Research Article
BibTex RIS Cite

Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri

Year 2021, Volume: 7 Issue: 2, 229 - 236, 20.07.2021
https://doi.org/10.29132/ijpas.873218

Abstract

Bu çalışma, metabolik ve oksidatif stres biyobelirteçlerinin analizi yoluyla, su kirliliğinin iyi bir biyoindikatörü olarak kabul edilen tatlı su omurgasızı Dreissena polymorpha üzerindeki Gadolinyum (Gd) toksisitesini değerlendirmeyi amaçlamaktadır. Öncelikle çalışmamızda Gd’nin D. polymorpha üzerindeki LC50 değeri belirlenmiştir. D. polymorpha, kontrollü koşullar altında 24 ve 96 saatlik bir süre boyunca üç letal olmayan Gd konsantrasyonuna (1/20, 1/10 ve 1/5 LC50 değerine) maruz bırakılmıştır. TBARS ve CYP1A1 seviyeleri ELISA kiti kullanılarak belirlenmiştir. CYP1A1 ve TBARS düzeylerinin tüm gruplarda 24. ve 96. saatte kontrol grubuna göre arttığı görülmüştür. Bu sonuçlar, Gd'nin tatlı su omurgasızları, D. polymorpha için bir risk olarak kabul edilebileceğini ve bu nedenle alıcı ortamlara deşarjının denetlenmesi gerektiğini göstermektedir.

