BibTex RIS Cite

Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter

Year 2015, Volume: 5 Issue: 3, 668 - 676, 01.09.2015

Abstract

The strategy to improve both efficiency and power quality of grid-connected wind turbine generator systems (WTGs) are presented. WTGs efficiency is improved by developing a variable speed control to obtain maximum power at all wind speeds. Variable speed control based on Adaptive Type-2 Fuzzy Sliding Mode Control (AFSMOC) is proposed by employing  Very Sparse Matrix Converter (VSMC). Type-2 fuzzy system is used to improve the robustness of sliding mode control. VSMC can provide low harmonics in line current, so the power quality problems can be minimized. The simulation results shows that the AFSMOC can regulate the generator speed at optimum Tip Speed Ratio (TSR) with maximum error 2.5 rpm, so that the maximum power can be obtained at all wind speeds. VSMC also provide good performance with Total Harmonic Distortion (THD) of voltage 0.35%  and THD of current 6,82%

References

  • M. E. Haque, M. Negnevitsky, K. M. Muttaqi, “A Novel Control Strategy for a Variable-Speed Wind Turbine With a PMSG”, IEEE Trans. Industry Applications, vol. , pp. 331–339, January 2010.
  • M. Chinchilla, S. Arnaltes, J. C. Burgos,” Control of Permanent-Magnet Generators Applied to Variable- Speed Wind-Energy Systems Connected to the Grid”, IEEE Trans. on Energy Conversion, vol 21, pp. 130-135, March 2006.
  • Y. Chen, P. Pillay, A. Khan, “PM Wind Generator Topo- logies”, IEEE Trans. Industry Applications, vol. 41, pp. – 1626, November 2005.
  • E. Mahersi, A. Khedher, M. F. Mimouni, “The Wind energy Conversion System Using PMSG Controlled by Vector Control and SMC Strategies”, International Journal of Renewable Energy Research, Vol.3, pp. 42-50, R. Melício, V.M.F. Mendes, J.P.S. Catalão, “Compara- tive study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems”, Energy, vol. 36, pp. –529, 2011.
  • A. Golshani, M. A. Bidgoli, S. M. T. Bathaee, “Design of Optimized Sliding Mode Control to Improve the Dynamic Behavior of PMSG Wind Turbine with NPC Back-to-Back Converter”. International Review of Electrical Engineering, Vol. 8, pp. 1170-1180, 2013.
  • Y. Patel, A. Nasiri, “Multi-Level Wind Turbine Inverter to Provide Grid Ancillary Support”, International Journal of Renewable Energy Research, Vol.4, pp. 999- , 2014.
  • A. Boukadoum , T. Bahi, D. Dib, ” Fuzzy Logic Control Based Matrix Converter for Improvement Output Current Waveforms based Wind Turbine System”, International Journal of Renewable Energy Research, Vol.3, pp. 587- , 2013.
  • A. G. Yang, B. H. Li, “Application of A Matrix Converter for PMSG Wind Turbine Generation System”, nd IEEE International Symposium on Power Electronics for Distributed Generation Systems, China, pp. 185-189, 16-18 June 2010.
  • J. W. Kolar, T. Friedli, J. Rodriguez, and Patrick W, “Review of Three-Phase PWM AC–AC Converter Topologies”, IEEE Trans. Industrial Electronics, vol. 58, pp. 4988–5006, November 2011.
  • J. W. Kolar, F. Schafmeister, S. D. Round, H. Ertl, Novel Three-Phase AC–AC Sparse Matrix Converters, IEEE Trans. Power Electronics, vol. 22, pp. 1649 – 1661, September 2007.
  • M. Aner, E. Nowicki, D. Wood, “Employing a Very Sparse Matrix Converter for Improved Dynamics of Grid-Connected Variable Speed Small Wind Turbines”, IEEE Power and Energy Conference at Illinois (PECI), Illionis, pp. 1-7, 24-25 February 2012.
  • F. F. M. El-Sousy, “Robust Wavelet Neural Network Sliding Mode Control System for Permanent Magnet Synchronous Motor Drive”, IET Elect Power Applications, vol. 5,pp. 113 – 132, 2011.
  • C. Xia, X. Wang, S. Li, &X. Chen, “Improved integral sliding mode control methods for speed control of PMSM system”, Int. Journal of Innovative Computing, Information and Control, vol. 7, pp. 1971-1982, 2011.
  • Q. Liang, J. M. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and Design”, IEEE Trans. Fuzzy Systems, vol. 8, pp. 535–550, October 2000.
  • J. M. Mendel, R. I. John, F. Liu, “Interval Type-2 Fuzzy Logic Systems Made Simple”, IEEE Trans. Fuzzy Systems, vol. 14, pp. 808 – 821, December 2006.
  • Muldi Yuhendri, M. Ashari, M. H. Purnomo, “Maximum Output Power Tracking of Wind Turbine Using Intelligent Control”, TELKOMNIKA, Vol.9, pp. 226, August 2011. Appendix PMSG data Stator resistance Stator inductance Pole pair numbers
  • Flux of permanent magnet Momen of inertia Friction coefficient Rs= 0.2 Ω Ld= Ld = 8.5mH np= 4 ψm= 0.175 Wb J = 0.089 kg m2 B =0.005 N.m.s/rad Wind Turbine Data Blade radius R = 2 m Maximum power coefficient Cp_max = 0.5312 Optimum TSR λopt =8.09
Year 2015, Volume: 5 Issue: 3, 668 - 676, 01.09.2015

