Araştırma Makalesi
BibTex RIS Kaynak Göster

Malzeme Seçimi için Hibrit Çok Kriterli Karar Yöntemi

Yıl 2020, , 107 - 117, 31.12.2020
https://doi.org/10.29132/ijpas.811402

Öz

Ürün tasarımında malzeme seçimi oldukça önemlidir. Belirli bir ürün için uygun malzeme seçimi, mühendisler için temel bir görevdir. Uygun malzeme seçimi için temel hedefler genellikle maliyeti en aza indirmek ve performansı iyileştirmektir. Bununla birlikte, malzemenin kullanıldığı alana bağlı olarak, özelliklerin kapsamı ve önemi değişir. Çeşitli özelliklere sahip çok sayıda malzemenin mevcudiyeti, malzeme seçim sürecini zorlaştırmaktadır. Bu bağlamda, belirli bir uygulamaya yönelik en iyi alternatif malzemeyi seçmek için verimli ve sistematik bir yaklaşım gerekmektedir. Bu çalışmada, malzeme seçimi için hibrit çok kriterli bir karar yaklaşımı önerilmiştir. Niteliklerin önemi (ağırlıkları), standart sapma ve kriterler arası korelasyon yöntemleri ile kriter önemi ile belirlenir. Çok kriterli karar verme yöntemlerinin sonucunun kriterlerin ağırlıklarına bağlı olduğu gerçeği dikkate alındığında, öznel değerlendirmelerden kaçınmak için nesnel ağırlıklandırma yöntemleri tercih edilmiştir. Alternatif malzemelerin sıralaması, gri ilişkisel analiz, ideal çözüme benzerlik yoluyla sipariş performansı için teknik ve organization rangement et synthese de donnes relationnelles (ORESTE) yoluyla elde edilir. Birkaç çok kriterli karar verme yönteminin kullanılmasının ana nedeni, bunlardan herhangi birinin doğru seçimi garanti etmemesidir. Bu nedenle, nihai bir fikir birliği sıralamasını ortaya çıkarmak için altı modelin Copeland yöntemiyle entegre edildiği sıralamalar elde edilmektedir. Ağırlıklandırma yöntemlerinin sonuçları, bir kriterin ağırlığının, hangi ağırlıklandırma yönteminin tercih edildiğine bağlı olarak en yüksek ve en düşük olabileceğini göstermektedir. Copeland yönteminin sonucu, malzemelerin nihai konsensüs sıralamasının modellerin sıralamasından farklı olabileceğini ortaya koymaktadır. Bu nedenle, birden fazla modelin dikkate alınması ve entegre edilmesi oldukça önemlidir.

