,” Energy and Fuels, vol. 35, no. 9, pp. 6964–7029, 2021, doi: 10.1021/acs.energyfuels.0c03685.
  • R. Payri, J. M. García-Oliver, G. Bracho, and J. Cao, “Experimental characterization of direct injection liquid ammonia sprays under non-reacting diesel-like conditions,” Fuel, vol. 362, 2024, Art. no. 130851, doi: 10.1016/j.fuel.2023.130851.
  • Z. Huang, H. Wang, Q. Meng, K. Luo, and J. Fan, “Combustion Characteristics of Liquid Ammonia Direct Injection Under High-Pressure Conditions Using DNS,” Energies, vol. 18, no. 9, p. 2228, 2025, doi: 10.3390/en18092228.
  • K. Ryu, G. E. Zacharakis-Jutz, and S. C. Kong, “Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine,” Appl. Energy, vol. 116, pp. 206–215, 2014, doi: 10.1016/j.apenergy.2013.11.067.
  • E. Nadimi, G. Przybyła, T. Løvås, G. Peczkis, and W. Adamczyk, “Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine,” Energy, vol. 284, 2023, Art. no. 129301, doi: 10.1016/j.energy.2023.129301.
  • X. Zhou et al., “Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions,” Nat. Commun., vol. 15, no. 1, p. 2120, 2024, doi: 10.1038/s41467-024-46452-z.
  • E. Nadimi, G. Przybyła, D. Emberson, T. Løvås, Ł. Ziółkowski, and W. Adamczyk, “Effects of using ammonia as a primary fuel on engine performance and emissions in an ammonia/biodiesel dual-fuel CI engine,” Int. J. Energy Res., vol. 46, no. 11, pp. 15347–15361, 2022, doi: 10.1002/er.8235.
  • A. Yousefi, H. Guo, S. Dev, B. Liko, and S. Lafrance, “Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine,” Fuel, vol. 314, Art. no. 122723, 2022, doi: 10.1016/j.fuel.2021.122723.
  • K. Ramalingam et al., “An experimental and ANN analysis of ammonia energy integration in biofuel powered low-temperature combustion engine to enhance cleaner combustion,” Case Stud. Therm. Eng., vol. 63, 2024, Art. no. 105284 doi: 10.1016/j.csite.2024.105284.
  • M. Elkelawy, H. A. Bastawissi, M. O. Elsamadony, and A. Salem, “Investigation into the Impact of Ammonia Hydroxide on Performance and Emissions in Compression Ignition Engines Utilizing Diesel / Biodiesel Blends,” J. Eng. Res. Vol., vol. 8, no. 1, pp. 1–16, 2024.
  • M. Elkelawy, H. Alm ElDin Mohamad, M. Samadony, and A. Abdalhadi, “Utilization of Ammonia Hydroxide /Diesel Fuel Blends in Partially Premixed Charge Compression Ignition (PPCCI) Engine: A Technical Review,” J. Eng. Res., vol. 7, no. 3, pp. 319–331, 2023, doi: 10.21608/erjeng.2023.234219.1229.
  • S. Wüthrich, P. Cartier, P. Süess, B. Schneider, P. Obrecht, and K. Herrmann, “Optical investigation and thermodynamic analysis of premixed ammonia dual-fuel combustion initiated by dodecane pilot fuel,” Fuel Commun., vol. 12, 2022, Art. no. 100074, doi: 10.1016/j.jfueco.2022.100074.
  • C. Cheng, R. F. Cordtz, N. L. Førby, and J. Schramm, “Experimental and simulation investigation of n-heptane/ammonia dual fuel on a light-duty compression ignition engine,” Int. J. Hydrogen Energy, vol. 57, pp. 1339–1353, 2024, doi: 10.1016/j.ijhydene.2024.01.130.
  • A. Uyumaz et al., “Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine,” Fuel, vol. 280, 2020, Art. no. 118588, doi: 10.1016/j.fuel.2020.118588.
  • R. Elumalai, K. Ravi, P. V. Elumalai, M. Sreenivasa Reddy, E. Prakash, and P. Sekar, “Development of an ammonia-biodiesel dual fuel combustion engine’s injection strategy map using response surface optimization and artificial neural network prediction,” Sci. Rep., vol. 14, no. 1, p. 543, 2024, doi: 10.1038/s41598-023-51023-1.
  • İ. Temizer and Ö. Cihan, “International Journal of Automotive Engineering and Technologies Investigation of combustion and emission in a DI diesel engine fueled with hydrogen-biodiesel blends,” Int. J. Automot. Eng. Technol., vol. 8, no. 4, pp. 150–164, 2019.
  • M. Ince, S. Çelebi, U. Demir, and C. Haşimoğlu, “Evaluating Engine Performance, Emissions, Noise, and Vibration: A Comparative Study of Diesel and Biodiesel Fuel Mixture,” Int. J. Automot. Sci. Technol., vol. 8, no. 3, pp. 288–302, 2024, doi: 10.30939/ijastech.1495167.
