Research Article
PDF EndNote BibTex RIS Cite

Lilium türleri üzerine yapılan çalışmalar

Year 2017, Volume 4, Issue 1, 47 - 60, 07.01.2017
https://doi.org/10.21448/ijsm.282978

Abstract

Bu derlemede Liliaceae familyasına üye olan ve yaklaşık 100 tür içeren Lilium cinsi üzerine bazı çalışmalar araştırılmış ve derlenmiştir. Zambaklar tıp, gıda, peyzaj ve parfüm endüstrisi gibi birçok alanda kullanılmaktadır. Büyük kromozomlarının sağladığı kolaylıkdan dolayı Lilium türleri üzerine birçok moleküler ve genetik çalışmalar bulunmaktadır. Bazı türlerinin antioksidan, sitotoksik, genotoksik aktiviteleri tespit edilmiştir ve bazılarından fitokimyasal bileşenler izole edilmiştir. Araştırmalara göre, Lilium türlerinin potansiyel bir antioksidan kaynağı oldukları ve steroidal saponin, glikoalkaloid ve fenolik gliserit gibi bazı bileşenleri içerdikleri bulunmuştur. Sonuç olarak bu çalışma, Lilium cinsinin farmasötik uygulamalara hizmet edebileceği ve süs bitkisi olarak kullanılmaya devam edilebilceğini vurgulamaktadır.

