BibTex RIS Cite

Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition

Year 2015, Volume: 5 Issue: 4, 1024 - 1033, 01.12.2015

Abstract

Thermogravimetric method was used to study the devolatilization characteristics and kinetics of Gmelina wood (Gmelina arborea), Mango wood (Mangifera indica), Neem wood (Azadiracta indica) and Tropical Almond wood (Terminalia catappa) under synthetic air condition at the heating rate of 30oC/min. It was observed that all the samples followed a two-stage reaction mechanism between 200oC and 500oC clearly indicating regions of volatile oxidation and char combustion. The maximum rate of weight loss (%/oC) are 2.20, 1.50, 1.25 and 1.60 for Gmelina wood, Mango wood, Neem wood and Tropical almond wood respectively and occurred at peak temperatures of 310oC, 322oC, 320oC and 320oC in the same order of sample presentation. During the oxidative stage, the activation energy of the samples, based on the Arrhenius correlation are 125,108, 142 and 113 KJ/mol respectively while during the char combustion stage the activation energy are 257, 210, 281 and 345 KJ/mol in that same order. This shows that the samples would require less energy input for their thermochemical conversion to bioenergy and would not pose any barrier to their use in combustion reactors. The samples are thus good potential feedstock among the league of biomass resources for present and future bioenergy fuels