  • E. Nadimi, G. Przybyła, M. T. Lewandowski, and W. Adamczyk, “Effects of ammonia on combustion, emissions, and performance of the ammonia/diesel dual-fuel compression ignition engine,” J. Energy Inst., vol. 107, 2023, Art. no. 101158, doi: 10.1016/j.joei.2022.101158.
  • D. R. MacFarlane et al., “A Roadmap to the Ammonia Economy,” Joule, vol. 4, no. 6, pp. 1186–1205, 2020, doi: 10.1016/j.joule.2020.04.004.
  • J. S. Cardoso, V. Silva, R. C. Rocha, M. J. Hall, M. Costa, and D. Eusébio, “Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines,” J. Clean. Prod., vol. 296, 2021, Art. no. 126562, doi: 10.1016/j.jclepro.2021.126562.
  • A. Yapicioglu and I. Dincer, “Performance assesment of hydrogen and ammonia combustion with various fuels for power generators,” Int. J. Hydrogen Energy, vol. 43, no. 45, pp. 21037–21048, 2018, doi: 10.1016/j.ijhydene.2018.08.198.
  • W. S. Chai, Y. Bao, P. Jin, G. Tang, and L. Zhou, “A review on ammonia, ammonia-hydrogen and ammonia-methane fuels,” Renew. Sustain. Energy Rev., vol. 147, 2021, Art. no. 111254, doi: 10.1016/j.rser.2021.111254.
  • R. Sivasubramanian, J. B. Sajin, and G. Omanakuttan Pillai, “Effect of ammonia to reduce emission from biodiesel fuelled diesel engine,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 661–665, 2022, doi: 10.1080/01430750.2019.1663367.
  • Z. Chen, Y. Wan, O. I. Awad, and Z. Pan, “Effect of Multiple Injection Strategy Under High Ammonia Ratio on Combustion and Emissions of Liquid Ammonia/Diesel Dual DI Engine,” Atmosphere, vol. 16, no. 1, p. 94, 2025, doi: 10.3390/atmos16010094.
  • K. A. Pedersen, M. T. Lewandowski, C. Schulze-Netzer, M. Pasternak, and T. Løvås, “Ammonia in Dual-Fueled Internal Combustion Engines: Impact on NOx, N2O, and Soot Formation,” Energy and Fuels, vol. 37, no. 22, pp. 17585–17604, 2023, doi: 10.1021/acs.energyfuels.3c02549.
  • A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, and H. Kobayashi, “Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures,” Fuel, vol. 159, pp. 98–106, 2015, doi: 10.1016/j.fuel.2015.06.070.
  • E. Pv et al., “Split injection timing optimization in ammonia/biodiesel powered by RCCI engine,” Results Eng., vol. 23, 2024, Art. no. 102607, doi: 10.1016/j.rineng.2024.102607.
  • A. M. Elbaz, S. Wang, T. F. Guiberti, and W. L. Roberts, “Review on the recent advances on ammonia combustion from the fundamentals to the applications,” Fuel Commun., vol. 10, 2022, Art no. 100053, doi: 10.1016/j.jfueco.2022.100053.
  • A. Motevali, N. Hooshmandzadeh, E. Fayyazi, M. Valipour, and J. Yue, “Environmental Impacts of Biodiesel Production Cycle from Farm to Manufactory: An Application of Sustainable Systems Engineering,” Atmosphere, vol. 14, no. 2, p. 399, 2023, doi: 10.3390/atmos14020399.
  • R. Senthil, R. Silambarasan, and N. Ravichandiran, “Influence of injection timing and compression ratio on performance, emission and combustion characteristics of Annona methyl ester operated diesel engine,” Alexandria Eng. J., vol. 54, no. 3, pp. 295–302, 2015, doi: 10.1016/j.aej.2015.05.008.
  • E. Ramachandran et al., “Multicriteria Decision-Making Technique for Choosing the Optimal Ammonia Energy Share in an Ammonia-Biodiesel-Fueled Reactivity-Controlled Compression Ignition Engine,” ACS Omega, vol. 9, no. 5, pp. 5203–5214, 2024, doi: 10.1021/acsomega.3c04005.
  • M. Yazdi, E. Zarei, S. Adumene, and A. Beheshti, “Navigating the Power of Artificial Intelligence in Risk Management: A Comparative Analysis,” Safety, vol. 10, no. 2, p. 42, 2024, doi: 10.3390/safety10020042.
  • V. Sharma, A. Panesar, G. de Sercey, and S. Begg, “A Review of Ammonia Combustion and Emissions Characteristics in Spark-Ignition Engines and Future Road Map,” Energies, vol. 18, no. 1, p. 41, 2025, doi: 10.3390/en18010041.

Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review

Year 2025, Volume: 28 Issue: 4, 308 - 319, 01.12.2025
https://doi.org/10.5541/ijot.1729632

Abstract

The global energy crisis and decarbonization demands emphasize the need for low-carbon fuels that remain compatible with conventional diesel engines. Ammonia and biodiesel have emerged as complementary candidates for compression ignition engine applications. This article summarizes 56 publications discussing engine performance, emission characteristics, and optimization strategies for their use, both separately and in dual-fuel configurations. The study results show that a blend of 40% ammonia and 60% biodiesel can increase thermal efficiency by up to 21.3%, decrease specific fuel consumption by 4.06%, and reduce CO₂ emissions by 6.6% compared to pure diesel. A dual injection strategy with a timing of 25° BTDC proved effective in shortening the ignition delay and increasing heat release. Predictive approaches based on Artificial Neural Network (ANN) and Response Surface Method (RSM) also demonstrated high accuracy (R² > 0.99). However, significant technical challenges remain, particularly increased NOx emissions, ammonia slip, and N₂O formation. This study confirms the potential of ammonia–biodiesel as a transition fuel towards a low-carbon energy system, requiring the implementation of emission control technologies, precision injection engineering, and adaptive combustion strategies. Open research areas include long-term durability testing, performance in multi-cylinder engines under transient conditions, and the development of a multi-objective optimization algorithm based on the integration of ANN, RSM, and evolutionary methods.

Ethical Statement

This article is a literature review based entirely on previously published research. Therefore, no new experiments were conducted on humans or animals, so ethical approval is not required. All data and information used have been cited accurately from the original sources to maintain academic integrity.

Thanks

The author would like to thank the editorial board and reviewers of the IJoT journal for their constructive input and suggestions. Appreciation is also extended to previous researchers whose works became the basis for the preparation of this article.

