Research Article
BibTex RIS Cite

Netflix İçeriklerinin Duygu Analizi Yöntemi İle İncelenmesi

Year 2025, Volume: 18 Issue: 2, 256 - 273, 31.08.2025
https://doi.org/10.37093/ijsi.1515251

Abstract

İnsanların yoğun ilgisiyle birlikte digital içerik platformlarının sayısı günden güne artmaktadır. Netflix’de kullanıcılar tarafından tercih edilen dijital içerik platformlarından biridir. Duygu analizi, 2000’li yılların başlangıcıyla birlikte metinlerin içerisinde yer alan duyguları ortaya çıkaran sözlük tabanlı bir tekniktir. Duygu analizi içerik geliştiricileri için de önemli bir araçtır. Bu sayede senaryo yazma, tanım metinleri oluşturma gibi konularda yazarlara katkı sağlar. Ayrıca ilgi çeken içeriklerin, metinsel açıdan analiz ederek yazarlara rehberlik eder. Bu bilgilerden yola çıkarak hazırlanan çalışmanın amacı, Netflix içeriklerine ait tanıtım metinlerini duygu analizi ile karşılaştırmaktır. Bu kapsamda, Türkiye yapımı Netflix içerikleri ile diğer ülkelere ait Netflix içeriklerini, denetimsiz öğrenme tekniği olan sözlük tabanlı duygu analizi ile karşılaştırılmıştır. NRC sözlük içerisinde yer alan 8 temel duygu düzeyinde analiz yapılarak bulgulara yer verilmiştir. Yapılan analiz sonucunda Türkiye yapımı içeriklere ait tanıtım metinlerinde korku duygusunun, diğer içeriklerde ise güven duygusunun öne çıktığı tespit edilmiştir. Türkiye yapımı içeriklerin tanıtım metinlerinin(-0,25), diğer ülkelere ait içeriklere(0,03) göre daha fazla negatif duyguya sahiptir. Ayrıca iki grup için elde edilen duygu skorları arasında %5 anlamlılık düzeyinde istatistiksel açıdan anlamlı bir farklılık olduğu tespit edilmiştir.

