Research Article
PDF EndNote BibTex Cite

Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements

Year 2021, Volume 7, Issue 2, 237 - 245, 20.07.2021
https://doi.org/10.29132/ijpas.875700

Abstract

One of the important arguments that will carry today's world to the high technology of the future is the rare earth elements. However, energy will be the most important field in future technology and also, the most important issue in the field will be fusion energy. Of course, as all areas of technology, the rare earth elements will make an important contribution to the development of fusion technology. Also, the nuclear structure of the rare earth elements in nuclear physics has always been the focus of interest and is still a subject that is frequently studied today. Therefore, in this study, nuclear ground state properties such as the binding energies per particle, the rms charge proton and neutron density radii, the deformation parameters and the quadrupole moments of the rare earth nuclei as 89Y, 138,139La and 175,176Lu are calculated using the Skyrme-Hartree-Fock-Bogolyubov method. The calculations are performed with HFB9, SIII, SKI3, SKM *, SKO, SKP, SKX, SLY4, SLY5, SLY6, SLY7, UNE0 and UNE1 Skyrme force parameters. Also, the results are discussed and compared with the available experimental data.

References

  • Audi, G., Kondev, F. G., Wang, M., Pfeiffer, B., Blachot, J., Sun, X., & MacCormick, M. (2012). NUBASE2012 Evaluation of Nuclear Properties. Chinese Physics C, 36(12), 1157–1286. https://doi.org/10.1016/j.nds.2014.06.127
  • Bennaceur, K., & Dobaczewski, J. (2005). Coordinate-space solution of the Skyrme-Hartree-Fock- Bogolyubov equations within spherical symmetry. the program HFBRAD (v1.00). Computer Physics Communications, 168(2), 96–122. https://doi.org/10.1016/j.cpc.2005.02.002
  • Bogolyubov, N. N. (1958). On a Variational Principle in the Many Body Problem. Sov. Phys. Dokl., 3, 292–294. Dobaczewski, J., Flocard, H., & Treiner, J. (1984). Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nuclear Physics, Section A, 422(1), 103–139. https://doi.org/10.1016/0375-9474(84)90433-0
  • Liu, W. S., Ma, Y. Z., & Huang, B. Y. (2007). Investigation of fracture failure and strengthening-toughing of tungsten-based alloys. Powder Metallurgy Industry, 17(4), 26–31.
  • Luo, L., Shi, J., Lin, J., Zan, X., Zhu, X., Xu, Q., & Wu, Y. (2016). Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material. Scientific Reports, 6(March), 1–9. https://doi.org/10.1038/srep32701
  • Perez, R. N., Schunck, N., Lasseri, R. D., Zhang, C., & Sarich, J. (2017). Axially deformed solution of the Skyrme–Hartree–Fock–Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): A new version of the program. Computer Physics Communications, 220(March 2018), 363–375. https://doi.org/10.1016/j.cpc.2017.06.022
  • Ring, P., & Schuk, P. (1980). The Nuclear Many Body Problem.
  • Şahiner, M., Akgök, Y. Z., Arslan, M., & Ergin, M. H. (2017). Dünyada ve Türkiye’de Nadir Toprak Elementleri. Ankara, Turkey.
  • Shu, W. ., Wakai, E., & Yamanishi, T. (2007). Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma. Nuclear Fusion, 47(3), 201–209. https://doi.org/10.1088/0029-5515/47/3/006
  • Skyrme, T. H. R. (1958). The effective nuclear potential. Nuclear Physics, 9(4), 615–634. https://doi.org/10.1016/0029-5582(58)90345-6
  • Stoitsov, M. V., Dobaczewski, J., Nazarewicz, W., & Ring, P. (2005). Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis. the program HFBTHO (v1.66p). Computer Physics Communications, 167(1), 43–63. https://doi.org/10.1016/j.cpc.2005.01.001
  • Stoitsov, M. V., Schunck, N., Kortelainen, M., Michel, N., Nam, H., Olsen, E., … Wild, S. (2013). Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) hfbtho v2.00d: A new version of the program. Computer Physics Communications, 184(6), 1592–1604. https://doi.org/10.1016/j.cpc.2013.01.013
  • Vasil’evich, V. V., Evgen’evich, S. M., Sergeevich, R. D., Vladimirovich, C. V., Nickolaevich, P. N., Yur’evich, K. S., & Valery, V. V. (2021). Centre for Photonuclear Experiments Data.
  • Wurster, S., Baluc, N., Battabyal, M., Crosby, T., Du, J., García-Rosales, C., … Pippan, R. (2013). Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. Journal of Nuclear Materials, 442(1-3 SUPPL.1), S181–S189. https://doi.org/10.1016/j.jnucmat.2013.02.074

Year 2021, Volume 7, Issue 2, 237 - 245, 20.07.2021
https://doi.org/10.29132/ijpas.875700