Kaynakça

  • Chan, J. W. K., & Tong, T. K. L., 2007. Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach. Materials & Design, 28(5), 1539-1546. doi:https://doi.org/10.1016/j.matdes.2006.02.016
  • Chatterjee, P., Athawale, V. M., & Chakraborty, S., 2011. Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, 32(2), 851-860. doi:https://doi.org/10.1016/j.matdes.2010.07.010
  • Deng, H., Yeh, C.-H., & Willis, R. J., 2000. Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research, 27(10), 963-973. doi:https://doi.org/10.1016/S0305-0548(99)00069-6
  • Deng, J.-L., 1982. Control problems of grey systems. Systems & control letters, 1(5), 288-294.
  • Dev, S., Aherwar, A., & Patnaik, A., 2020. Material Selection for Automotive Piston Component Using Entropy-VIKOR Method. Silicon, 12(1), 155-169. doi:10.1007/s12633-019-00110-y
  • Dhanalakshmi, C. S., Madhu, P., Karthick, A., Mathew, M., & Vignesh Kumar, R., 2020. A comprehensive MCDM-based approach using TOPSIS and EDAS as an auxiliary tool for pyrolysis material selection and its application. Biomass Conversion and Biorefinery. doi:10.1007/s13399-020-01009-0
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L., 1995. Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770. doi:https://doi.org/10.1016/0305-0548(94)00059-H
  • Emovon, I., & Oghenenyerovwho, O. S., 2020. Application of MCDM method in material selection for optimal design: A review. Results in Materials, 7, 100115. doi:https://doi.org/10.1016/j.rinma.2020.100115
  • Hwang, C.-L., & Yoon, K., 1981. Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191): Springer.
  • Jahan, A., Mustapha, F., Ismail, M. Y., Sapuan, S. M., & Bahraminasab, M., 2011. A comprehensive VIKOR method for material selection. Materials & Design, 32(3), 1215-1221. doi:https://doi.org/10.1016/j.matdes.2010.10.015
  • Jee, D.-H., & Kang, K.-J., 2000. A method for optimal material selection aided with decision making theory. Materials & Design, 21(3), 199-206. doi:https://doi.org/10.1016/S0261-3069(99)00066-7
  • Jeya Girubha, R., & Vinodh, S., 2012. Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component. Materials & Design, 37, 478-486. doi:https://doi.org/10.1016/j.matdes.2012.01.022
  • Kendall, M. G., 1948. Rank correlation methods. Oxford, England: Griffin.
  • Kumar, R., Jagadish, & Ray, A., 2014. Selection of Material for Optimal Design Using Multi-criteria Decision Making. Procedia Materials Science, 6, 590-596. doi:https://doi.org/10.1016/j.mspro.2014.07.073
  • Liang, R.-H., 1999. Application of grey relation analysis to hydroelectric generation scheduling. International Journal of Electrical Power & Energy Systems, 21(5), 357-364. doi:https://doi.org/10.1016/S0142-0615(98)00055-6
  • Madhu, P., Sowmya Dhanalakshmi, C., & Mathew, M., 2020. Multi-criteria decision-making in the selection of a suitable biomass material for maximum bio-oil yield during pyrolysis. Fuel, 277, 118109. doi:https://doi.org/10.1016/j.fuel.2020.118109
  • Maity, S. R., & Chakraborty, S., 2013. Grinding Wheel Abrasive Material Selection Using Fuzzy TOPSIS Method. Materials and Manufacturing Processes, 28(4), 408-417. doi:10.1080/10426914.2012.700159
  • Maity, S. R., & Chakraborty, S., 2015. Tool steel material selection using PROMETHEE II method. The International Journal of Advanced Manufacturing Technology, 78(9), 1537-1547. doi:10.1007/s00170-014-6760-0
  • Niu, J., Huang, C., Li, C., Zou, B., Xu, L., Wang, J., & Liu, Z., 2020. A comprehensive method for selecting cutting tool materials. The International Journal of Advanced Manufacturing Technology, 110(1), 229-240. doi:10.1007/s00170-020-05534-0
  • Roubens, M., 1982. Preference relations on actions and criteria in multicriteria decision making. European Journal of Operational Research, 10(1), 51-55. doi:https://doi.org/10.1016/0377-2217(82)90131-X
  • Şahin, M., 2020. Hybrid Multicriteria Group Decision-Making Method for Offshore Location Selection Under Fuzzy Environment. Arabian Journal for Science and Engineering, 45(8), 6887-6909. doi:10.1007/s13369-020-04534-2
  • Shanian, A., & Savadogo, O., 2006. A material selection model based on the concept of multiple attribute decision making. Materials & Design, 27(4), 329-337. doi:https://doi.org/10.1016/j.matdes.2004.10.027
  • Wei, G.-W., 2011. Grey relational analysis method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Expert Systems with Applications, 38(5), 4824-4828. doi:https://doi.org/10.1016/j.eswa.2010.09.163
  • Wu, H.-H., 2002. A Comparative Study of Using Grey Relational Analysis in Multiple Attribute Decision Making Problems. Quality Engineering, 15(2), 209-217. doi:10.1081/QEN-120015853
  • Yazdani, M., Zavadskas, E. K., Ignatius, J., & Abad, M. D., 2016. Sensitivity analysis in MADM methods: application of material selection. Engineering Economics, 27(4), 382-391.