References

  • [1]. Kaviani, B., Dehkaei Padasht, M.N., Darabi, A.H., Rafizadeh, A. and Rahmati, B. (2008). The Anatomical Properties of Endemic Lilium ledebourii (Baker) Bioss. (Liliaceae) Species. International Journal of Botany, 4(1), 62-66.
  • [2]. İkinci, N., Oberprieler, C. and Güner, A. (2006). On the origin of European lilies: phylogenetic analysis of Lilium section Liriotypus (Liliaceae) using sequences of the nuclear ribosomal transcribed spacers. Willdenowia, 36(H.2), 647-656.
  • [3]. Ozdemir, C. (2003). Morphological, Anatomical and Cytological Characteristics of Endemic Lilium ciliatum P.H. Davis (Liliaceae) in Turkey. Pak.J.Bot., 35(1), 99-110.
  • [4]. Dhyani, A., Bahuguna Y.M., Semwal D.R., Nautiyal B.P. and Nautiyal M.C. (2009). Anatomical features of Lilium polyphyllum D. Don ex Royle (Liliaceae), Journal of American Science., 5(5), 85-90.
  • [5]. Siljak-Yakovlev, S., Peccenini, S., Muratovic, E., Zoldos, V., Robin, O. and Valles, J. (2003). Chromosomal differentiation and genome size in three European mountain Lilium species. Plant Systematics and Evolution, 236, 165-173.
  • [6]. Sharma, JR., Sharma, A., Singh, A.K. and Kumar, S. (1996). Economic Potential and Improved Varieties of Aromatic Plants of India, Journal of Medicinal and Aromatic Plant Sci. 19, 512-522.
  • [7]. Baser, H.C., 1998. Tıbbi ve Aromatik Bitkilerin Endüstriyel Kullanımı TAB Bülteni 13-14, 19-43.
  • [8]. Comber, H. F. (1949). A new classification of the genus Lilium. Lily Year-Book, 13, 86–105.
  • [9]. De Jong, P. C. (1974). Some notes on evolution of lilies. N. Amer. Lily Year-Book, 27, 23–28.
  • [10]. Baranova, M. V. (1988). Konspekt sistemy roda Lilium (Liliaceae). A synopsis of the system of the genus Lilium (Liliaceae). Bot. Zhurn. (Mos-cow & Leningrad), 73(9), 1319–1329.
  • [11]. Mabberley, D. J. (1990). The Plant-Book. Cambridge University Press, Cambridge.
  • [12]. Arslan, N., (1998). Türkiye’de doğal çiçek soğanlarının potansiyeli ve geleceği. I. Ulusal Süs Bitkileri Kongresi, Haziran, 202-215, Yalova.
  • [13]. Davis, P.H., (1985). Flora of Turkey and The East Aegean Island, Edinburgh University Press,8, Edinburgh.
  • [14]. Zencirkıran, M., (2002). Geofitler. Uludağ Rotary Derneği Yayınları,1,105, Harman Ofset. İstanbul.
  • [15]. Wilson, H.F. and B. Mathew. (1981). Bulbs–The bulbous plants of Europe and Their Allies, William Collins Sons & Co.Ltd., 285.
  • [16]. Özen, F., Temeltaş, H. and Aksoy, Ö. (2012). The anatomy and morphology of the medicinal plant, Lilium candidum L. (Liliaceae), distributed in Marmara region of Turkey. Pak. J. Bot., 44(4), 1185-1192.
  • [17]. Uzun, G. (1984). Zambak Yetiştiriciliği, Tarımsal Araştırmaları Destekleme ve Geliştirme Vakfı, Yalova
  • [18]. Korkut, A. B. (2004). Çiçekçilik. Hasat Yayıncılık Ltd Şirketi, ISBN 975-8377-28-0, İstanbul.
  • [19]. Pelkonen, V. and Pirttila, A.M. (2012). Taxonomy and Phylogeny of the Genus Lilium. Floriculture and Ornamental Biotechnology 6(2), 1-8.
  • [20]. Karamanoglu, K. (1973). Farmasötik Botanik. Ankara Uni. Ecz. Fak. Yay., 44, Ankara.
  • [21]. Güney, A., (1989). Türkiye’de Parfüm Bitkileri ve Değerlendirme Olanakları. Ege Üni. Ziraat Fak. Dergisi, 26(1), 2-21.
  • [22]. Baytop, T. (1984). Türkiye’de Bitkiler ile Tedavi. İstanbul Üni.Yay.,40, İstanbul.
  • [23]. Özçelik, H., Ay, G. ve Öztürk, M. (1990). Doğu ve Güneydoğu Anadolu’nun ekonomik yönden önemli bazı bitkileri. 10. Ulusal Biyoloji Kongresi, Bildiri Kitabı,11, Temmuz, Erzurum
  • [24]. De J. PC. (1974). Some notes on the evolution of lilies. The Lily year book of the North American Lily Society, 27, 23-28.
  • [25]. Chang, C., Chen, CT, Tsai YC and Chang WC. (2000). A tissue culture protocol for propagation of a rare plant, Lilium speciosum Thunb. Var. glorisoides Baker. Bot. Bull. Acad. Sin., 41, 139-142.
  • [26]. Wawrosch, C., Malla, PR. and Kopp, B. (2001). Clonal propagation of Lilium nepalense D.Don, a threatened medicinal plant of Nepal. Plant Cell Reproduction, 20, 285-288.
  • [27]. Khawar, KM., Cocu, S., Parmaksiz, I., Sarihan, EO., and Ozcan, S. (2005). Mass proliferation of Madonna lily (Lilium candidum L.) under in vitro conditions. Pakistan Journal of Botany. 37(2), 243-248.