References

  • Abdelnour, S.A., Abd El-Hack, M.E., Khafaga, A.F., Noreldin, A.E., Arif, M., Chaudhry, M.T., Losacco, C., Abdeen, A. ve Abdel-Daim, M.M. (2019). Impacts of rare earth elements on animal health and production: Highlights of cerium and lanthanum. Science of the Total Environment, 672, 1021-1032.
  • Adding, L.C., Gerard, L.B. ve Lars, E.G. (2006). Basic experimental studies and clinical aspects of gadolinium salts and chelates. Cardiovascular Drug Reviews, 19, 41– 56.
  • Almroth, B.C., Sturve, J., Berglund, A. ve Förlin, L. (2005). Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers. Aquatic Toxicology, 73, 171–180.
  • Anwar-Mohamed, A., Elbekai, R.H. ve El-Kadi, A.O.S. (2009). Regulation of CYP1A1 by heavy metals and consequences for drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 5(5), 501-521
  • Balaram, V. (2019). Rare Earth Elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303.
  • Bergsten-Torralbaa, L.R., Magalhães, D.P., Giese, E.C., Nascimentod, C.R.S., Pinhoe, J.V.A. ve Buss, D.F. (2020). Toxicity of three rare earth elements, and their combinations to algae, microcrustaceans, and fungi. Ecotoxicology and Environmental Safety, 201, 110795.
  • Blinova, I., Lukjanova, A., Muna, M., Vija, H. ve Kahru, A. (2018). Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Science of the Total Environment, 642, 1100–1107.
  • Blinova, I., Muna, M., Heinlaan, M., Lukjanova, A., Kahru, A. (2020). Potential Hazard of Lanthanides and Lanthanide-Based Nanoparticles to Aquatic Ecosystems: Data Gaps, Challenges and Future Research Needs Derived from Bibliometric Analysis. Nanomaterials. 2020; 10(2):328
  • Choi, J. ve Oris, J.T. (2000). Evidence of oxidative stress in bluegill sunfish (Lepomis macrochirus) liver microsomes simultaneously exposed to solar ultraviolet radiation and anthracene. Environmental Toxicology and Chemistry, 19, 1795–1799.
  • Cho, S., Lee, Y., Lee, S., Choi, Y.J. ve Chung, H.W. (2014). Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug and Chemical Toxicology, 37, 440-447.
  • Dube, M., Auclair, J., Hanana, H., Turcotte, P., Gagnon, C. ve Gagné, F. (2019). Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 88-95.
  • Durmuş, O. ve Bölükbaşı, Ş. (2015). Biological activities of lanthanum oxide in laying hens. Journal of Applied Poultry Research, 24, 481-488.
  • El-Akl, P., Smith, S. ve Wilkinson, K.J. (2015). Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga. Environmental Toxicology and Chemistry, 34 (8), 1711–1719.
  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109: 212-228.
  • Elbaz-Poulichet, F., Seidel, J.L. ve Othoniel, C. (2002). Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Research, 36, 1102–1105.
  • Faria, M., Carrasco, L., Diez, S., Riva, M.C., Bayona, J.M. ve Barata, C. (2009). Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to Polychlorobiphenyls and metals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149, 281-288.
  • Feng, X., Xia, Q. ve Yuan, L. (2010). Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadoliniuminduced neurotoxicity. Neurotoxicology, 31, 391–98.
  • Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N. ve Sanganyado, E. (2018). Sources, behavior, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299–313.
  • Gonzalez, V., Vignati, D.A.L., Pons, M.N., Montarges-Pelletier, E., Bojic, C. ve Giamberini, L. (2015). Lanthanide ecotoxicity: first attempt to measure environmental risk for aquatic organism. Environmental Pollution, 199, 139–147.
  • Guengerich, F.P. (2000). Metabolism of chemical carcinogens. Carcinogenesis, 21, 345–51.
  • Hanana, H., Turcotte, P., Pilote, M., Auclair, J., Gagnon, C. (2017). Biomarker assessment of lanthanum on a freshwater invertebrate, Dreissena polymorpha. SOJ Biochemistry, 3(1), 1-9.
  • Hatje, V., Bruland, K.W. ve Flegal, A.R. (2016). Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environmental Science and Technology, 50, 4159–4168.