Hybrid Multiattribute Decision Method for Material Selection

Yıl 2020, , 107 - 117, 31.12.2020
https://doi.org/10.29132/ijpas.811402

Öz

Material selection is crucial in product design. The appropriate material selection for a specific product is an essential task for engineers. The triggering reasons for the appropriate material selection are often to minimize cost and improve performance. However, depending on the area where the material is used, the scope and importance of the attributes vary. The availability of numerous materials with various features complicate the material selection process. In this regard, to choose the best alternative material for a particular application, an efficient, systematic approach to material selection is required. In this study, a hybrid multicriteria decision approach is proposed for material selection. The importance of attributes (weight) is determined through the standard deviation and criteria importance through intercriteria correlation methods. Considering the fact that the outcome of multiple attribute decision-making (MADM) methods is dependent on the weights of the criteria, the objective weighting methods are preferred to avoid subjective assessments. The ranking of alternative materials is achieved through grey relational analysis, technique for order performance by similarity to ideal solution, and organization rangement et synthese de donnes relationnelles (ORESTE). The main reason for utilizing several MADM methods is the fact that any of them does not guarantee the right choice. Therefore, the ranks provided six models are integrated via the Copeland method to reveal a final consensus ranking. The weighting methods' results indicate that the weight of an attribute can be the highest and lowest depending on what weighting method is preferred. The result of the Copeland method reveals that the final consensus rank of materials can be different from the rank of the models. Thus, considering and integrating of multiple models is essential.

Kaynakça

  • Chan, J. W. K., & Tong, T. K. L., 2007. Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach. Materials & Design, 28(5), 1539-1546. doi:https://doi.org/10.1016/j.matdes.2006.02.016
  • Chatterjee, P., Athawale, V. M., & Chakraborty, S., 2011. Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, 32(2), 851-860. doi:https://doi.org/10.1016/j.matdes.2010.07.010
  • Deng, H., Yeh, C.-H., & Willis, R. J., 2000. Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research, 27(10), 963-973. doi:https://doi.org/10.1016/S0305-0548(99)00069-6
  • Deng, J.-L., 1982. Control problems of grey systems. Systems & control letters, 1(5), 288-294.
  • Dev, S., Aherwar, A., & Patnaik, A., 2020. Material Selection for Automotive Piston Component Using Entropy-VIKOR Method. Silicon, 12(1), 155-169. doi:10.1007/s12633-019-00110-y
  • Dhanalakshmi, C. S., Madhu, P., Karthick, A., Mathew, M., & Vignesh Kumar, R., 2020. A comprehensive MCDM-based approach using TOPSIS and EDAS as an auxiliary tool for pyrolysis material selection and its application. Biomass Conversion and Biorefinery. doi:10.1007/s13399-020-01009-0
  • Diakoulaki, D., Mavrotas, G., & Papayannakis, L., 1995. Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763-770. doi:https://doi.org/10.1016/0305-0548(94)00059-H
  • Emovon, I., & Oghenenyerovwho, O. S., 2020. Application of MCDM method in material selection for optimal design: A review. Results in Materials, 7, 100115. doi:https://doi.org/10.1016/j.rinma.2020.100115
  • Hwang, C.-L., & Yoon, K., 1981. Methods for multiple attribute decision making. In Multiple attribute decision making (pp. 58-191): Springer.
  • Jahan, A., Mustapha, F., Ismail, M. Y., Sapuan, S. M., & Bahraminasab, M., 2011. A comprehensive VIKOR method for material selection. Materials & Design, 32(3), 1215-1221. doi:https://doi.org/10.1016/j.matdes.2010.10.015
  • Jee, D.-H., & Kang, K.-J., 2000. A method for optimal material selection aided with decision making theory. Materials & Design, 21(3), 199-206. doi:https://doi.org/10.1016/S0261-3069(99)00066-7
  • Jeya Girubha, R., & Vinodh, S., 2012. Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component. Materials & Design, 37, 478-486. doi:https://doi.org/10.1016/j.matdes.2012.01.022
  • Kendall, M. G., 1948. Rank correlation methods. Oxford, England: Griffin.
  • Kumar, R., Jagadish, & Ray, A., 2014. Selection of Material for Optimal Design Using Multi-criteria Decision Making. Procedia Materials Science, 6, 590-596. doi:https://doi.org/10.1016/j.mspro.2014.07.073
  • Liang, R.-H., 1999. Application of grey relation analysis to hydroelectric generation scheduling. International Journal of Electrical Power & Energy Systems, 21(5), 357-364. doi:https://doi.org/10.1016/S0142-0615(98)00055-6
  • Madhu, P., Sowmya Dhanalakshmi, C., & Mathew, M., 2020. Multi-criteria decision-making in the selection of a suitable biomass material for maximum bio-oil yield during pyrolysis. Fuel, 277, 118109. doi:https://doi.org/10.1016/j.fuel.2020.118109
  • Maity, S. R., & Chakraborty, S., 2013. Grinding Wheel Abrasive Material Selection Using Fuzzy TOPSIS Method. Materials and Manufacturing Processes, 28(4), 408-417. doi:10.1080/10426914.2012.700159
  • Maity, S. R., & Chakraborty, S., 2015. Tool steel material selection using PROMETHEE II method. The International Journal of Advanced Manufacturing Technology, 78(9), 1537-1547. doi:10.1007/s00170-014-6760-0
  • Niu, J., Huang, C., Li, C., Zou, B., Xu, L., Wang, J., & Liu, Z., 2020. A comprehensive method for selecting cutting tool materials. The International Journal of Advanced Manufacturing Technology, 110(1), 229-240. doi:10.1007/s00170-020-05534-0
  • Roubens, M., 1982. Preference relations on actions and criteria in multicriteria decision making. European Journal of Operational Research, 10(1), 51-55. doi:https://doi.org/10.1016/0377-2217(82)90131-X
  • Şahin, M., 2020. Hybrid Multicriteria Group Decision-Making Method for Offshore Location Selection Under Fuzzy Environment. Arabian Journal for Science and Engineering, 45(8), 6887-6909. doi:10.1007/s13369-020-04534-2
  • Shanian, A., & Savadogo, O., 2006. A material selection model based on the concept of multiple attribute decision making. Materials & Design, 27(4), 329-337. doi:https://doi.org/10.1016/j.matdes.2004.10.027
  • Wei, G.-W., 2011. Grey relational analysis method for 2-tuple linguistic multiple attribute group decision making with incomplete weight information. Expert Systems with Applications, 38(5), 4824-4828. doi:https://doi.org/10.1016/j.eswa.2010.09.163
  • Wu, H.-H., 2002. A Comparative Study of Using Grey Relational Analysis in Multiple Attribute Decision Making Problems. Quality Engineering, 15(2), 209-217. doi:10.1081/QEN-120015853
  • Yazdani, M., Zavadskas, E. K., Ignatius, J., & Abad, M. D., 2016. Sensitivity analysis in MADM methods: application of material selection. Engineering Economics, 27(4), 382-391.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Şahin 0000-0001-7078-7396