  • [28]. Dhyani, A. (2007). Exploring Lilium polyphyllum in Uttarakhand, India. The Lily Yearbook of North American Lily Societ, 60, 79-82.
  • [29]. Jovtchev, G., Gateva, S. and Stankov, A. (2014). Lilium Compounds Kaempferol and Jatropham Can Modulate Cytotoxic and Genotoxic Effects of Radiomimetic Zeocin in Plants and Human Lymphocytes In Vitro, Environ Toxicol, 31(6), 751–764.
  • [30]. Chehregani, A. and Kouhkan, F. (2008). Diesel exhaust particles and allergenicity of pollen grains of Lilium martagon, Ecotoxicology and Environmental Safety, 69, 568–573.
  • [31]. Yarmolinsky, L., Zaccai, M., Ben-Shabat, S., Mills, D. and Huleihel, M. (2009). Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidum in vitro. New Biotechnology, 26(6), 307-313.
  • [32]. Levan, A. (1939). Amphibivalent formation in Allium cernuum and its consequences in the pollen. Bot. Notis., 5(11), 256-260.
  • [33]. Haga, T. (1938). A reciprocal translocation in Lilium hansonii Leicht. (A preliminary note). Jap. Jour. Genet., 14, 296-299.
  • [34]. Haga T., (1943-1944). A Reciprocal Translocation in Lilium hansonii Leicht. Cytologia, 13(1), 19-25.
  • [35]. Asano, Y. (1978). Studies on crosses between distantly related species of lilies. III. New hybrids obtained through embryo culture. J. Japan. Soc. Hort. Sci., 47(3), 401-414.
  • [36]. Asano, Y. (1980). Studies on crosses between distantly related species of lilies. V. Characters of newly obtained hybrids through embryo culture. J. Japan. Soc. Hort. Sci. 49 (2), 241-250.
  • [37]. Asano, Y. (1982b). Chromosome association and pollen fertility in some interspecific hybrids of Lilium. Euphytica, 31, 121-128.
  • [38]. Emsweller, S. L. and J. Uhring. (1966). Lilium x ‘Black Beauty’–Diploid and amphidiploid. R. hort. Soc. Lily Yb., 29, 45–47.
  • [39]. Asano, Y. (1984). Fertility of a Hybrid between Distantly Related Species in Lilium. Cytologia, 49, 447-456.
  • [40]. Brock, R. O. (1954). Fertility in Lilium Hybrids. Heredity, 8, 409–420.
  • [41]. Gao, Y.D., Zhou, S.D. and He X.J. (2011). Karyotype studies in thirty-two species of Lilium (Liliaceae) from China. Nordic Journal of Botany, 29, 746-761.
  • [42]. Lim, K.B., Barba-Gonzalez, R., Zhou, S., Ramanna, M.S. and Tuyl, M. (2008). Interspecific Hybridization in Lily (Lilium): Taxonomic and Commercial Aspects of Using Species Hybrids in Breeding. Floriculture, Ornamental and Plant Biotechnology, 5, 138-145.
  • [43]. Muratovic E., Bogunic F., Soljan D. and Yakovlev S. (2005). Does Lilium bosniacum merit species rank? A classical and molecular-cytogenetic analysis. Plant Syst. Evol., 252, 97–109.
  • [44]. Weniger, W. (1918). Fertılızatıon ın Lilium. Botanical Gazette, 66(3), 259-268.
  • [45]. Persson, H., Lundqyist K. and Nybom H. (1998). RAPD analysis of genetic variation within and among populations of Turk’s-cap lily (Lilium martagon L.). Hereditas, 128, 213-220.
  • [46]. Varshney A., Lakshmikumaran M., Srivastava P.S. and Dhawan V. (2001). Establishment of Genetic Fidelity of In vitro–Raised Lilium Bulblets Through RAPD Markers, In Vitro Cell. Dev. Biol.Plant, 37, 227-231.
  • [47]. Saygılı, L. (2012). Lilium yetiştiriciliğinde farklı agregatların ve besin solusyonlarının kullanım olanakları. Adnan Menderes Ünivesitesi, Yükseklisans Tezi, Aydın.
  • [48]. İkinci, N. (2011). Molecular phylogeny and divergence times estimates of Lilium section Liriotypus (Liliaceae) based on plastid and nuclear ribosomal ITS DNA sequence data. Turk. J. Bot., 35, 319-330.
  • [49]. Gao, Y.D., Harris, A., Zhou, S.D. and He, X.J. (2013). Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q–T plateau and the Hengduan Mountains. Molecular Phylogenetics and Evolution, 68, 443–460.
  • [50]. Gao, Y.D. and Hohenegger, M. (2012). A new species in the genus Nomocharis Franchet (Liliaceae): evidence that brings the genus Nomocharis into Lilium. Plant Syst Evol, 298, 69–85.
  • [51]. Lee, C.S., Kim, S.C. and Yeau S.H. (2011). Major Lineages of the Genus Lilium (Liliaceae) based on nrDNA ITS Sequences, with Special Emphasis on the Korean Species. J. Plant Biol., 54, 159–171.