References

  • P. M. Kadam, D. R. Dolas, S. Pal, and S. S. Gajghate, “Impact of Soybean Biodiesel Blends with Mixed Graphene Nanoparticles on Compression Ignition Engine Performance and Emission: An Experimental and ANN Analysis,” Int. J. Automot. Mech. Eng., vol. 21, no. 3, pp. 11512–11525, 2024, doi: 10.15282/ijame.21.3.2024.5.0888.
  • A. Valera-Medina et al., “Ammonia–methane combustion in tangential swirl burners for gas turbine power generation,” Applied Energy, vol. 185, pp. 1362–1371, 2017, doi: 10.1016/j.apenergy.2016.02.073.
  • E. Spatolisano, L. A. Pellegrini, A. R. de Angelis, S. Cattaneo, and E. Roccaro, “Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2,” Ind. Eng. Chem. Res., vol. 62, no. 28, pp. 10813–10827, 2023, doi: 10.1021/acs.iecr.3c01419.
  • M. Zhou et al., “Ammonia as an environmentally benign energy carrier for the fast growth of China,” Energy Procedia, vol. 158, pp. 4986–4991, 2019, doi: 10.1016/j.egypro.2019.01.668.
  • G. Langella, M. De Joannon, P. Sabia, P. Iodice, and A. Amoresano, “Ammonia as a fuel for internal combustion engines: Latest advances and future challenges,” J. Phys. Conf. Ser., vol. 2385, no. 1, 2022, Art. no. 012036, doi: 10.1088/1742-6596/2385/1/012036.
  • A. Yapicioglu and I. Dincer, “A review on clean ammonia as a potential fuel for power generators,” Renew. Sustain. Energy Rev., vol. 103, pp. 96–108, 2019, doi: 10.1016/j.rser.2018.12.023.
  • W. Tutak, M. Pyrc, M. Gruca, and A. Jamrozik, “Ammonia Combustion in a Spark-Ignition Engine Supported with Dimethyl Ether,” Energies, vol. 16, no. 21, p. 7383, 2023, doi: 10.3390/en16217283.
  • A. Valera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, “Ammonia for power,” Prog. Energy Combust. Sci., vol. 69, pp. 63–102, 2018, doi: 10.1016/j.pecs.2018.07.001.
  • M. Vijay Kumar, A. Veeresh Babu, and P. Ravi Kumar, “The impacts on combustion, performance and emissions of biodiesel by using additives in direct injection diesel engine,” Alexandria Eng. J., vol. 57, no. 1, pp. 509–516, 2018, doi: 10.1016/j.aej.2016.12.016.
  • L. Razzaq et al., “Response Surface Methodology and Artificial Neural Networks-Based Yield Optimization of Biodiesel Sourced from Mixture of Palm and Cotton Seed Oil,” Sustain., vol. 14, no. 10, p. 6130, 2022, doi: 10.3390/su14106130.
  • İ. Temizer, Ö. Cihan, and B. Eskici, “Numerical and experimental investigation of the effect of biodiesel/diesel fuel on combustion characteristics in CI engine,” Fuel, vol. 270, no. 3, 2020, Art. no. 117523, doi: 10.1016/j.fuel.2020.117523.
  • Y. Wang, X. Zhou, and L. Liu, “Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine,” Int. J. Hydrogen Energy, vol. 46, no. 27, pp. 14805–14812, 2021, doi: 10.1016/j.ijhydene.2021.01.233.
  • S. Semin, A. Iswantoro, and F. Faris, “Performance and NOx Investigation on Diesel Engine using Cold EGR Spiral Tube: A Review,” Int. J. Mar. Eng. Innov. Res., vol. 1, no. 3, pp. 213–220, 2017, doi: 10.12962/j25481479.v1i3.2372.
  • K. Uddeen, Q. Tang, H. Shi, and J. W. G. Turner, “Ammonia-methanol and ammonia-ethanol dual-fuel combustion in an optical spark-ignition engine: A multiple flame generation approach,” Appl. Therm. Eng., vol. 265, 2025, Art. no. 125544, doi: 10.1016/j.applthermaleng.2025.125544.
  • A. A. Levikhin and A. A. Boryaev, “Low-carbon ammonia-based fuel for maritime transport,” Results Eng., vol. 25, 2025, Art. no. 104175, doi: 10.1016/j.rineng.2025.104175.
  • M. Alnajideen et al., “Ammonia combustion and emissions in practical applications: a review,” Carbon Neutrality, vol. 3, no. 1, p. 13, 2024, doi: 10.1007/s43979-024-00088-6.
  • C. Park et al., “Investigation on the reduction in unburned ammonia and nitrogen oxide emissions from ammonia direct injection SI engine by using SCR after-treatment system,” Heliyon, vol. 10, no. 18, 2024, doi: 10.1016/j.heliyon.2024.e37684.
  • M. A. Asokan, S. S. Prabu, S. Prathiba, V. S. Akhil, L. D. Abishai, and M. E. Surejlal, “Emission and performance behaviour of flax seed oil biodiesel/diesel blends in di diesel engine,” Mater. Today Proc., vol. 46, no. 17, pp. 8148–8152, 2021, doi: 10.1016/j.matpr.2021.03.108.
  • S. S. Wirawan, M. D. Solikhah, H. Setiapraja, and A. Sugiyono, “Biodiesel implementation in Indonesia: Experiences and future perspectives,” Renew. Sustain. Energy Rev., vol. 189, no. 6, 2024, Art. no. 113911, doi: 10.1016/j.rser.2023.113911.