  • Henriques, B., Coppola, F. ve Monteiro, R. (2019). Toxicological assessment of anthropogenic Gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis. Science of the Total Environment, 664, 626-634.
  • Klaver, G., Verheul, M., Bakker, I., Petelet-Giraud, E. ve Négrel, P. (2014). Anthropogenic rare earth element in rivers: gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse delta (the Netherlands). Applied Geochemistry, 47, 186–197.
  • Knappe, A., Moller, P., Dulski, P. ve Pekdeger, A. (2005). Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Geochemistry, 65, 167–189.
  • Kulaksiz, S. ve Bau, M. (2013). Anthropogenic dissolved and colloid/nanoparticle-bound samarium,lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43–50.
  • Milatovic, D., Yin, Z., Gupta, R.C., Sidoryk, M., Albrecht, J., Aschner, J.L. ve Aschner, M. (2007). Manganese induces oxidative impairment in cultured rat astrocytes. Toxicological Sciences, 98, 198– 205.
  • Oakes, K.D. ve Van Der Kraak, G.J. (2003). Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63, 447–463.
  • Pagano, G., Guida, M., Tommasi, F. ve Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements – knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40-48.
  • Pereira, L.V., Shimizu, M.H., Rodrigues, L.P., Leite, C.C., Andrade, L. ve Seguro, A.C. (2012). N-acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity. Plos One, 7(7), e39528.
  • Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B., Monteiro, R., Russo, T., Cosmo, A., Soares, MVN., Polese, G., Pereira, E., Freitas, R. (2019 ). Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts, Aquatic Toxicology, 211, 181-192.
  • Roméo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M. ve Girard, J.P. (2000). Cadmium and copper display different responses towards oxidative stress in kidney of the sea bass Dicentrachus labrax. Aquatic Toxicology, 48, 185–194.
  • Sneller, F.E.C., Kalf, D.F., Weltje, L. ve van Wezel, A.P. (2000). Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs), Report 601501011. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
  • Quarles, L.D, Hartle, J.E. ve Middleton, J.P. (1994). Aluminum-induced DNA synthesis in osteoblasts: mediation by a G-protein coupled cation sensing mechanism. Journal of Cellular Biochemistry, 56, 106 –17.
  • Romero-Freire, A., Joonas, E., Muna, M., Cossu-Leguille, C., Vignati, D. ve Giamberini, L. (2019). Assessment of the toxic effects of mixtures of three lanthanides (ce, gd, lu) to aquatic biota. Science of the Total Environment, 661, 276–284.
  • Siroka, Z. ve Drastichova, J. (2004). Biochemical markers of aquatic environment contamination cytochrome P450 in fish. A review. Acta Veterinaria Brno, 73, 123–132.
  • Tseng, M.T., Lu, X., Duan, X., Hardas, S.S., Sultana, R., Wu, P., Unrine, J.M., Graham, U., Butterfield, D.A., Grulke, E.A. ve Yokel, R.A. (2012). Alterationofhepaticstructure and oxidative stress induced by intravenous nanoceria. Toxicology and Applied Pharmacology, 260, 173–182.
  • Wang, L., Wang, W., Zhou, Q. ve Huang, X. (2014). Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere, 112, 355–361.
  • Weltje, L., Verhoof, L.R.C.W., Verweij, W. ve Hamers, T. (2004). Lutetium speciation and toxicity in microbial bioassay: testing the free-ion model for lanthanides. Environmental Science & Technology, 38, 6597–6604.
  • Whyte, J. J., Jung, R. E., Schmitt, C. J. ve Tillitt, D.E. (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology, 30(4), 347–570.
  • Xia Q, Feng X, Huang H., Du, L., Yang, X. ve Wang, K. (2011). Gadolinium-induced oxidative stress triggers endoplasmic reticulum stressin rat cortical neurons. Journal of Neurochemistry, 117, 38–47.
  • Yang, S.J., Lee, J.E., Lee, K.H., Huh, J.W., Choi, S.Y. ve Cho, S.W. (2004). Opposed regulation of aluminum-induced apoptosis by glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor in rat brains. Molecular Brain Research, 127, 146– 149.
  • Zhao, H., Hong, J., Yu, X., Zhao, X., Sheng, L., Ze, Y., Sang, X., Gui, S., Sun, Q., Wang, L. ve Hong, F. (2013). Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride. Chemosphere, 93, 875–884.