  • [52]. Vesque, J. (1879), Développement du sac embryonnaire des Phanérogames Angiospermes. Compt. Rend., 88: 1359-1361.
  • [53]. Dixon H. (1895). On the ascent of Sap. Philosophical Transactions of the Royal Society of London, 186, 563-576.
  • [54]. Cooper, D.C. (1935). Macrosporogenesis and Development of the Embryo Sac of Lilium henryi. Int. J. Pla. Sci., 97(2), 346-355.
  • [55]. Kedra, M. and Bach, A. (2005). Morphogenesis of Lilium martagon L. Explants in Callus Culture. Acta Biologica Cracoviensia Series Botanica, 47(1), 65–73.
  • [56]. Messerli, M. and Robinson, K. (1997). Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. Journal of Cell Science, 110, 1269-1278.
  • [57]. Kaminska, M. and Dziekanowska, D. (2002). Molecular Evidence for the Presence of Aster Yellows-Related Phytoplasmas in Lilies with Leaf Scorch and Flower Virescence. J. Phytopathology, 150, 90-93
  • [58]. Hepper, F.N. (2003). Phenological records of English garden plants in Leeds (Yorkshire) and Richmond (Surrey) from 1946 to 2002. An analysis relating to global warming, Biodiversity and Conservation, 12, 2503–2520.
  • [59]. Munafo JP. and Gianfagna T.J. (2015). Quantitative Analysis of Phenylpropanoid Glycerol Glucosides in Different Organs of Easter Lily (Lilium longiflorum Thunb.), J. Agric. Food Chem., 63(19), 4836–4842.
  • [60]. Munafo, Jr. J.P., Ramanathan, A., Jimenez, L. and Gianfagna, T. (2010), Isolation and Structural Determination of Steroidal Glycosides from the Bulbs of Easter Lily (Lilium longiflorum Thunb.). J. Agric. Food Chem., 58, 8806–8813.
  • [61]. Mimaki, Y., Satou, T., Kuroda, M., Sashida, Y. and Hatakeyama, Y., (1999). Steroidal saponins from the bulbs of Lilium candidum. Phytochemistry 51, 567-573.
  • [62]. Koca, N.ve Karadeniz, F., (2003). Serbest Radikal Oluşum Mekanizmaları ve Vücuttaki Antioksidan Savunma Sistemleri. Gıda Mühendisliği Dergisi, 16, 32-37.
  • [63]. Krishnaiah, D., Sarbatly, R., and Bono, A. (2007). Phytochemical antioxidants for health and medicine - A move towards orld . Biotechnology and Molecular Biology Review, 1(4), 97–104.
  • [64]. Jin, L., Zhang, Y., Yan, L., Guo, Y. and Niu, L. (2012). Phenolic Compound and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China. Molecules, 17(8), 9361-9378.
  • [65]. Luo, J.G., Li, L. and Kong, L.Y. (2012). Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of theirantioxidant activities. Food Chem., 131, 1056–1062.
  • [66]. Tseng, Y.-H., Yang, J.-H., and Mau, J.-L. (2008). Antioxidant properties of polysaccharides from Ganoderma tsugae. Food Chemistry, 107(2), 732–738.
  • [67]. Ananthi, S., Raghavendran, H. R. B., Sunil, A. G., Gayathri, V., Ramakrishnan, G., and Vasanthi, H. R. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornate (Marine Brown Alga). Food and Chemical Toxicology, 48(1), 187–192.
  • [68]. Xiao, J., Liong, E. C., Ching, Y. P., Chang, R. C. C., So, K. F., Fung, M. L., et al. (2012). Lycium barbarum polysaccharides protect mice liver from carbon tetrachlorideinduced oxidative stress and neuroinflammation. Journal of Ethnopharmacology, 139(2), 462–470.
  • [69]. Gao, J., Zhang, T., Jin, Z.Y., Xu, X.M., Wang, J.H., Zha, X.Q. and Chen, H.Q. (2015). Structural characterisation, physicochemical properties and antioxidant activity of polysaccharide from Lilium lancifolium Thunb. Food Chemistry, 169, 430-438.
  • [70]. Zhou, SJ., Yi, MF. and Mu, D. (2005). The preliminary research on the morphological and physiological response to heat stress of Lilium longiflorum Seedlings. Acta Hortic Sin, 32, 145–147
  • Yin, H., Chen, Q. and Yi, M. (2008). Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation, 54, 45-54.
  • [72]. Sato, T. and Milloshi, K. (2006). Thermosentitivity of resoration of male fertility and genotypic differences in formation of aberrant filmarat and pistils among three male-sterize cultivars of Asiatic hybrid lily. Acta Hortic, 714, 67–74
  • [73]. Pinhero, RG., Rao, MV., Paliyath, G. and Fletcher, RA. (1997). Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol, 114, 695–704.