  • V. K. Shahir, C. P. Jawahar, and P. R. Suresh, “Comparative study of diesel and biodiesel on CI engine with emphasis to emissions - A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 686–697, 2015, doi: 10.1016/j.rser.2015.02.042.
  • E. Nadimi, G. Przybyła, T. Løvås, and W. Adamczyk, “Effects of biodiesel injector configuration and its injection timing on performance, combustion and emissions characteristics of liquid ammonia dual direct injection engine,” J. Energy Inst., vol. 114, 2024, Art. no. 101605, doi: 10.1016/j.joei.2024.101605.
  • P. Dimitriou and R. Javaid, “A review of ammonia as a compression ignition engine fuel,” Int. J. Hydrogen Energy, vol. 45, no. 11, pp. 7098–7118, 2020, doi: 10.1016/j.ijhydene.2019.12.209.
  • S. Babamohammadi, A. R. Birss, H. Pouran, J. Pandhal, and T. N. Borhani, “Emission control and carbon capture from diesel generators and engines: A decade-long perspective,” Carbon Capture Sci. Technol., vol. 14, 2025, Art. no. 100379, doi: 10.1016/j.ccst.2025.100379.
  • A. Valera-Medina et al., “Review on ammonia as a potential fuel: From synthesis to economics,” Energy and Fuels, vol. 35, no. 9, pp. 6964–7029, 2021, doi: 10.1021/acs.energyfuels.0c03685.
  • R. Payri, J. M. García-Oliver, G. Bracho, and J. Cao, “Experimental characterization of direct injection liquid ammonia sprays under non-reacting diesel-like conditions,” Fuel, vol. 362, 2024, Art. no. 130851, doi: 10.1016/j.fuel.2023.130851.
  • Z. Huang, H. Wang, Q. Meng, K. Luo, and J. Fan, “Combustion Characteristics of Liquid Ammonia Direct Injection Under High-Pressure Conditions Using DNS,” Energies, vol. 18, no. 9, p. 2228, 2025, doi: 10.3390/en18092228.
  • K. Ryu, G. E. Zacharakis-Jutz, and S. C. Kong, “Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine,” Appl. Energy, vol. 116, pp. 206–215, 2014, doi: 10.1016/j.apenergy.2013.11.067.
  • E. Nadimi, G. Przybyła, T. Løvås, G. Peczkis, and W. Adamczyk, “Experimental and numerical study on direct injection of liquid ammonia and its injection timing in an ammonia-biodiesel dual injection engine,” Energy, vol. 284, 2023, Art. no. 129301, doi: 10.1016/j.energy.2023.129301.
  • X. Zhou et al., “Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions,” Nat. Commun., vol. 15, no. 1, p. 2120, 2024, doi: 10.1038/s41467-024-46452-z.
  • E. Nadimi, G. Przybyła, D. Emberson, T. Løvås, Ł. Ziółkowski, and W. Adamczyk, “Effects of using ammonia as a primary fuel on engine performance and emissions in an ammonia/biodiesel dual-fuel CI engine,” Int. J. Energy Res., vol. 46, no. 11, pp. 15347–15361, 2022, doi: 10.1002/er.8235.
  • A. Yousefi, H. Guo, S. Dev, B. Liko, and S. Lafrance, “Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine,” Fuel, vol. 314, Art. no. 122723, 2022, doi: 10.1016/j.fuel.2021.122723.
  • K. Ramalingam et al., “An experimental and ANN analysis of ammonia energy integration in biofuel powered low-temperature combustion engine to enhance cleaner combustion,” Case Stud. Therm. Eng., vol. 63, 2024, Art. no. 105284 doi: 10.1016/j.csite.2024.105284.
  • M. Elkelawy, H. A. Bastawissi, M. O. Elsamadony, and A. Salem, “Investigation into the Impact of Ammonia Hydroxide on Performance and Emissions in Compression Ignition Engines Utilizing Diesel / Biodiesel Blends,” J. Eng. Res. Vol., vol. 8, no. 1, pp. 1–16, 2024.
  • M. Elkelawy, H. Alm ElDin Mohamad, M. Samadony, and A. Abdalhadi, “Utilization of Ammonia Hydroxide /Diesel Fuel Blends in Partially Premixed Charge Compression Ignition (PPCCI) Engine: A Technical Review,” J. Eng. Res., vol. 7, no. 3, pp. 319–331, 2023, doi: 10.21608/erjeng.2023.234219.1229.
  • S. Wüthrich, P. Cartier, P. Süess, B. Schneider, P. Obrecht, and K. Herrmann, “Optical investigation and thermodynamic analysis of premixed ammonia dual-fuel combustion initiated by dodecane pilot fuel,” Fuel Commun., vol. 12, 2022, Art. no. 100074, doi: 10.1016/j.jfueco.2022.100074.
  • C. Cheng, R. F. Cordtz, N. L. Førby, and J. Schramm, “Experimental and simulation investigation of n-heptane/ammonia dual fuel on a light-duty compression ignition engine,” Int. J. Hydrogen Energy, vol. 57, pp. 1339–1353, 2024, doi: 10.1016/j.ijhydene.2024.01.130.
  • A. Uyumaz et al., “Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine,” Fuel, vol. 280, 2020, Art. no. 118588, doi: 10.1016/j.fuel.2020.118588.
  • R. Elumalai, K. Ravi, P. V. Elumalai, M. Sreenivasa Reddy, E. Prakash, and P. Sekar, “Development of an ammonia-biodiesel dual fuel combustion engine’s injection strategy map using response surface optimization and artificial neural network prediction,” Sci. Rep., vol. 14, no. 1, p. 543, 2024, doi: 10.1038/s41598-023-51023-1.