Biochemical Effects of Gadolinium on a Freshwater Invertebrate Dreissena polymorpha

Year 2021, Volume: 7 Issue: 2, 229 - 236, 20.07.2021
https://doi.org/10.29132/ijpas.873218

Abstract

This study aims to assess the toxicity of Gadolinium (Gd) on a freshwater invertebrate Dreissena polymorpha, considered a good bioindicator of aquatic pollution, through the analysis of metabolic and oxidative stress markers. Firsly, LC50 value of Gd for D. polymorpha was determined in our study. D. polymorpha were exposed to the three sublethal Gd concentrations (1/20, 1/10 and 1/5 of LC50 value) for a period of 24 and 96 hours under controlled conditions. TBARS and CYP1A1 levels were determined by using ELISA kit. The CYP1A1 and TBARS levels was found to be increased in the all groups at 24 and 96 h When compared to control group. These results show that Gd can be considered a risk for freshwater invertebrate, D. polymorpha and as such its discharge in the receiving environment should be supervised.

References

  • Abdelnour, S.A., Abd El-Hack, M.E., Khafaga, A.F., Noreldin, A.E., Arif, M., Chaudhry, M.T., Losacco, C., Abdeen, A. ve Abdel-Daim, M.M. (2019). Impacts of rare earth elements on animal health and production: Highlights of cerium and lanthanum. Science of the Total Environment, 672, 1021-1032.
  • Adding, L.C., Gerard, L.B. ve Lars, E.G. (2006). Basic experimental studies and clinical aspects of gadolinium salts and chelates. Cardiovascular Drug Reviews, 19, 41– 56.
  • Almroth, B.C., Sturve, J., Berglund, A. ve Förlin, L. (2005). Oxidative damage in eelpout (Zoarces viviparus), measured as protein carbonyls and TBARS, as biomarkers. Aquatic Toxicology, 73, 171–180.
  • Anwar-Mohamed, A., Elbekai, R.H. ve El-Kadi, A.O.S. (2009). Regulation of CYP1A1 by heavy metals and consequences for drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 5(5), 501-521
  • Balaram, V. (2019). Rare Earth Elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303.
  • Bergsten-Torralbaa, L.R., Magalhães, D.P., Giese, E.C., Nascimentod, C.R.S., Pinhoe, J.V.A. ve Buss, D.F. (2020). Toxicity of three rare earth elements, and their combinations to algae, microcrustaceans, and fungi. Ecotoxicology and Environmental Safety, 201, 110795.
  • Blinova, I., Lukjanova, A., Muna, M., Vija, H. ve Kahru, A. (2018). Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Science of the Total Environment, 642, 1100–1107.
  • Blinova, I., Muna, M., Heinlaan, M., Lukjanova, A., Kahru, A. (2020). Potential Hazard of Lanthanides and Lanthanide-Based Nanoparticles to Aquatic Ecosystems: Data Gaps, Challenges and Future Research Needs Derived from Bibliometric Analysis. Nanomaterials. 2020; 10(2):328
  • Choi, J. ve Oris, J.T. (2000). Evidence of oxidative stress in bluegill sunfish (Lepomis macrochirus) liver microsomes simultaneously exposed to solar ultraviolet radiation and anthracene. Environmental Toxicology and Chemistry, 19, 1795–1799.
  • Cho, S., Lee, Y., Lee, S., Choi, Y.J. ve Chung, H.W. (2014). Enhanced cytotoxic and genotoxic effects of gadolinium following ELF-EMF irradiation in human lymphocytes. Drug and Chemical Toxicology, 37, 440-447.
  • Dube, M., Auclair, J., Hanana, H., Turcotte, P., Gagnon, C. ve Gagné, F. (2019). Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 88-95.
  • Durmuş, O. ve Bölükbaşı, Ş. (2015). Biological activities of lanthanum oxide in laying hens. Journal of Applied Poultry Research, 24, 481-488.
  • El-Akl, P., Smith, S. ve Wilkinson, K.J. (2015). Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga. Environmental Toxicology and Chemistry, 34 (8), 1711–1719.
  • Demidchik, V. (2015). Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, 109: 212-228.
  • Elbaz-Poulichet, F., Seidel, J.L. ve Othoniel, C. (2002). Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Research, 36, 1102–1105.
  • Faria, M., Carrasco, L., Diez, S., Riva, M.C., Bayona, J.M. ve Barata, C. (2009). Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to Polychlorobiphenyls and metals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 149, 281-288.
  • Feng, X., Xia, Q. ve Yuan, L. (2010). Impaired mitochondrial function and oxidative stress in rat cortical neurons: implications for gadoliniuminduced neurotoxicity. Neurotoxicology, 31, 391–98.
  • Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N. ve Sanganyado, E. (2018). Sources, behavior, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of the Total Environment, 636, 299–313.
  • Gonzalez, V., Vignati, D.A.L., Pons, M.N., Montarges-Pelletier, E., Bojic, C. ve Giamberini, L. (2015). Lanthanide ecotoxicity: first attempt to measure environmental risk for aquatic organism. Environmental Pollution, 199, 139–147.