References

  • 2024’te Dijital Platformlarda En Çok İzlenen 10 Yerli Dizi - Beyazperde.com. (n.d.). Retrieved February 2, 2025, from https://www.beyazperde.com/galerileri/diziler/galerileri-1000121575/#google_vignette
  • Agarwal, B., & Mittal, N. (2016). Prominent Feature Extraction for Sentiment Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-25343-5
  • Barker, C., & Wiatrowski, M. (2017). The age of Netflix : critical essays on streaming media, digital delivery and instant access. McFarland & Company, Inc., Publishers.
  • Bordoloi, M., & Biswas, S. K. (2023). Sentiment analysis: A survey on design framework, applications and future scopes. Artificial Intelligence Review, 56(11), 12505–12560. https://doi.org/10.1007/S10462-023-10442-2/FIGURES/3
  • Bordwell, D., & Thompson, K. (2019). Film Art: An Introduction (12. baskı). McGraw-Hill Professional.
  • Cambria, E., Havasi, C., & Hussain, A. (2012). SenticNet 2: A Semantic and Affective Resource for Opinion Mining and Sentiment Analysis. FLAIRS Conference.
  • Chalaby, J. (2023). Television in the Streaming Era. In The Rise of Networks (pp. 36–55). Cambridge University Press. https://doi.org/10.1017/9781009199285.004
  • Chintalapudi, N., Battineni, G., Canio, M. Di, Sagaro, G. G., & Amenta, F. (2021). Text mining with sentiment analysis on seafarers’ medical documents. International Journal of Information Management Data Insights, 1(1), 100005. https://doi.org/10.1016/J.JJIMEI.2020.100005
  • Dang, Y., Zhang, Y., & Chen, H. (2010). A lexicon-enhanced method for sentiment classification: An experiment on online product reviews. IEEE Intelligent Systems, 25(4), 46–53. https://doi.org/10.1109/MIS.2009.105
  • Demirel, S., Kahraman-Gokalp, E., & Gündüz, U. (2024). From Optimism to Concern: Unveiling Sentiments and Perceptions Surrounding ChatGPT on Twitter. International Journal of Human–Computer Interaction, 1–23. https://doi.org/10.1080/10447318.2024.2392964
  • Fayyad Usame, P.-S. G. S. P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communıcatıons Of The ACM, 39(11), 27–34. http://shawndra.pbworks.com/f/The KDD process for extracting useful knowledge from volumes of data.pdf
  • Fernando Sánchez-Rada, J., Araque, O., & Iglesias, C. A. (2020). Senpy: A framework for semantic sentiment and emotion analysis services ✩. Elsevier, 190(Senpy: A framework for semantic sentiment and emotion analysis services), 105193. https://doi.org/10.1016/j.knosys
  • Garg, P. K., Pandey, M., & Arora, M. (2019). Sentiment Analysis for Predicting the Popularity of Web Series. Communications in Computer and Information Science, 1230 CCIS, 133–140. https://doi.org/10.1007/978-981-15-5830-6_12
  • Garg, R., Kiwelekar, A. W., Netak, L. D., & Bhate, S. S. (2021). Potential Use-Cases of Natural Language Processing for a Logistics Organization. 157–191. https://doi.org/10.1007/978-3-030-68291-0_13
  • Gündüz, U., & Demirel, S. (2023). Metaverse-related perceptions and sentiments on Twitter: evidence from text mining and network analysis. Electronic Commerce Research, 1–31. https://doi.org/10.1007/S10660-023-09745-X/TABLES/4
  • Gündüz, U., Demirel, S., & Tombul, I. (2024). Exploring the concept of financial domination on social media: sentiment and text analysis on Twitter. Atlantic Journal of Communication, 32(4), 602–625. https://doi.org/10.1080/15456870.2023.2178000
  • Hanusz, Z., Tarasinska, J., & Zielinski, W. (2016). Shapiro–Wilk Test with Known Mean. REVSTAT-Statistical Journal, 14(1), 89-100–189–100. https://doi.org/10.57805/REVSTAT.V14I1.180
  • Hernandez-Farias, I., Benedi, J. M., & Rosso, P. (2015). Applying basic features from sentiment analysis for automatic irony detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9117, 337–344. https://doi.org/10.1007/978-3-319-19390-8_38
  • Hull, R. (1997). Managing Semantic Heterogeneity in Databases : A Theoretical Perspective. http://arru-db.research.bell-labs.com/user/hull/pods97-tutoridl.html. Introduction to the Syuzhet Package. (n.d.). Retrieved December 30, 2020, from https://cran.r-project.org/web/packages/syuzhet/vignettes/syuzhet-vignette.html?
  • Jagdale, R. S., Shirsat, V. S., & Deshmukh, S. N. (2019). Sentiment analysis on product reviews using machine learning techniques. Advances in Intelligent Systems and Computing, 768, 639–647. https://doi.org/10.1007/978-981-13-0617-4_61