Studies on lilium species

Year 2017, Volume 4, Issue 1, 47 - 60, 07.01.2017
https://doi.org/10.21448/ijsm.282978

Abstract

In this review, some studies on Lilium genus that have about 100 species and belong to Liliaceae were investigated and compiled. Lilium is used in different fields as medicine, food, landscape and perfumery industry. There are a lot of molecular and genetic studies on Lilium species because of its large chromosomes. The antioxidant, cytotoxic, genotoxic activities of some species were determined and some phyochemical compounds were isolated from Lilium species. According to researches, Lilium species are potential antioxidant sources and include some compounds as steroidal saponins, glycoalkaloid and phenolic glyceride was found. Consequently, this review strongly suggest that this genus may serve for pharmaceutical applications and can continue to be used as an ornamental plant.

References

  • [1]. Kaviani, B., Dehkaei Padasht, M.N., Darabi, A.H., Rafizadeh, A. and Rahmati, B. (2008). The Anatomical Properties of Endemic Lilium ledebourii (Baker) Bioss. (Liliaceae) Species. International Journal of Botany, 4(1), 62-66.
  • [2]. İkinci, N., Oberprieler, C. and Güner, A. (2006). On the origin of European lilies: phylogenetic analysis of Lilium section Liriotypus (Liliaceae) using sequences of the nuclear ribosomal transcribed spacers. Willdenowia, 36(H.2), 647-656.
  • [3]. Ozdemir, C. (2003). Morphological, Anatomical and Cytological Characteristics of Endemic Lilium ciliatum P.H. Davis (Liliaceae) in Turkey. Pak.J.Bot., 35(1), 99-110.
  • [4]. Dhyani, A., Bahuguna Y.M., Semwal D.R., Nautiyal B.P. and Nautiyal M.C. (2009). Anatomical features of Lilium polyphyllum D. Don ex Royle (Liliaceae), Journal of American Science., 5(5), 85-90.
  • [5]. Siljak-Yakovlev, S., Peccenini, S., Muratovic, E., Zoldos, V., Robin, O. and Valles, J. (2003). Chromosomal differentiation and genome size in three European mountain Lilium species. Plant Systematics and Evolution, 236, 165-173.
  • [6]. Sharma, JR., Sharma, A., Singh, A.K. and Kumar, S. (1996). Economic Potential and Improved Varieties of Aromatic Plants of India, Journal of Medicinal and Aromatic Plant Sci. 19, 512-522.
  • [7]. Baser, H.C., 1998. Tıbbi ve Aromatik Bitkilerin Endüstriyel Kullanımı TAB Bülteni 13-14, 19-43.
  • [8]. Comber, H. F. (1949). A new classification of the genus Lilium. Lily Year-Book, 13, 86–105.
  • [9]. De Jong, P. C. (1974). Some notes on evolution of lilies. N. Amer. Lily Year-Book, 27, 23–28.
  • [10]. Baranova, M. V. (1988). Konspekt sistemy roda Lilium (Liliaceae). A synopsis of the system of the genus Lilium (Liliaceae). Bot. Zhurn. (Mos-cow & Leningrad), 73(9), 1319–1329.
  • [11]. Mabberley, D. J. (1990). The Plant-Book. Cambridge University Press, Cambridge.
  • [12]. Arslan, N., (1998). Türkiye’de doğal çiçek soğanlarının potansiyeli ve geleceği. I. Ulusal Süs Bitkileri Kongresi, Haziran, 202-215, Yalova.
  • [13]. Davis, P.H., (1985). Flora of Turkey and The East Aegean Island, Edinburgh University Press,8, Edinburgh.
  • [14]. Zencirkıran, M., (2002). Geofitler. Uludağ Rotary Derneği Yayınları,1,105, Harman Ofset. İstanbul.
  • [15]. Wilson, H.F. and B. Mathew. (1981). Bulbs–The bulbous plants of Europe and Their Allies, William Collins Sons & Co.Ltd., 285.
  • [16]. Özen, F., Temeltaş, H. and Aksoy, Ö. (2012). The anatomy and morphology of the medicinal plant, Lilium candidum L. (Liliaceae), distributed in Marmara region of Turkey. Pak. J. Bot., 44(4), 1185-1192.