Abstract

References

  • M. E. Haque, M. Negnevitsky, K. M. Muttaqi, “A Novel Control Strategy for a Variable-Speed Wind Turbine With a PMSG”, IEEE Trans. Industry Applications, vol. , pp. 331–339, January 2010.
  • M. Chinchilla, S. Arnaltes, J. C. Burgos,” Control of Permanent-Magnet Generators Applied to Variable- Speed Wind-Energy Systems Connected to the Grid”, IEEE Trans. on Energy Conversion, vol 21, pp. 130-135, March 2006.
  • Y. Chen, P. Pillay, A. Khan, “PM Wind Generator Topo- logies”, IEEE Trans. Industry Applications, vol. 41, pp. – 1626, November 2005.
  • E. Mahersi, A. Khedher, M. F. Mimouni, “The Wind energy Conversion System Using PMSG Controlled by Vector Control and SMC Strategies”, International Journal of Renewable Energy Research, Vol.3, pp. 42-50, R. Melício, V.M.F. Mendes, J.P.S. Catalão, “Compara- tive study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems”, Energy, vol. 36, pp. –529, 2011.
  • A. Golshani, M. A. Bidgoli, S. M. T. Bathaee, “Design of Optimized Sliding Mode Control to Improve the Dynamic Behavior of PMSG Wind Turbine with NPC Back-to-Back Converter”. International Review of Electrical Engineering, Vol. 8, pp. 1170-1180, 2013.
  • Y. Patel, A. Nasiri, “Multi-Level Wind Turbine Inverter to Provide Grid Ancillary Support”, International Journal of Renewable Energy Research, Vol.4, pp. 999- , 2014.
  • A. Boukadoum , T. Bahi, D. Dib, ” Fuzzy Logic Control Based Matrix Converter for Improvement Output Current Waveforms based Wind Turbine System”, International Journal of Renewable Energy Research, Vol.3, pp. 587- , 2013.
  • A. G. Yang, B. H. Li, “Application of A Matrix Converter for PMSG Wind Turbine Generation System”, nd IEEE International Symposium on Power Electronics for Distributed Generation Systems, China, pp. 185-189, 16-18 June 2010.
  • J. W. Kolar, T. Friedli, J. Rodriguez, and Patrick W, “Review of Three-Phase PWM AC–AC Converter Topologies”, IEEE Trans. Industrial Electronics, vol. 58, pp. 4988–5006, November 2011.
  • J. W. Kolar, F. Schafmeister, S. D. Round, H. Ertl, Novel Three-Phase AC–AC Sparse Matrix Converters, IEEE Trans. Power Electronics, vol. 22, pp. 1649 – 1661, September 2007.
  • M. Aner, E. Nowicki, D. Wood, “Employing a Very Sparse Matrix Converter for Improved Dynamics of Grid-Connected Variable Speed Small Wind Turbines”, IEEE Power and Energy Conference at Illinois (PECI), Illionis, pp. 1-7, 24-25 February 2012.
  • F. F. M. El-Sousy, “Robust Wavelet Neural Network Sliding Mode Control System for Permanent Magnet Synchronous Motor Drive”, IET Elect Power Applications, vol. 5,pp. 113 – 132, 2011.
  • C. Xia, X. Wang, S. Li, &X. Chen, “Improved integral sliding mode control methods for speed control of PMSM system”, Int. Journal of Innovative Computing, Information and Control, vol. 7, pp. 1971-1982, 2011.
  • Q. Liang, J. M. Mendel, “Interval Type-2 Fuzzy Logic Systems: Theory and Design”, IEEE Trans. Fuzzy Systems, vol. 8, pp. 535–550, October 2000.
  • J. M. Mendel, R. I. John, F. Liu, “Interval Type-2 Fuzzy Logic Systems Made Simple”, IEEE Trans. Fuzzy Systems, vol. 14, pp. 808 – 821, December 2006.
  • Muldi Yuhendri, M. Ashari, M. H. Purnomo, “Maximum Output Power Tracking of Wind Turbine Using Intelligent Control”, TELKOMNIKA, Vol.9, pp. 226, August 2011. Appendix PMSG data Stator resistance Stator inductance Pole pair numbers
  • Flux of permanent magnet Momen of inertia Friction coefficient Rs= 0.2 Ω Ld= Ld = 8.5mH np= 4 ψm= 0.175 Wb J = 0.089 kg m2 B =0.005 N.m.s/rad Wind Turbine Data Blade radius R = 2 m Maximum power coefficient Cp_max = 0.5312 Optimum TSR λopt =8.09
There are 17 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Muldi Yuhendri This is me