  • Jang, M., Kim, D., & Baek, H. (2023). How do global audiences of TV shows take shape?: Evidence from Netflix. Applied Economics Letters, 30(3), 285–291. https://doi.org/10.1080/13504851.2021.1983916
  • Jockers, M. M. (2020). Package “syuzhet” Type Package Title Extracts Sentiment and Sentiment-Derived Plot Arcs from Text. https://github.com/mjockers/syuzhet
  • Kahraman, E., Demirel, S., & Gündüz, U. (2023). COVID-19 vaccines in twitter ecosystem: Analyzing perceptions and attitudes by sentiment and text analysis method. Journal of Public Health (Germany), 1–15. https://doi.org/10.1007/S10389-023-02078-X/METRICS
  • Karami, A., Bookstaver, B., Nolan, M., & Bozorgi, P. (2021). Investigating diseases and chemicals in COVID-19 literature with text mining. International Journal of Information Management Data Insights, 1(2), 100016. https://doi.org/10.1016/J.JJIMEI.2021.100016
  • Kumar, S., Kar, A. K., & Ilavarasan, P. V. (2021). Applications of text mining in services management: A systematic literature review. International Journal of Information Management Data Insights, 1(1), 100008. https://doi.org/10.1016/J.JJIMEI.2021.100008
  • Li, J., & Qiu, L. (2017). A sentiment analysis method of short texts in microblog. Proceedings - 2017 IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC 2017, 1, 776–779. https://doi.org/10.1109/CSE-EUC.2017.153
  • Li, N., & Wu, D. D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision Support Systems, 48(2), 354–368. https://doi.org/10.1016/j.dss.2009.09.003
  • Liu, B. (2012a). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–184. https://doi.org/10.2200/S00416ED1V01Y201204HLT016
  • Liu, B. (2012b). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.
  • Lotz, A. D. . (2022). Netflix and streaming video : the business of subscriber-funded video on demand. Polity Press.
  • Lotz, A. D., Eklund, O., & Soroka, S. (2022). Netflix, library analysis, and globalization: rethinking mass media flows. Journal of Communication, 72(4), 511–521. https://doi.org/10.1093/JOC/JQAC020
  • MacDowell, J. (2014). Happy Endings in Hollywood Cinema : Cliché, Convention and the Final Couple. Edinburgh University Press.
  • MacFarland, T. W., & Yates, J. M. (2016). Mann–Whitney U Test. Introduction to Nonparametric Statistics for the Biological Sciences Using R, 103–132. https://doi.org/10.1007/978-3-319-30634-6_4
  • Maranatha, Y. G., & Karyatun, S. (2024). Netflix Subscription Interest in Generation Z: Mobile Advertising, Service Quality, and Price Perception. 199–207. https://doi.org/10.2991/978-94-6463-394-8_20
  • Matsumoto, D., & Hwang, H. S. (2011). Culture and Emotion. Journal of Cross-Cultural Psychology, 43(1), 91–118. https://doi.org/10.1177/0022022111420147
  • Mesquita, B., & Walker, R. (2003). Cultural differences in emotions: a context for interpreting emotional experiences. Behaviour Research and Therapy, 41(7), 777–793. https://doi.org/10.1016/S0005-7967(02)00189-4
  • Mohammad, S. M. (2020). Sentiment Analysis: Detecting Valence, Emotions, and Other Affectual States from Text. Emotion Measurement, 201–237. http://arxiv.org/abs/2005.11882
  • Mohammad, S. M., & Turney, P. D. (n.d.). Crowdsourcing a Word-Emotion Association Lexicon. http://crowdsourcing.typepad.com/cs/2006/06
  • Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a Word-Emotion Association Lexicon. http://crowdsourcing.typepad.com/cs/2006/06
  • Na, J. C., Khoo, C., & Wu, P. H. J. (2005). Use of negation phrases in automatic sentiment classification of product reviews. Library Collections, Acquisition and Technical Services, 29(2), 180–191. https://doi.org/10.1016/j.lcats.2005.04.007
  • Naldi, M. (2019). A review of sentiment computation methods with R packages. https://cran.r-project.org/web/packages/syuzhet/syuz
  • Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment analysis and classification of Indian farmers’ protest using twitter data. International Journal of Information Management Data Insights, 1(2), 100019. https://doi.org/10.1016/J.JJIMEI.2021.100019
  • Netflix Movies and TV Shows. (2024). https://www.kaggle.com/datasets/shivamb/netflix-shows/data
  • Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. CEUR Workshop Proceedings, 718, 93–98. http://arxiv.org/abs/1103.2903
  • Özpay, O. (2019). Türk Korku Sinemasına Panoramik Bir Bakış ve İdeolojik İzdüşümleri. Akdeniz İletişim Dergisi, 32, 551–567.
  • Pang, B., & Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. Antioch Review, 63(2), 271–278. https://doi.org/10.3115/1218955.1218990
  • Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
  • Peng, Y. F., & Chou, T. R. (2019). Automatic color palette design using color image and sentiment analysis. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analytics, ICCCBDA 2019, 389–392. https://doi.org/10.1109/ICCCBDA.2019.8725717
  • R. K. Bakshi, N. Kaur, R. K. and G. K. (2016). Opinion mining and sentiment analysis. 2016 International Conference on Computing for Sustainable Global Development (INDIACom), 452–455. https://0211mxbix-y-https-ieeexplore-ieee-org.proxy.uludag.deep-knowledge.net/document/7724305
  • Rosenbusch, H., Evans, A. M., & Zeelenberg, M. (2019). Multilevel Emotion Transfer on YouTube: Disentangling the Effects of Emotional Contagion and Homophily on Video Audiences. Social Psychological and Personality Science, 10(8), 1028–1035. https://doi.org/10.1177/1948550618820309
  • Şaki Aydın, O. (2019). Yeni İzleme Biçimleri Ve Netflix İçerikleri: Ritzer İn Mcdonaldlaşma Tezi Ekseninde Bir Değerlendirme. Journal of International Social Research, 12(63), 1164–1172. https://doi.org/10.17719/jisr.2019.3305
  • Sarı, Ü., & Sancaklı, P. (2020). Küreselleşmenin Dijital Platformların İçerik Tanıtımına Etkisi: Netflix Örneği. Erciyes İletişim Dergisi, 7(1), 243–260. https://doi.org/10.17680/erciyesiletisim.647463
  • Sigismondi, P., & Ciofalo, G. (2022). Glocalization processes and new centrifugal dynamics in the international entertainment landscape: the Netflix Case in Italy. Handbook of Culture and Glocalization, 305–320. https://doi.org/10.4337/9781839109010
  • Stanković, M. (2018). TV Series or Not? AM Časopis Za Studije Umetnosti i Medija, 17, 1–13.
  • Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. In Applied Sciences (Switzerland) (Vol. 13, Issue 7). https://doi.org/10.3390/app13074550
  • Türk Filmleri Seyirci Rekoru - İlk 100 (1989’dan günümüze) - Tüm Zamanlar - Box Office Türkiye. (n.d.). Retrieved February 2, 2025, from https://boxofficeturkiye.com/tum-zamanlar/seyirci-rekorlari/turk-filmleri
  • Vural, A. G., Cambazoglu, B. B., Senkul, P., & Tokgoz, Z. O. (2013). A Framework for Sentiment Analysis in Turkish: Application to Polarity Detection of Movie Reviews in Turkish. In Computer and Information Sciences III (pp. 437–445). Springer London. https://doi.org/10.1007/978-1-4471-4594-3_45
  • Wegmann, E., & Brand, M. (2020). Cognitive Correlates in Gaming Disorder and Social Networks Use Disorder: a Comparison. Current Addiction Reports, 7(3), 356–364. https://doi.org/10.1007/S40429-020-00314-Y/FIGURES/4
  • Wiebe, J., & Riloff, E. (2005). Creating Subjective and Objective Sentence Classifiers from Unannotated Texts. In G. Alexander (Ed.), Computational Linguistics and Intelligent Text Processing (Vol. 3406, pp. 486–497). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30586-6_53
  • Xu, Y. (2021). Re-understanding Personal and Organizational Mission with Netflix Cultural Manual. Education Reform and Development, 3(1), 34–37. https://doi.org/10.26689/ERD.V3I1.2618
  • Yılmaz, M., Atalar, U., & Topal, E. Ş. (2023). Türkiye’de Dijitalleşme ve Gençlerin İnternet Tabanlı Film-Dizi Platformlarındaki Aile Temsili Algıları: Kahramanmaraş Örneği Digitalization in Türkiye and Youth’s Perceptions of Family Representation on Internet-Based Movie-Series Platforms: The Case of Kahramanmaraş. Toplumsal Politika Dergisi, 4(2), 145–167. https://dergipark.org.tr/tr/pub/tpd
  • Zhai, Z., Xu, H., & Jia, P. (2010). An empirical study of unsupervised sentiment classification of chinese reviews. Tsinghua Science and Technology, 15(6), 702–708. https://doi.org/10.1016/S1007-0214(10)70118-8
  • Zhang, Y. (2015). Incorporating phrase-level sentiment analysis on textual reviews for personalized recommendation. WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search and Data Mining, 435–439. https://doi.org/10.1145/2684822.2697033