  • [17]. Uzun, G. (1984). Zambak Yetiştiriciliği, Tarımsal Araştırmaları Destekleme ve Geliştirme Vakfı, Yalova
  • [18]. Korkut, A. B. (2004). Çiçekçilik. Hasat Yayıncılık Ltd Şirketi, ISBN 975-8377-28-0, İstanbul.
  • [19]. Pelkonen, V. and Pirttila, A.M. (2012). Taxonomy and Phylogeny of the Genus Lilium. Floriculture and Ornamental Biotechnology 6(2), 1-8.
  • [20]. Karamanoglu, K. (1973). Farmasötik Botanik. Ankara Uni. Ecz. Fak. Yay., 44, Ankara.
  • [21]. Güney, A., (1989). Türkiye’de Parfüm Bitkileri ve Değerlendirme Olanakları. Ege Üni. Ziraat Fak. Dergisi, 26(1), 2-21.
  • [22]. Baytop, T. (1984). Türkiye’de Bitkiler ile Tedavi. İstanbul Üni.Yay.,40, İstanbul.
  • [23]. Özçelik, H., Ay, G. ve Öztürk, M. (1990). Doğu ve Güneydoğu Anadolu’nun ekonomik yönden önemli bazı bitkileri. 10. Ulusal Biyoloji Kongresi, Bildiri Kitabı,11, Temmuz, Erzurum
  • [24]. De J. PC. (1974). Some notes on the evolution of lilies. The Lily year book of the North American Lily Society, 27, 23-28.
  • [25]. Chang, C., Chen, CT, Tsai YC and Chang WC. (2000). A tissue culture protocol for propagation of a rare plant, Lilium speciosum Thunb. Var. glorisoides Baker. Bot. Bull. Acad. Sin., 41, 139-142.
  • [26]. Wawrosch, C., Malla, PR. and Kopp, B. (2001). Clonal propagation of Lilium nepalense D.Don, a threatened medicinal plant of Nepal. Plant Cell Reproduction, 20, 285-288.
  • [27]. Khawar, KM., Cocu, S., Parmaksiz, I., Sarihan, EO., and Ozcan, S. (2005). Mass proliferation of Madonna lily (Lilium candidum L.) under in vitro conditions. Pakistan Journal of Botany. 37(2), 243-248.
  • [28]. Dhyani, A. (2007). Exploring Lilium polyphyllum in Uttarakhand, India. The Lily Yearbook of North American Lily Societ, 60, 79-82.
  • [29]. Jovtchev, G., Gateva, S. and Stankov, A. (2014). Lilium Compounds Kaempferol and Jatropham Can Modulate Cytotoxic and Genotoxic Effects of Radiomimetic Zeocin in Plants and Human Lymphocytes In Vitro, Environ Toxicol, 31(6), 751–764.
  • [30]. Chehregani, A. and Kouhkan, F. (2008). Diesel exhaust particles and allergenicity of pollen grains of Lilium martagon, Ecotoxicology and Environmental Safety, 69, 568–573.
  • [31]. Yarmolinsky, L., Zaccai, M., Ben-Shabat, S., Mills, D. and Huleihel, M. (2009). Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidum in vitro. New Biotechnology, 26(6), 307-313.
  • [32]. Levan, A. (1939). Amphibivalent formation in Allium cernuum and its consequences in the pollen. Bot. Notis., 5(11), 256-260.
  • [33]. Haga, T. (1938). A reciprocal translocation in Lilium hansonii Leicht. (A preliminary note). Jap. Jour. Genet., 14, 296-299.
  • [34]. Haga T., (1943-1944). A Reciprocal Translocation in Lilium hansonii Leicht. Cytologia, 13(1), 19-25.
  • [35]. Asano, Y. (1978). Studies on crosses between distantly related species of lilies. III. New hybrids obtained through embryo culture. J. Japan. Soc. Hort. Sci., 47(3), 401-414.
  • [36]. Asano, Y. (1980). Studies on crosses between distantly related species of lilies. V. Characters of newly obtained hybrids through embryo culture. J. Japan. Soc. Hort. Sci. 49 (2), 241-250.
  • [37]. Asano, Y. (1982b). Chromosome association and pollen fertility in some interspecific hybrids of Lilium. Euphytica, 31, 121-128.
  • [38]. Emsweller, S. L. and J. Uhring. (1966). Lilium x ‘Black Beauty’–Diploid and amphidiploid. R. hort. Soc. Lily Yb., 29, 45–47.
  • [39]. Asano, Y. (1984). Fertility of a Hybrid between Distantly Related Species in Lilium. Cytologia, 49, 447-456.