References

  • P. M. Connor, “UK renewable energy policy: a review”, Renew. Sust. Energy Reviews vol. 7, pp 65-82, February 2003.
  • X. Zhang, M. Xu, R. Sun, and L. Sun, “Study on biomass pyrolysis kinetics”, J Eng. Gas Turbines and Power, vol. 128 (3), pp 493-496, March 2004, doi: doi:10.1115/1.2135816
  • S. Munir, S. S. Daood, W. Nimmo, A. M. Cunliffe, and B.M Gibbs “Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres”, Bioresour Technol. Vol.100 (3), 1413-1418, February 2009. doi:10.1016/j.biortech.2008.07.065
  • K.G. Mansaray, and A. E. Ghaly, “Determination of reaction kinetics of rice husks in air using thermogravimetric analysis”, Energy Sources vol.21 (10), 899-911, 1999 DOI:10.1080/00908319950014272
  • M.G. Gronli, G. Varhegyi, and C. D. Blasi, “Thermogravimetric analysis and devolatilization kinetics of wood”, Ind. Eng. Chem. Res. vol.41 (17), pp 4201-4208, July 2002.DOI: 10.1021/ie0201157
  • A. J. Tsamba, W. Yang, and W. Blasiak, “Pyrolysis Characteristics and Global Kinetics of Coconut and Cashew nut shells”. Fuel Proc. Technol. vol. 87 (6), pp 530, June 2006. doi:10.1016/j.fuproc.2005.12.002
  • A. A. Zabaniotou, E. K. Kantarelis, and D. C. Theodoropoulos, “Sunflower shell utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics”, Bioresour. Technol. vol. 99 (8), pp 3174-3181, May doi:10.1016/j.biortech.2007.05.060
  • P.Luangkiattikhun, C. Tangsathitkulchai, and M. Tangsathitkulchai, “Non-isothermal thermogravimetric analysis of oil-palm solid wastes”. Bioresour. Technol vol.99(5), pp 986-997, March 2008
  • W. H. Chen, and P. C. Kuo, “A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry”, Energy vol. 35 (6), pp2580-2586, June 2010. doi:10.1016/j.energy.2010.02.054
  • S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid, M. J. Aris, “Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA)”. Bioresour Technol., vol.101 (12), pp 4584- 4592, June 2010.
  • L. Wilson, W. Yang, W. Blasiak, G. R. John, and C. F. Mhilu, “Thermal characterization of tropical biomass feedstocks”. Energy Conv. Mgmt. vol. 52 (1), pp191- January 2011. doi:10.1016/j.enconman.2010.06.058
  • E. J. White, W. J. Catallo, and B. L. Legendre, “Biomass Pyrolysis Kinetics: a comparative critical review with relevant agricultural residue case studies”, J. Anal. Appl. Pyrolysis vol. 91 (1), pp1-33 May 2011. doi:10.1016/j.jaap.2011.01.004
  • M. V. Kok, and E. Özgür “Thermal analysis and kinetics of biomass samples”. Fuel Proc. Technol. vol. , pp739-743 February 2013. doi:10.1016/j.fuproc.2012.10.010
  • H. H. Sait, H. Ahmad, A. S. Arshad, and N. A. Farid, “Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis”. Bioresour Technol. vol.118, pp382-389, August 2012. http://dx.doi.org/10.1016/j.biortech.2012.04.081
  • Y. El may, J. Mejdi, D. Sophie, T. Gwenaelle, and S. Rachid, S. “Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres”. Energy, vol 44 (1), pp702-709, August doi:10.1016/j.energy.2012.05.022
  • D. Vamvuka, and S. Sfakiotakis, “Combustion behaviour of biomass fuels and their blends with lignite” Thermochimica Acta, vol. 526 (1-2), pp192- , November 2011. doi:10.1016/j.tca.2011.09.021
  • O. Senneca, “Kinetics of pyrolysis, combustion and gasification of three biomass fuels”. Fuel Proc. Technology, vol. 88 (1), pp87-97, January 2007. doi:10.1016/j.fuproc.2006.09.002
  • I. Simkovic, and K. Csomorova, “Thermogravimetric analysis of agricultural residues: oxygen effect and environmental impact” J. Appl. Polymer Sc; vol.100 (2), 1318-1322, January 2006. DOI: 10.1002/app.23818
  • H. Haykiri-Acma, “Combustion characteristics of different biomass materials”. Energy Conv. Mgmt. vol.44 (1), pp155-162, January 2003. PII: S 01 9 6 - 8 04 (01) 002 00-X
  • D. K. Shen, S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang, “Kinetic study on thermal decomposition of woods in oxidative environment”. Fuel vol.88 (6), pp1024-1030, June 2009. doi:10.1016/j.fuel.2008.10.034
  • A. Aboulkas, K. El harfi, and A. El Bouadili, “Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms”. Energy Conv. Mgmt. vol.51 (7) pp1363- , July2010. doi:10.1016/j.enconman.2009.12.017
  • A. Gani, and I Naruse, “Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass”. Renew. Energy, vol.32 (4), pp649-661, April 2007. doi:10.1016/j.renene.2006.02.017
  • S. W. Park, and C. H. Jang “Effects of pyrolysis temperature on changes in fuel characteristics of biomass char”. Energy vol.39(1), pp187-195, March doi:10.1016/j.energy.2012.01.031
  • P. Ghetti, R. Leandro, A. Luciana, “Thermal analysis of biomass and corresponding pyrolysis products”. Fuel vol.75 (5), pp565-573, April 1996. 0016- (95)00296-0
  • L. Xiang-guo, M. Bao-guo, X. Li, H. Zhen-wu, and W. Xin-gang, “Thermogravimetric analysis of the co- combustion of the blends with high ash coal and waste tyres”. Thermochimica Acta 441 (1), pp79-83, February 2006. doi:10.1016/j.tca.2005.11.044
  • S. G. Sahu, P. Sarkar, N. Chakraborty, A. K. Adak, “Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars”, Fuel Proc. Technology 91(3), pp369- , March 2010. doi:10.1016/j.fuproc.2009.12.001
  • A. W Coats, J. P.Redfern,”Kinetic parameters from thermogravimetric data”. Nature vol. 20168 – 69, January 1964. doi:10.1038/201068a0
  • E. D. Rainville, Special functions. Macmillan Company, New York, 1960, pp22 &44 Appendix A
Year 2015, Volume: 5 Issue: 4, 1024 - 1033, 01.12.2015