Abstract

References

  • Audi, G., Kondev, F. G., Wang, M., Pfeiffer, B., Blachot, J., Sun, X., & MacCormick, M. (2012). NUBASE2012 Evaluation of Nuclear Properties. Chinese Physics C, 36(12), 1157–1286. https://doi.org/10.1016/j.nds.2014.06.127
  • Bennaceur, K., & Dobaczewski, J. (2005). Coordinate-space solution of the Skyrme-Hartree-Fock- Bogolyubov equations within spherical symmetry. the program HFBRAD (v1.00). Computer Physics Communications, 168(2), 96–122. https://doi.org/10.1016/j.cpc.2005.02.002
  • Bogolyubov, N. N. (1958). On a Variational Principle in the Many Body Problem. Sov. Phys. Dokl., 3, 292–294. Dobaczewski, J., Flocard, H., & Treiner, J. (1984). Hartree-Fock-Bogolyubov description of nuclei near the neutron-drip line. Nuclear Physics, Section A, 422(1), 103–139. https://doi.org/10.1016/0375-9474(84)90433-0
  • Liu, W. S., Ma, Y. Z., & Huang, B. Y. (2007). Investigation of fracture failure and strengthening-toughing of tungsten-based alloys. Powder Metallurgy Industry, 17(4), 26–31.
  • Luo, L., Shi, J., Lin, J., Zan, X., Zhu, X., Xu, Q., & Wu, Y. (2016). Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material. Scientific Reports, 6(March), 1–9. https://doi.org/10.1038/srep32701
  • Perez, R. N., Schunck, N., Lasseri, R. D., Zhang, C., & Sarich, J. (2017). Axially deformed solution of the Skyrme–Hartree–Fock–Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): A new version of the program. Computer Physics Communications, 220(March 2018), 363–375. https://doi.org/10.1016/j.cpc.2017.06.022
  • Ring, P., & Schuk, P. (1980). The Nuclear Many Body Problem.
  • Şahiner, M., Akgök, Y. Z., Arslan, M., & Ergin, M. H. (2017). Dünyada ve Türkiye’de Nadir Toprak Elementleri. Ankara, Turkey.
  • Shu, W. ., Wakai, E., & Yamanishi, T. (2007). Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma. Nuclear Fusion, 47(3), 201–209. https://doi.org/10.1088/0029-5515/47/3/006
  • Skyrme, T. H. R. (1958). The effective nuclear potential. Nuclear Physics, 9(4), 615–634. https://doi.org/10.1016/0029-5582(58)90345-6
  • Stoitsov, M. V., Dobaczewski, J., Nazarewicz, W., & Ring, P. (2005). Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis. the program HFBTHO (v1.66p). Computer Physics Communications, 167(1), 43–63. https://doi.org/10.1016/j.cpc.2005.01.001
  • Stoitsov, M. V., Schunck, N., Kortelainen, M., Michel, N., Nam, H., Olsen, E., … Wild, S. (2013). Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) hfbtho v2.00d: A new version of the program. Computer Physics Communications, 184(6), 1592–1604. https://doi.org/10.1016/j.cpc.2013.01.013
  • Vasil’evich, V. V., Evgen’evich, S. M., Sergeevich, R. D., Vladimirovich, C. V., Nickolaevich, P. N., Yur’evich, K. S., & Valery, V. V. (2021). Centre for Photonuclear Experiments Data.
  • Wurster, S., Baluc, N., Battabyal, M., Crosby, T., Du, J., García-Rosales, C., … Pippan, R. (2013). Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. Journal of Nuclear Materials, 442(1-3 SUPPL.1), S181–S189. https://doi.org/10.1016/j.jnucmat.2013.02.074

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ridvan BALDIK> (Primary Author)
ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ
0000-0001-9223-9243
Türkiye

Publication Date July 20, 2021
Application Date February 15, 2021
Acceptance Date April 22, 2021
Published in Issue Year 2021, Volume 7, Issue 2

Cite

Bibtex @research article { ijpas875700, journal = {International Journal of Pure and Applied Sciences}, issn = {2149-0910}, address = {}, publisher = {Munzur University}, year = {2021}, volume = {7}, number = {2}, pages = {237 - 245}, doi = {10.29132/ijpas.875700}, title = {Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements}, key = {cite}, author = {Baldık, Ridvan} }
APA Baldık, R. (2021). Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements . International Journal of Pure and Applied Sciences , Rare Earth Elements , 237-245 . DOI: 10.29132/ijpas.875700
MLA Baldık, R. "Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements" . International Journal of Pure and Applied Sciences 7 (2021 ): 237-245 <https://dergipark.org.tr/en/pub/ijpas/issue/63136/875700>
Chicago Baldık, R. "Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements". International Journal of Pure and Applied Sciences 7 (2021 ): 237-245
RIS TY - JOUR T1 - Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements AU - Ridvan Baldık Y1 - 2021 PY - 2021 N1 - doi: 10.29132/ijpas.875700 DO - 10.29132/ijpas.875700 T2 - International Journal of Pure and Applied Sciences JF - Journal JO - JOR SP - 237 EP - 245 VL - 7 IS - 2 SN - 2149-0910- M3 - doi: 10.29132/ijpas.875700 UR - https://doi.org/10.29132/ijpas.875700 Y2 - 2021 ER -
EndNote %0 International Journal of Pure and Applied Sciences Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements %A Ridvan Baldık %T Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements %D 2021 %J International Journal of Pure and Applied Sciences %P 2149-0910- %V 7 %N 2 %R doi: 10.29132/ijpas.875700 %U 10.29132/ijpas.875700
ISNAD Baldık, Ridvan . "Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements". International Journal of Pure and Applied Sciences 7 / 2 (July 2021): 237-245 . https://doi.org/10.29132/ijpas.875700
AMA Baldık R. Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements. International Journal of Pure and Applied Sciences. 2021; 7(2): 237-245.
Vancouver Baldık R. Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements. International Journal of Pure and Applied Sciences. 2021; 7(2): 237-245.
IEEE R. Baldık , "Investigation Some Nuclear Ground State Properties of The 89Y, 138,139La and 175,176La Rare Earth Elements", International Journal of Pure and Applied Sciences, vol. 7, no. 2, pp. 237-245, Jul. 2021, doi:10.29132/ijpas.875700

154501544915448154471544615445