  • [40]. Brock, R. O. (1954). Fertility in Lilium Hybrids. Heredity, 8, 409–420.
  • [41]. Gao, Y.D., Zhou, S.D. and He X.J. (2011). Karyotype studies in thirty-two species of Lilium (Liliaceae) from China. Nordic Journal of Botany, 29, 746-761.
  • [42]. Lim, K.B., Barba-Gonzalez, R., Zhou, S., Ramanna, M.S. and Tuyl, M. (2008). Interspecific Hybridization in Lily (Lilium): Taxonomic and Commercial Aspects of Using Species Hybrids in Breeding. Floriculture, Ornamental and Plant Biotechnology, 5, 138-145.
  • [43]. Muratovic E., Bogunic F., Soljan D. and Yakovlev S. (2005). Does Lilium bosniacum merit species rank? A classical and molecular-cytogenetic analysis. Plant Syst. Evol., 252, 97–109.
  • [44]. Weniger, W. (1918). Fertılızatıon ın Lilium. Botanical Gazette, 66(3), 259-268.
  • [45]. Persson, H., Lundqyist K. and Nybom H. (1998). RAPD analysis of genetic variation within and among populations of Turk’s-cap lily (Lilium martagon L.). Hereditas, 128, 213-220.
  • [46]. Varshney A., Lakshmikumaran M., Srivastava P.S. and Dhawan V. (2001). Establishment of Genetic Fidelity of In vitro–Raised Lilium Bulblets Through RAPD Markers, In Vitro Cell. Dev. Biol.Plant, 37, 227-231.
  • [47]. Saygılı, L. (2012). Lilium yetiştiriciliğinde farklı agregatların ve besin solusyonlarının kullanım olanakları. Adnan Menderes Ünivesitesi, Yükseklisans Tezi, Aydın.
  • [48]. İkinci, N. (2011). Molecular phylogeny and divergence times estimates of Lilium section Liriotypus (Liliaceae) based on plastid and nuclear ribosomal ITS DNA sequence data. Turk. J. Bot., 35, 319-330.
  • [49]. Gao, Y.D., Harris, A., Zhou, S.D. and He, X.J. (2013). Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q–T plateau and the Hengduan Mountains. Molecular Phylogenetics and Evolution, 68, 443–460.
  • [50]. Gao, Y.D. and Hohenegger, M. (2012). A new species in the genus Nomocharis Franchet (Liliaceae): evidence that brings the genus Nomocharis into Lilium. Plant Syst Evol, 298, 69–85.
  • [51]. Lee, C.S., Kim, S.C. and Yeau S.H. (2011). Major Lineages of the Genus Lilium (Liliaceae) based on nrDNA ITS Sequences, with Special Emphasis on the Korean Species. J. Plant Biol., 54, 159–171.
  • [52]. Vesque, J. (1879), Développement du sac embryonnaire des Phanérogames Angiospermes. Compt. Rend., 88: 1359-1361.
  • [53]. Dixon H. (1895). On the ascent of Sap. Philosophical Transactions of the Royal Society of London, 186, 563-576.
  • [54]. Cooper, D.C. (1935). Macrosporogenesis and Development of the Embryo Sac of Lilium henryi. Int. J. Pla. Sci., 97(2), 346-355.
  • [55]. Kedra, M. and Bach, A. (2005). Morphogenesis of Lilium martagon L. Explants in Callus Culture. Acta Biologica Cracoviensia Series Botanica, 47(1), 65–73.
  • [56]. Messerli, M. and Robinson, K. (1997). Tip localized Ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of Lilium longiflorum. Journal of Cell Science, 110, 1269-1278.
  • [57]. Kaminska, M. and Dziekanowska, D. (2002). Molecular Evidence for the Presence of Aster Yellows-Related Phytoplasmas in Lilies with Leaf Scorch and Flower Virescence. J. Phytopathology, 150, 90-93
  • [58]. Hepper, F.N. (2003). Phenological records of English garden plants in Leeds (Yorkshire) and Richmond (Surrey) from 1946 to 2002. An analysis relating to global warming, Biodiversity and Conservation, 12, 2503–2520.
  • [59]. Munafo JP. and Gianfagna T.J. (2015). Quantitative Analysis of Phenylpropanoid Glycerol Glucosides in Different Organs of Easter Lily (Lilium longiflorum Thunb.), J. Agric. Food Chem., 63(19), 4836–4842.