  • İ. Temizer and Ö. Cihan, “International Journal of Automotive Engineering and Technologies Investigation of combustion and emission in a DI diesel engine fueled with hydrogen-biodiesel blends,” Int. J. Automot. Eng. Technol., vol. 8, no. 4, pp. 150–164, 2019.
  • M. Ince, S. Çelebi, U. Demir, and C. Haşimoğlu, “Evaluating Engine Performance, Emissions, Noise, and Vibration: A Comparative Study of Diesel and Biodiesel Fuel Mixture,” Int. J. Automot. Sci. Technol., vol. 8, no. 3, pp. 288–302, 2024, doi: 10.30939/ijastech.1495167.
  • E. Nadimi, G. Przybyła, M. T. Lewandowski, and W. Adamczyk, “Effects of ammonia on combustion, emissions, and performance of the ammonia/diesel dual-fuel compression ignition engine,” J. Energy Inst., vol. 107, 2023, Art. no. 101158, doi: 10.1016/j.joei.2022.101158.
  • D. R. MacFarlane et al., “A Roadmap to the Ammonia Economy,” Joule, vol. 4, no. 6, pp. 1186–1205, 2020, doi: 10.1016/j.joule.2020.04.004.
  • J. S. Cardoso, V. Silva, R. C. Rocha, M. J. Hall, M. Costa, and D. Eusébio, “Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines,” J. Clean. Prod., vol. 296, 2021, Art. no. 126562, doi: 10.1016/j.jclepro.2021.126562.
  • A. Yapicioglu and I. Dincer, “Performance assesment of hydrogen and ammonia combustion with various fuels for power generators,” Int. J. Hydrogen Energy, vol. 43, no. 45, pp. 21037–21048, 2018, doi: 10.1016/j.ijhydene.2018.08.198.
  • W. S. Chai, Y. Bao, P. Jin, G. Tang, and L. Zhou, “A review on ammonia, ammonia-hydrogen and ammonia-methane fuels,” Renew. Sustain. Energy Rev., vol. 147, 2021, Art. no. 111254, doi: 10.1016/j.rser.2021.111254.
  • R. Sivasubramanian, J. B. Sajin, and G. Omanakuttan Pillai, “Effect of ammonia to reduce emission from biodiesel fuelled diesel engine,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 661–665, 2022, doi: 10.1080/01430750.2019.1663367.
  • Z. Chen, Y. Wan, O. I. Awad, and Z. Pan, “Effect of Multiple Injection Strategy Under High Ammonia Ratio on Combustion and Emissions of Liquid Ammonia/Diesel Dual DI Engine,” Atmosphere, vol. 16, no. 1, p. 94, 2025, doi: 10.3390/atmos16010094.
  • K. A. Pedersen, M. T. Lewandowski, C. Schulze-Netzer, M. Pasternak, and T. Løvås, “Ammonia in Dual-Fueled Internal Combustion Engines: Impact on NOx, N2O, and Soot Formation,” Energy and Fuels, vol. 37, no. 22, pp. 17585–17604, 2023, doi: 10.1021/acs.energyfuels.3c02549.
  • A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, and H. Kobayashi, “Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures,” Fuel, vol. 159, pp. 98–106, 2015, doi: 10.1016/j.fuel.2015.06.070.
  • E. Pv et al., “Split injection timing optimization in ammonia/biodiesel powered by RCCI engine,” Results Eng., vol. 23, 2024, Art. no. 102607, doi: 10.1016/j.rineng.2024.102607.
  • A. M. Elbaz, S. Wang, T. F. Guiberti, and W. L. Roberts, “Review on the recent advances on ammonia combustion from the fundamentals to the applications,” Fuel Commun., vol. 10, 2022, Art no. 100053, doi: 10.1016/j.jfueco.2022.100053.
  • A. Motevali, N. Hooshmandzadeh, E. Fayyazi, M. Valipour, and J. Yue, “Environmental Impacts of Biodiesel Production Cycle from Farm to Manufactory: An Application of Sustainable Systems Engineering,” Atmosphere, vol. 14, no. 2, p. 399, 2023, doi: 10.3390/atmos14020399.
  • R. Senthil, R. Silambarasan, and N. Ravichandiran, “Influence of injection timing and compression ratio on performance, emission and combustion characteristics of Annona methyl ester operated diesel engine,” Alexandria Eng. J., vol. 54, no. 3, pp. 295–302, 2015, doi: 10.1016/j.aej.2015.05.008.
  • E. Ramachandran et al., “Multicriteria Decision-Making Technique for Choosing the Optimal Ammonia Energy Share in an Ammonia-Biodiesel-Fueled Reactivity-Controlled Compression Ignition Engine,” ACS Omega, vol. 9, no. 5, pp. 5203–5214, 2024, doi: 10.1021/acsomega.3c04005.
  • M. Yazdi, E. Zarei, S. Adumene, and A. Beheshti, “Navigating the Power of Artificial Intelligence in Risk Management: A Comparative Analysis,” Safety, vol. 10, no. 2, p. 42, 2024, doi: 10.3390/safety10020042.
  • V. Sharma, A. Panesar, G. de Sercey, and S. Begg, “A Review of Ammonia Combustion and Emissions Characteristics in Spark-Ignition Engines and Future Road Map,” Energies, vol. 18, no. 1, p. 41, 2025, doi: 10.3390/en18010041.
There are 56 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Review
Authors