Analyzing Netflix Content with Sentiment Analysis Method

Year 2025, Volume: 18 Issue: 2, 256 - 273, 31.08.2025
https://doi.org/10.37093/ijsi.1515251

Abstract

The number of digital content platforms is increasing due to people's growing interest. Netflix is a popular choice among users. Since the early 2000s, sentiment analysis, a dictionary-based technique, has been used to reveal emotions in texts. It is also an important tool for content developers and contributes to writers in areas such as scriptwriting and creating descriptive texts. It also guides authors by analyzing interesting content from a textual perspective. Based on this information, this study aims to compare the promotional texts of Netflix content with sentiment analysis. In this context, Netflix content from Türkiye and Netflix content from other countries were compared using dictionary-based sentiment analysis, which is an unsupervised learning technique. The findings were analyzed using the 8 basic emotion levels in the NRC dictionary. As a result of the analysis, it was determined that the emotion of fear was prominent in the promotional texts of Türkiye-made content, while the emotion of trust was prominent in other content. Promotional texts of Turkish-made content (-0.25) have more negative emotions than content from other countries (0.03). In addition, a statistically significant difference was found between the emotion scores obtained for the two groups at a significance level of 5%.

References

  • 2024’te Dijital Platformlarda En Çok İzlenen 10 Yerli Dizi - Beyazperde.com. (n.d.). Retrieved February 2, 2025, from https://www.beyazperde.com/galerileri/diziler/galerileri-1000121575/#google_vignette
  • Agarwal, B., & Mittal, N. (2016). Prominent Feature Extraction for Sentiment Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-25343-5
  • Barker, C., & Wiatrowski, M. (2017). The age of Netflix : critical essays on streaming media, digital delivery and instant access. McFarland & Company, Inc., Publishers.
  • Bordoloi, M., & Biswas, S. K. (2023). Sentiment analysis: A survey on design framework, applications and future scopes. Artificial Intelligence Review, 56(11), 12505–12560. https://doi.org/10.1007/S10462-023-10442-2/FIGURES/3
  • Bordwell, D., & Thompson, K. (2019). Film Art: An Introduction (12. baskı). McGraw-Hill Professional.
  • Cambria, E., Havasi, C., & Hussain, A. (2012). SenticNet 2: A Semantic and Affective Resource for Opinion Mining and Sentiment Analysis. FLAIRS Conference.
  • Chalaby, J. (2023). Television in the Streaming Era. In The Rise of Networks (pp. 36–55). Cambridge University Press. https://doi.org/10.1017/9781009199285.004
  • Chintalapudi, N., Battineni, G., Canio, M. Di, Sagaro, G. G., & Amenta, F. (2021). Text mining with sentiment analysis on seafarers’ medical documents. International Journal of Information Management Data Insights, 1(1), 100005. https://doi.org/10.1016/J.JJIMEI.2020.100005
  • Dang, Y., Zhang, Y., & Chen, H. (2010). A lexicon-enhanced method for sentiment classification: An experiment on online product reviews. IEEE Intelligent Systems, 25(4), 46–53. https://doi.org/10.1109/MIS.2009.105
  • Demirel, S., Kahraman-Gokalp, E., & Gündüz, U. (2024). From Optimism to Concern: Unveiling Sentiments and Perceptions Surrounding ChatGPT on Twitter. International Journal of Human–Computer Interaction, 1–23. https://doi.org/10.1080/10447318.2024.2392964
  • Fayyad Usame, P.-S. G. S. P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communıcatıons Of The ACM, 39(11), 27–34. http://shawndra.pbworks.com/f/The KDD process for extracting useful knowledge from volumes of data.pdf
  • Fernando Sánchez-Rada, J., Araque, O., & Iglesias, C. A. (2020). Senpy: A framework for semantic sentiment and emotion analysis services ✩. Elsevier, 190(Senpy: A framework for semantic sentiment and emotion analysis services), 105193. https://doi.org/10.1016/j.knosys