Abstract

References

  • P. M. Connor, “UK renewable energy policy: a review”, Renew. Sust. Energy Reviews vol. 7, pp 65-82, February 2003.
  • X. Zhang, M. Xu, R. Sun, and L. Sun, “Study on biomass pyrolysis kinetics”, J Eng. Gas Turbines and Power, vol. 128 (3), pp 493-496, March 2004, doi: doi:10.1115/1.2135816
  • S. Munir, S. S. Daood, W. Nimmo, A. M. Cunliffe, and B.M Gibbs “Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres”, Bioresour Technol. Vol.100 (3), 1413-1418, February 2009. doi:10.1016/j.biortech.2008.07.065
  • K.G. Mansaray, and A. E. Ghaly, “Determination of reaction kinetics of rice husks in air using thermogravimetric analysis”, Energy Sources vol.21 (10), 899-911, 1999 DOI:10.1080/00908319950014272
  • M.G. Gronli, G. Varhegyi, and C. D. Blasi, “Thermogravimetric analysis and devolatilization kinetics of wood”, Ind. Eng. Chem. Res. vol.41 (17), pp 4201-4208, July 2002.DOI: 10.1021/ie0201157
  • A. J. Tsamba, W. Yang, and W. Blasiak, “Pyrolysis Characteristics and Global Kinetics of Coconut and Cashew nut shells”. Fuel Proc. Technol. vol. 87 (6), pp 530, June 2006. doi:10.1016/j.fuproc.2005.12.002
  • A. A. Zabaniotou, E. K. Kantarelis, and D. C. Theodoropoulos, “Sunflower shell utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics”, Bioresour. Technol. vol. 99 (8), pp 3174-3181, May doi:10.1016/j.biortech.2007.05.060
  • P.Luangkiattikhun, C. Tangsathitkulchai, and M. Tangsathitkulchai, “Non-isothermal thermogravimetric analysis of oil-palm solid wastes”. Bioresour. Technol vol.99(5), pp 986-997, March 2008
  • W. H. Chen, and P. C. Kuo, “A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry”, Energy vol. 35 (6), pp2580-2586, June 2010. doi:10.1016/j.energy.2010.02.054
  • S. S. Idris, N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid, M. J. Aris, “Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA)”. Bioresour Technol., vol.101 (12), pp 4584- 4592, June 2010.
  • L. Wilson, W. Yang, W. Blasiak, G. R. John, and C. F. Mhilu, “Thermal characterization of tropical biomass feedstocks”. Energy Conv. Mgmt. vol. 52 (1), pp191- January 2011. doi:10.1016/j.enconman.2010.06.058
  • E. J. White, W. J. Catallo, and B. L. Legendre, “Biomass Pyrolysis Kinetics: a comparative critical review with relevant agricultural residue case studies”, J. Anal. Appl. Pyrolysis vol. 91 (1), pp1-33 May 2011. doi:10.1016/j.jaap.2011.01.004
  • M. V. Kok, and E. Özgür “Thermal analysis and kinetics of biomass samples”. Fuel Proc. Technol. vol. , pp739-743 February 2013. doi:10.1016/j.fuproc.2012.10.010
  • H. H. Sait, H. Ahmad, A. S. Arshad, and N. A. Farid, “Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis”. Bioresour Technol. vol.118, pp382-389, August 2012. http://dx.doi.org/10.1016/j.biortech.2012.04.081
  • Y. El may, J. Mejdi, D. Sophie, T. Gwenaelle, and S. Rachid, S. “Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres”. Energy, vol 44 (1), pp702-709, August doi:10.1016/j.energy.2012.05.022
  • D. Vamvuka, and S. Sfakiotakis, “Combustion behaviour of biomass fuels and their blends with lignite” Thermochimica Acta, vol. 526 (1-2), pp192- , November 2011. doi:10.1016/j.tca.2011.09.021
  • O. Senneca, “Kinetics of pyrolysis, combustion and gasification of three biomass fuels”. Fuel Proc. Technology, vol. 88 (1), pp87-97, January 2007. doi:10.1016/j.fuproc.2006.09.002
  • I. Simkovic, and K. Csomorova, “Thermogravimetric analysis of agricultural residues: oxygen effect and environmental impact” J. Appl. Polymer Sc; vol.100 (2), 1318-1322, January 2006. DOI: 10.1002/app.23818
  • H. Haykiri-Acma, “Combustion characteristics of different biomass materials”. Energy Conv. Mgmt. vol.44 (1), pp155-162, January 2003. PII: S 01 9 6 - 8 04 (01) 002 00-X
  • D. K. Shen, S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang, “Kinetic study on thermal decomposition of woods in oxidative environment”. Fuel vol.88 (6), pp1024-1030, June 2009. doi:10.1016/j.fuel.2008.10.034
  • A. Aboulkas, K. El harfi, and A. El Bouadili, “Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms”. Energy Conv. Mgmt. vol.51 (7) pp1363- , July2010. doi:10.1016/j.enconman.2009.12.017
  • A. Gani, and I Naruse, “Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass”. Renew. Energy, vol.32 (4), pp649-661, April 2007. doi:10.1016/j.renene.2006.02.017
  • S. W. Park, and C. H. Jang “Effects of pyrolysis temperature on changes in fuel characteristics of biomass char”. Energy vol.39(1), pp187-195, March doi:10.1016/j.energy.2012.01.031
  • P. Ghetti, R. Leandro, A. Luciana, “Thermal analysis of biomass and corresponding pyrolysis products”. Fuel vol.75 (5), pp565-573, April 1996. 0016- (95)00296-0
  • L. Xiang-guo, M. Bao-guo, X. Li, H. Zhen-wu, and W. Xin-gang, “Thermogravimetric analysis of the co- combustion of the blends with high ash coal and waste tyres”. Thermochimica Acta 441 (1), pp79-83, February 2006. doi:10.1016/j.tca.2005.11.044
  • S. G. Sahu, P. Sarkar, N. Chakraborty, A. K. Adak, “Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars”, Fuel Proc. Technology 91(3), pp369- , March 2010. doi:10.1016/j.fuproc.2009.12.001
  • A. W Coats, J. P.Redfern,”Kinetic parameters from thermogravimetric data”. Nature vol. 20168 – 69, January 1964. doi:10.1038/201068a0
  • E. D. Rainville, Special functions. Macmillan Company, New York, 1960, pp22 &44 Appendix A
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Edmund Chijioke Okoroigwe This is me