  • Guengerich, F.P. (2000). Metabolism of chemical carcinogens. Carcinogenesis, 21, 345–51.
  • Hanana, H., Turcotte, P., Pilote, M., Auclair, J., Gagnon, C. (2017). Biomarker assessment of lanthanum on a freshwater invertebrate, Dreissena polymorpha. SOJ Biochemistry, 3(1), 1-9.
  • Hatje, V., Bruland, K.W. ve Flegal, A.R. (2016). Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environmental Science and Technology, 50, 4159–4168.
  • Henriques, B., Coppola, F. ve Monteiro, R. (2019). Toxicological assessment of anthropogenic Gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis. Science of the Total Environment, 664, 626-634.
  • Klaver, G., Verheul, M., Bakker, I., Petelet-Giraud, E. ve Négrel, P. (2014). Anthropogenic rare earth element in rivers: gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse delta (the Netherlands). Applied Geochemistry, 47, 186–197.
  • Knappe, A., Moller, P., Dulski, P. ve Pekdeger, A. (2005). Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany. Geochemistry, 65, 167–189.
  • Kulaksiz, S. ve Bau, M. (2013). Anthropogenic dissolved and colloid/nanoparticle-bound samarium,lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43–50.
  • Milatovic, D., Yin, Z., Gupta, R.C., Sidoryk, M., Albrecht, J., Aschner, J.L. ve Aschner, M. (2007). Manganese induces oxidative impairment in cultured rat astrocytes. Toxicological Sciences, 98, 198– 205.
  • Oakes, K.D. ve Van Der Kraak, G.J. (2003). Utility of the TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquatic Toxicology, 63, 447–463.
  • Pagano, G., Guida, M., Tommasi, F. ve Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements – knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40-48.
  • Pereira, L.V., Shimizu, M.H., Rodrigues, L.P., Leite, C.C., Andrade, L. ve Seguro, A.C. (2012). N-acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity. Plos One, 7(7), e39528.
  • Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B., Monteiro, R., Russo, T., Cosmo, A., Soares, MVN., Polese, G., Pereira, E., Freitas, R. (2019 ). Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts, Aquatic Toxicology, 211, 181-192.
  • Roméo, M., Bennani, N., Gnassia-Barelli, M., Lafaurie, M. ve Girard, J.P. (2000). Cadmium and copper display different responses towards oxidative stress in kidney of the sea bass Dicentrachus labrax. Aquatic Toxicology, 48, 185–194.
  • Sneller, F.E.C., Kalf, D.F., Weltje, L. ve van Wezel, A.P. (2000). Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs), Report 601501011. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
  • Quarles, L.D, Hartle, J.E. ve Middleton, J.P. (1994). Aluminum-induced DNA synthesis in osteoblasts: mediation by a G-protein coupled cation sensing mechanism. Journal of Cellular Biochemistry, 56, 106 –17.
  • Romero-Freire, A., Joonas, E., Muna, M., Cossu-Leguille, C., Vignati, D. ve Giamberini, L. (2019). Assessment of the toxic effects of mixtures of three lanthanides (ce, gd, lu) to aquatic biota. Science of the Total Environment, 661, 276–284.
  • Siroka, Z. ve Drastichova, J. (2004). Biochemical markers of aquatic environment contamination cytochrome P450 in fish. A review. Acta Veterinaria Brno, 73, 123–132.
  • Tseng, M.T., Lu, X., Duan, X., Hardas, S.S., Sultana, R., Wu, P., Unrine, J.M., Graham, U., Butterfield, D.A., Grulke, E.A. ve Yokel, R.A. (2012). Alterationofhepaticstructure and oxidative stress induced by intravenous nanoceria. Toxicology and Applied Pharmacology, 260, 173–182.
  • Wang, L., Wang, W., Zhou, Q. ve Huang, X. (2014). Combined effects of lanthanum (III) chloride and acid rain on photosynthetic parameters in rice. Chemosphere, 112, 355–361.
  • Weltje, L., Verhoof, L.R.C.W., Verweij, W. ve Hamers, T. (2004). Lutetium speciation and toxicity in microbial bioassay: testing the free-ion model for lanthanides. Environmental Science & Technology, 38, 6597–6604.
  • Whyte, J. J., Jung, R. E., Schmitt, C. J. ve Tillitt, D.E. (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology, 30(4), 347–570.
  • Xia Q, Feng X, Huang H., Du, L., Yang, X. ve Wang, K. (2011). Gadolinium-induced oxidative stress triggers endoplasmic reticulum stressin rat cortical neurons. Journal of Neurochemistry, 117, 38–47.
  • Yang, S.J., Lee, J.E., Lee, K.H., Huh, J.W., Choi, S.Y. ve Cho, S.W. (2004). Opposed regulation of aluminum-induced apoptosis by glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor in rat brains. Molecular Brain Research, 127, 146– 149.
  • Zhao, H., Hong, J., Yu, X., Zhao, X., Sheng, L., Ze, Y., Sang, X., Gui, S., Sun, Q., Wang, L. ve Hong, F. (2013). Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride. Chemosphere, 93, 875–884.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Osman Serdar 0000-0003-1744-8883