Mochammad Ashari This is me

Mauridhi Hery Purnomo This is me

Publication Date September 1, 2015
Published in Issue Year 2015 Volume: 5 Issue: 3

Cite

APA Yuhendri, M., Ashari, M., & Purnomo, M. H. (2015). Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter. International Journal Of Renewable Energy Research, 5(3), 668-676.
AMA Yuhendri M, Ashari M, Purnomo MH. Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter. International Journal Of Renewable Energy Research. September 2015;5(3):668-676.
Chicago Yuhendri, Muldi, Mochammad Ashari, and Mauridhi Hery Purnomo. “Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter”. International Journal Of Renewable Energy Research 5, no. 3 (September 2015): 668-76.
EndNote Yuhendri M, Ashari M, Purnomo MH (September 1, 2015) Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter. International Journal Of Renewable Energy Research 5 3 668–676.
IEEE M. Yuhendri, M. Ashari, and M. H. Purnomo, “Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter”, International Journal Of Renewable Energy Research, vol. 5, no. 3, pp. 668–676, 2015.
ISNAD Yuhendri, Muldi et al. “Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter”. International Journal Of Renewable Energy Research 5/3 (September 2015), 668-676.
JAMA Yuhendri M, Ashari M, Purnomo MH. Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter. International Journal Of Renewable Energy Research. 2015;5:668–676.
MLA Yuhendri, Muldi et al. “Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter”. International Journal Of Renewable Energy Research, vol. 5, no. 3, 2015, pp. 668-76.
Vancouver Yuhendri M, Ashari M, Purnomo MH. Adaptive Type-2 Fuzzy Sliding Mode Control for Grid-Connected Wind Turbine Generator Using Very Sparse Matrix Converter. International Journal Of Renewable Energy Research. 2015;5(3):668-76.