Publication Date December 1, 2015
Published in Issue Year 2015 Volume: 5 Issue: 4

Cite

APA Okoroigwe, E. C. (2015). Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition. International Journal Of Renewable Energy Research, 5(4), 1024-1033.
AMA Okoroigwe EC. Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition. International Journal Of Renewable Energy Research. December 2015;5(4):1024-1033.
Chicago Okoroigwe, Edmund Chijioke. “Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition”. International Journal Of Renewable Energy Research 5, no. 4 (December 2015): 1024-33.
EndNote Okoroigwe EC (December 1, 2015) Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition. International Journal Of Renewable Energy Research 5 4 1024–1033.
IEEE E. C. Okoroigwe, “Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition”, International Journal Of Renewable Energy Research, vol. 5, no. 4, pp. 1024–1033, 2015.
ISNAD Okoroigwe, Edmund Chijioke. “Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition”. International Journal Of Renewable Energy Research 5/4 (December 2015), 1024-1033.
JAMA Okoroigwe EC. Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition. International Journal Of Renewable Energy Research. 2015;5:1024–1033.
MLA Okoroigwe, Edmund Chijioke. “Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition”. International Journal Of Renewable Energy Research, vol. 5, no. 4, 2015, pp. 1024-33.
Vancouver Okoroigwe EC. Combustion Analysis and Devolatilazation Kinetics of Gmelina, Mango, Neem and Tropical Almond Woods under Oxidative Condition. International Journal Of Renewable Energy Research. 2015;5(4):1024-33.