  • [60]. Munafo, Jr. J.P., Ramanathan, A., Jimenez, L. and Gianfagna, T. (2010), Isolation and Structural Determination of Steroidal Glycosides from the Bulbs of Easter Lily (Lilium longiflorum Thunb.). J. Agric. Food Chem., 58, 8806–8813.
  • [61]. Mimaki, Y., Satou, T., Kuroda, M., Sashida, Y. and Hatakeyama, Y., (1999). Steroidal saponins from the bulbs of Lilium candidum. Phytochemistry 51, 567-573.
  • [62]. Koca, N.ve Karadeniz, F., (2003). Serbest Radikal Oluşum Mekanizmaları ve Vücuttaki Antioksidan Savunma Sistemleri. Gıda Mühendisliği Dergisi, 16, 32-37.
  • [63]. Krishnaiah, D., Sarbatly, R., and Bono, A. (2007). Phytochemical antioxidants for health and medicine - A move towards orld . Biotechnology and Molecular Biology Review, 1(4), 97–104.
  • [64]. Jin, L., Zhang, Y., Yan, L., Guo, Y. and Niu, L. (2012). Phenolic Compound and Antioxidant Activity of Bulb Extracts of Six Lilium Species Native to China. Molecules, 17(8), 9361-9378.
  • [65]. Luo, J.G., Li, L. and Kong, L.Y. (2012). Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of theirantioxidant activities. Food Chem., 131, 1056–1062.
  • [66]. Tseng, Y.-H., Yang, J.-H., and Mau, J.-L. (2008). Antioxidant properties of polysaccharides from Ganoderma tsugae. Food Chemistry, 107(2), 732–738.
  • [67]. Ananthi, S., Raghavendran, H. R. B., Sunil, A. G., Gayathri, V., Ramakrishnan, G., and Vasanthi, H. R. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornate (Marine Brown Alga). Food and Chemical Toxicology, 48(1), 187–192.
  • [68]. Xiao, J., Liong, E. C., Ching, Y. P., Chang, R. C. C., So, K. F., Fung, M. L., et al. (2012). Lycium barbarum polysaccharides protect mice liver from carbon tetrachlorideinduced oxidative stress and neuroinflammation. Journal of Ethnopharmacology, 139(2), 462–470.
  • [69]. Gao, J., Zhang, T., Jin, Z.Y., Xu, X.M., Wang, J.H., Zha, X.Q. and Chen, H.Q. (2015). Structural characterisation, physicochemical properties and antioxidant activity of polysaccharide from Lilium lancifolium Thunb. Food Chemistry, 169, 430-438.
  • [70]. Zhou, SJ., Yi, MF. and Mu, D. (2005). The preliminary research on the morphological and physiological response to heat stress of Lilium longiflorum Seedlings. Acta Hortic Sin, 32, 145–147
  • Yin, H., Chen, Q. and Yi, M. (2008). Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation, 54, 45-54.
  • [72]. Sato, T. and Milloshi, K. (2006). Thermosentitivity of resoration of male fertility and genotypic differences in formation of aberrant filmarat and pistils among three male-sterize cultivars of Asiatic hybrid lily. Acta Hortic, 714, 67–74
  • [73]. Pinhero, RG., Rao, MV., Paliyath, G. and Fletcher, RA. (1997). Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol, 114, 695–704.

Details

Subjects Biology
Journal Section Articles
Authors

Tofik MAMMADOV>
Institute of Dendrology NAS of Azerbaijan
Azerbaijan


Nahide DENİZ This is me
PAMUKKALE UNIV
Türkiye


Akgül RAKHİMZHANOVA This is me
PAMUKKALE UNIV
Türkiye


Özge KILINÇARSLAN>
PAMUKKALE UNIV
0000-0003-4944-1029
Türkiye


Ramazan MAMMADOV>
PAMUKKALE UNIV

Publication Date January 7, 2017
Published in Issue Year 2017, Volume 4, Issue 1

Cite

APA Mammadov, T. , Deniz, N. , Rakhimzhanova, A. , Kılınçarslan, Ö. & Mammadov, R. (2017). Studies on lilium species . International Journal of Secondary Metabolite , 4 (1) , 47-60 . DOI: 10.21448/ijsm.282978

International Journal of Secondary Metabolite (IJSM)

ISSN-e: 2148-6905