  • Garg, P. K., Pandey, M., & Arora, M. (2019). Sentiment Analysis for Predicting the Popularity of Web Series. Communications in Computer and Information Science, 1230 CCIS, 133–140. https://doi.org/10.1007/978-981-15-5830-6_12
  • Garg, R., Kiwelekar, A. W., Netak, L. D., & Bhate, S. S. (2021). Potential Use-Cases of Natural Language Processing for a Logistics Organization. 157–191. https://doi.org/10.1007/978-3-030-68291-0_13
  • Gündüz, U., & Demirel, S. (2023). Metaverse-related perceptions and sentiments on Twitter: evidence from text mining and network analysis. Electronic Commerce Research, 1–31. https://doi.org/10.1007/S10660-023-09745-X/TABLES/4
  • Gündüz, U., Demirel, S., & Tombul, I. (2024). Exploring the concept of financial domination on social media: sentiment and text analysis on Twitter. Atlantic Journal of Communication, 32(4), 602–625. https://doi.org/10.1080/15456870.2023.2178000
  • Hanusz, Z., Tarasinska, J., & Zielinski, W. (2016). Shapiro–Wilk Test with Known Mean. REVSTAT-Statistical Journal, 14(1), 89-100–189–100. https://doi.org/10.57805/REVSTAT.V14I1.180
  • Hernandez-Farias, I., Benedi, J. M., & Rosso, P. (2015). Applying basic features from sentiment analysis for automatic irony detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9117, 337–344. https://doi.org/10.1007/978-3-319-19390-8_38
  • Hull, R. (1997). Managing Semantic Heterogeneity in Databases : A Theoretical Perspective. http://arru-db.research.bell-labs.com/user/hull/pods97-tutoridl.html. Introduction to the Syuzhet Package. (n.d.). Retrieved December 30, 2020, from https://cran.r-project.org/web/packages/syuzhet/vignettes/syuzhet-vignette.html?
  • Jagdale, R. S., Shirsat, V. S., & Deshmukh, S. N. (2019). Sentiment analysis on product reviews using machine learning techniques. Advances in Intelligent Systems and Computing, 768, 639–647. https://doi.org/10.1007/978-981-13-0617-4_61
  • Jang, M., Kim, D., & Baek, H. (2023). How do global audiences of TV shows take shape?: Evidence from Netflix. Applied Economics Letters, 30(3), 285–291. https://doi.org/10.1080/13504851.2021.1983916
  • Jockers, M. M. (2020). Package “syuzhet” Type Package Title Extracts Sentiment and Sentiment-Derived Plot Arcs from Text. https://github.com/mjockers/syuzhet
  • Kahraman, E., Demirel, S., & Gündüz, U. (2023). COVID-19 vaccines in twitter ecosystem: Analyzing perceptions and attitudes by sentiment and text analysis method. Journal of Public Health (Germany), 1–15. https://doi.org/10.1007/S10389-023-02078-X/METRICS
  • Karami, A., Bookstaver, B., Nolan, M., & Bozorgi, P. (2021). Investigating diseases and chemicals in COVID-19 literature with text mining. International Journal of Information Management Data Insights, 1(2), 100016. https://doi.org/10.1016/J.JJIMEI.2021.100016
  • Kumar, S., Kar, A. K., & Ilavarasan, P. V. (2021). Applications of text mining in services management: A systematic literature review. International Journal of Information Management Data Insights, 1(1), 100008. https://doi.org/10.1016/J.JJIMEI.2021.100008
  • Li, J., & Qiu, L. (2017). A sentiment analysis method of short texts in microblog. Proceedings - 2017 IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC 2017, 1, 776–779. https://doi.org/10.1109/CSE-EUC.2017.153
  • Li, N., & Wu, D. D. (2010). Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision Support Systems, 48(2), 354–368. https://doi.org/10.1016/j.dss.2009.09.003
  • Liu, B. (2012a). Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, 5(1), 1–184. https://doi.org/10.2200/S00416ED1V01Y201204HLT016
  • Liu, B. (2012b). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.
  • Lotz, A. D. . (2022). Netflix and streaming video : the business of subscriber-funded video on demand. Polity Press.