Numan Yıldırım 0000-0003-1109-8106

Şule Tatar 0000-0001-8962-0107

Nuran Cikcikoglu Yildirim 0000-0003-3975-6705

Publication Date July 20, 2021
Submission Date February 2, 2021
Acceptance Date May 24, 2021
Published in Issue Year 2021 Volume: 7 Issue: 2

Cite

APA Serdar, O., Yıldırım, N., Tatar, Ş., Cikcikoglu Yildirim, N. (2021). Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri. International Journal of Pure and Applied Sciences, 7(2), 229-236. https://doi.org/10.29132/ijpas.873218
AMA Serdar O, Yıldırım N, Tatar Ş, Cikcikoglu Yildirim N. Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri. International Journal of Pure and Applied Sciences. July 2021;7(2):229-236. doi:10.29132/ijpas.873218
Chicago Serdar, Osman, Numan Yıldırım, Şule Tatar, and Nuran Cikcikoglu Yildirim. “Gadolinyumun Tatlı Su Omurgasızı Dreissena Polymorpha Üzerindeki Biyokimyasal Etkileri”. International Journal of Pure and Applied Sciences 7, no. 2 (July 2021): 229-36. https://doi.org/10.29132/ijpas.873218.
EndNote Serdar O, Yıldırım N, Tatar Ş, Cikcikoglu Yildirim N (July 1, 2021) Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri. International Journal of Pure and Applied Sciences 7 2 229–236.
IEEE O. Serdar, N. Yıldırım, Ş. Tatar, and N. Cikcikoglu Yildirim, “Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri”, International Journal of Pure and Applied Sciences, vol. 7, no. 2, pp. 229–236, 2021, doi: 10.29132/ijpas.873218.
ISNAD Serdar, Osman et al. “Gadolinyumun Tatlı Su Omurgasızı Dreissena Polymorpha Üzerindeki Biyokimyasal Etkileri”. International Journal of Pure and Applied Sciences 7/2 (July 2021), 229-236. https://doi.org/10.29132/ijpas.873218.
JAMA Serdar O, Yıldırım N, Tatar Ş, Cikcikoglu Yildirim N. Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri. International Journal of Pure and Applied Sciences. 2021;7:229–236.
MLA Serdar, Osman et al. “Gadolinyumun Tatlı Su Omurgasızı Dreissena Polymorpha Üzerindeki Biyokimyasal Etkileri”. International Journal of Pure and Applied Sciences, vol. 7, no. 2, 2021, pp. 229-36, doi:10.29132/ijpas.873218.
Vancouver Serdar O, Yıldırım N, Tatar Ş, Cikcikoglu Yildirim N. Gadolinyumun Tatlı Su Omurgasızı Dreissena polymorpha Üzerindeki Biyokimyasal Etkileri. International Journal of Pure and Applied Sciences. 2021;7(2):229-36.

154501544915448154471544615445