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 16 Ekim 2020
Kabul Tarihi 26 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Şahin, M. (2020). Hybrid Multiattribute Decision Method for Material Selection. International Journal of Pure and Applied Sciences, 6(2), 107-117. https://doi.org/10.29132/ijpas.811402
AMA Şahin M. Hybrid Multiattribute Decision Method for Material Selection. International Journal of Pure and Applied Sciences. Aralık 2020;6(2):107-117. doi:10.29132/ijpas.811402
Chicago Şahin, Mehmet. “Hybrid Multiattribute Decision Method for Material Selection”. International Journal of Pure and Applied Sciences 6, sy. 2 (Aralık 2020): 107-17. https://doi.org/10.29132/ijpas.811402.
EndNote Şahin M (01 Aralık 2020) Hybrid Multiattribute Decision Method for Material Selection. International Journal of Pure and Applied Sciences 6 2 107–117.
IEEE M. Şahin, “Hybrid Multiattribute Decision Method for Material Selection”, International Journal of Pure and Applied Sciences, c. 6, sy. 2, ss. 107–117, 2020, doi: 10.29132/ijpas.811402.
ISNAD Şahin, Mehmet. “Hybrid Multiattribute Decision Method for Material Selection”. International Journal of Pure and Applied Sciences 6/2 (Aralık 2020), 107-117. https://doi.org/10.29132/ijpas.811402.
JAMA Şahin M. Hybrid Multiattribute Decision Method for Material Selection. International Journal of Pure and Applied Sciences. 2020;6:107–117.
MLA Şahin, Mehmet. “Hybrid Multiattribute Decision Method for Material Selection”. International Journal of Pure and Applied Sciences, c. 6, sy. 2, 2020, ss. 107-1, doi:10.29132/ijpas.811402.
Vancouver Şahin M. Hybrid Multiattribute Decision Method for Material Selection. International Journal of Pure and Applied Sciences. 2020;6(2):107-1.

154501544915448154471544615445