  • Lotz, A. D., Eklund, O., & Soroka, S. (2022). Netflix, library analysis, and globalization: rethinking mass media flows. Journal of Communication, 72(4), 511–521. https://doi.org/10.1093/JOC/JQAC020
  • MacDowell, J. (2014). Happy Endings in Hollywood Cinema : Cliché, Convention and the Final Couple. Edinburgh University Press.
  • MacFarland, T. W., & Yates, J. M. (2016). Mann–Whitney U Test. Introduction to Nonparametric Statistics for the Biological Sciences Using R, 103–132. https://doi.org/10.1007/978-3-319-30634-6_4
  • Maranatha, Y. G., & Karyatun, S. (2024). Netflix Subscription Interest in Generation Z: Mobile Advertising, Service Quality, and Price Perception. 199–207. https://doi.org/10.2991/978-94-6463-394-8_20
  • Matsumoto, D., & Hwang, H. S. (2011). Culture and Emotion. Journal of Cross-Cultural Psychology, 43(1), 91–118. https://doi.org/10.1177/0022022111420147
  • Mesquita, B., & Walker, R. (2003). Cultural differences in emotions: a context for interpreting emotional experiences. Behaviour Research and Therapy, 41(7), 777–793. https://doi.org/10.1016/S0005-7967(02)00189-4
  • Mohammad, S. M. (2020). Sentiment Analysis: Detecting Valence, Emotions, and Other Affectual States from Text. Emotion Measurement, 201–237. http://arxiv.org/abs/2005.11882
  • Mohammad, S. M., & Turney, P. D. (n.d.). Crowdsourcing a Word-Emotion Association Lexicon. http://crowdsourcing.typepad.com/cs/2006/06
  • Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a Word-Emotion Association Lexicon. http://crowdsourcing.typepad.com/cs/2006/06
  • Na, J. C., Khoo, C., & Wu, P. H. J. (2005). Use of negation phrases in automatic sentiment classification of product reviews. Library Collections, Acquisition and Technical Services, 29(2), 180–191. https://doi.org/10.1016/j.lcats.2005.04.007
  • Naldi, M. (2019). A review of sentiment computation methods with R packages. https://cran.r-project.org/web/packages/syuzhet/syuz
  • Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment analysis and classification of Indian farmers’ protest using twitter data. International Journal of Information Management Data Insights, 1(2), 100019. https://doi.org/10.1016/J.JJIMEI.2021.100019
  • Netflix Movies and TV Shows. (2024). https://www.kaggle.com/datasets/shivamb/netflix-shows/data
  • Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. CEUR Workshop Proceedings, 718, 93–98. http://arxiv.org/abs/1103.2903
  • Özpay, O. (2019). Türk Korku Sinemasına Panoramik Bir Bakış ve İdeolojik İzdüşümleri. Akdeniz İletişim Dergisi, 32, 551–567.
  • Pang, B., & Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. Antioch Review, 63(2), 271–278. https://doi.org/10.3115/1218955.1218990
  • Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011
  • Peng, Y. F., & Chou, T. R. (2019). Automatic color palette design using color image and sentiment analysis. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analytics, ICCCBDA 2019, 389–392. https://doi.org/10.1109/ICCCBDA.2019.8725717
  • R. K. Bakshi, N. Kaur, R. K. and G. K. (2016). Opinion mining and sentiment analysis. 2016 International Conference on Computing for Sustainable Global Development (INDIACom), 452–455. https://0211mxbix-y-https-ieeexplore-ieee-org.proxy.uludag.deep-knowledge.net/document/7724305
  • Rosenbusch, H., Evans, A. M., & Zeelenberg, M. (2019). Multilevel Emotion Transfer on YouTube: Disentangling the Effects of Emotional Contagion and Homophily on Video Audiences. Social Psychological and Personality Science, 10(8), 1028–1035. https://doi.org/10.1177/1948550618820309
  • Şaki Aydın, O. (2019). Yeni İzleme Biçimleri Ve Netflix İçerikleri: Ritzer İn Mcdonaldlaşma Tezi Ekseninde Bir Değerlendirme. Journal of International Social Research, 12(63), 1164–1172. https://doi.org/10.17719/jisr.2019.3305