Dani Hari Tunggal Prasetiyo 0000-0002-2153-4381

Andi Sanata 0000-0001-5508-8642

Gamma Aditya Rahardi 0000-0003-2667-8648

Alief Muhammad 0000-0003-3983-7118

Publication Date December 1, 2025
Submission Date July 1, 2025
Acceptance Date November 19, 2025
Published in Issue Year 2025 Volume: 28 Issue: 4

Cite

APA Hari Tunggal Prasetiyo, D., Sanata, A., Aditya Rahardi, G., Muhammad, A. (2025). Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review. International Journal of Thermodynamics, 28(4), 308-319. https://doi.org/10.5541/ijot.1729632
AMA Hari Tunggal Prasetiyo D, Sanata A, Aditya Rahardi G, Muhammad A. Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review. International Journal of Thermodynamics. December 2025;28(4):308-319. doi:10.5541/ijot.1729632
Chicago Hari Tunggal Prasetiyo, Dani, Andi Sanata, Gamma Aditya Rahardi, and Alief Muhammad. “Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review”. International Journal of Thermodynamics 28, no. 4 (December 2025): 308-19. https://doi.org/10.5541/ijot.1729632.
EndNote Hari Tunggal Prasetiyo D, Sanata A, Aditya Rahardi G, Muhammad A (December 1, 2025) Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review. International Journal of Thermodynamics 28 4 308–319.
IEEE D. Hari Tunggal Prasetiyo, A. Sanata, G. Aditya Rahardi, and A. Muhammad, “Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review”, International Journal of Thermodynamics, vol. 28, no. 4, pp. 308–319, 2025, doi: 10.5541/ijot.1729632.
ISNAD Hari Tunggal Prasetiyo, Dani et al. “Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review”. International Journal of Thermodynamics 28/4 (December2025), 308-319. https://doi.org/10.5541/ijot.1729632.
JAMA Hari Tunggal Prasetiyo D, Sanata A, Aditya Rahardi G, Muhammad A. Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review. International Journal of Thermodynamics. 2025;28:308–319.
MLA Hari Tunggal Prasetiyo, Dani et al. “Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review”. International Journal of Thermodynamics, vol. 28, no. 4, 2025, pp. 308-19, doi:10.5541/ijot.1729632.
Vancouver Hari Tunggal Prasetiyo D, Sanata A, Aditya Rahardi G, Muhammad A. Performance, Emissions, Optimization of Ammonia and Biodiesel Utilization in Compression Ignition Diesel Engines: A Review. International Journal of Thermodynamics. 2025;28(4):308-19.