  • Sarı, Ü., & Sancaklı, P. (2020). Küreselleşmenin Dijital Platformların İçerik Tanıtımına Etkisi: Netflix Örneği. Erciyes İletişim Dergisi, 7(1), 243–260. https://doi.org/10.17680/erciyesiletisim.647463
  • Sigismondi, P., & Ciofalo, G. (2022). Glocalization processes and new centrifugal dynamics in the international entertainment landscape: the Netflix Case in Italy. Handbook of Culture and Glocalization, 305–320. https://doi.org/10.4337/9781839109010
  • Stanković, M. (2018). TV Series or Not? AM Časopis Za Studije Umetnosti i Medija, 17, 1–13.
  • Tan, K. L., Lee, C. P., & Lim, K. M. (2023). A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research. In Applied Sciences (Switzerland) (Vol. 13, Issue 7). https://doi.org/10.3390/app13074550
  • Türk Filmleri Seyirci Rekoru - İlk 100 (1989’dan günümüze) - Tüm Zamanlar - Box Office Türkiye. (n.d.). Retrieved February 2, 2025, from https://boxofficeturkiye.com/tum-zamanlar/seyirci-rekorlari/turk-filmleri
  • Vural, A. G., Cambazoglu, B. B., Senkul, P., & Tokgoz, Z. O. (2013). A Framework for Sentiment Analysis in Turkish: Application to Polarity Detection of Movie Reviews in Turkish. In Computer and Information Sciences III (pp. 437–445). Springer London. https://doi.org/10.1007/978-1-4471-4594-3_45
  • Wegmann, E., & Brand, M. (2020). Cognitive Correlates in Gaming Disorder and Social Networks Use Disorder: a Comparison. Current Addiction Reports, 7(3), 356–364. https://doi.org/10.1007/S40429-020-00314-Y/FIGURES/4
  • Wiebe, J., & Riloff, E. (2005). Creating Subjective and Objective Sentence Classifiers from Unannotated Texts. In G. Alexander (Ed.), Computational Linguistics and Intelligent Text Processing (Vol. 3406, pp. 486–497). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30586-6_53
  • Xu, Y. (2021). Re-understanding Personal and Organizational Mission with Netflix Cultural Manual. Education Reform and Development, 3(1), 34–37. https://doi.org/10.26689/ERD.V3I1.2618
  • Yılmaz, M., Atalar, U., & Topal, E. Ş. (2023). Türkiye’de Dijitalleşme ve Gençlerin İnternet Tabanlı Film-Dizi Platformlarındaki Aile Temsili Algıları: Kahramanmaraş Örneği Digitalization in Türkiye and Youth’s Perceptions of Family Representation on Internet-Based Movie-Series Platforms: The Case of Kahramanmaraş. Toplumsal Politika Dergisi, 4(2), 145–167. https://dergipark.org.tr/tr/pub/tpd
  • Zhai, Z., Xu, H., & Jia, P. (2010). An empirical study of unsupervised sentiment classification of chinese reviews. Tsinghua Science and Technology, 15(6), 702–708. https://doi.org/10.1016/S1007-0214(10)70118-8
  • Zhang, Y. (2015). Incorporating phrase-level sentiment analysis on textual reviews for personalized recommendation. WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search and Data Mining, 435–439. https://doi.org/10.1145/2684822.2697033
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Econometric and Statistical Methods, Econometrics (Other), Statistics (Other)
Journal Section Research Articles
Authors

Adem Aksan 0000-0003-0545-4143

Ayşe Oğuzlar 0000-0003-3228-9366

Publication Date August 31, 2025
Submission Date July 12, 2024
Acceptance Date February 26, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Aksan, A., & Oğuzlar, A. (2025). Netflix İçeriklerinin Duygu Analizi Yöntemi İle İncelenmesi. International Journal of Social Inquiry, 18(2), 256-273. https://doi.org/10.37093/ijsi.1515251

---------------------------------------------------------------------------------------------------------------------------------------------------

26134 26133     Content on this site is licensed under a Creative Commons Attribution 4.0 International license.

---------------------------------------------------------------------------------------------------------------------------------------------------