Pharmacognostical Studies on Acer campestre L. subsp. campestre
Year 2020,
Volume: 7 Issue: 2, 126 - 138, 13.06.2020
Burcu Şen Utsukarçi
,
Yavuz Bal
,
Bahar Gurdal
,
Hilal Bardakçı Altan
,
Fatıma Nur Yılmaz
,
Sibel Döşler
Abstract
This study on Acer campestre L. subsp. campestre, used traditionally in treatments of various inflammation disorders, especially hemorrhoids and rheumatism, aimed to determine the total phenolic contents, the antioxidant and antimicrobial potentials, and the chemical composition profile of the extracts and subextracts from maple syrup and Acer campestre L. subsp. campestre leaves and twigs. The antioxidant activities of maple syrup extracts and subextracts were examined by 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and the total phenolic contents of all samples were determined using the Folin-Ciocalteu reagent (FCR) method. Also, they were tested for their antimicrobial activities by microbroth dilution technique. Catechic tannin, saponins and flavonoids are determined in its leaves and twigs by preliminary qualitative phytochemical analysis. The alcoholic extracts obtained by 48-hour maceration (91.2%), ethyl acetate subextract of alcohol extracts obtained by 24-hour maceration (91.1%) and alcohol extracts obtained by 24-hour maceration (88.8%) exhibited higher radical scavenging activity than other samples, while the decoction and infusion had moderate activities. Beside of this, it was found that the syrup and its subextracts have more total phenolic contents than other extracts. The alcohol extracts obtained by 24-hour maceration and by 48-hour maceration exhibited higher activity against Candida albicans (78 μg/mL and 156 μg/mL, respectively). Only the alcohol extract obtained by 48-hour maceration and ethyl acetate subextract of syrup showed an activity against Escherichia coli, while all samples except butanol subextract of syrup have an antibacterial activity against Pseudomonas aeruginosa.
References
- Ravipati, A.S., Zhang, L., Koyyalamudi, S.R., Jeong, S.C., Reddy, N., Bartlett, J., Satyanarayanan, M. (2012). Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med., 12, Article number: 173. https://doi.org/10.1186/1472-6882-12-173
- Schinella, G.R., Tournier, H.A., Prieto, J.M. (2002). Antioxidant activity of anti-inflammatory plant extracts. Life Sciences, 70, 1023-1033. https://doi.org/10.1016/S0024-3205(01)01482-5
- Zhang, L., Ravipati, A.S., Koyyalamudi, S.R., Jeong, S.C., Reddy, N., Smith, P.T., Bartlett, J., Shanmugam, K., Münch, D.G., Wu, M.J. (2011). Antioxidant and Anti-inflammatory Activities of Selected Medicinal Plants Containing Phenolic and Flavonoid compounds. J. Agric. Food Chem., 59, 12361–12367. https://doi.org/10.1021/jf203146e
- Talhouk, R., Karam, C., Fostok, S., El-Jouni, W., Barbour, E. (2007). Anti-inflammatory bioactivities in plant extracts. J. Med. Food, 10, 1 10. https://doi.org/10.1089/jmf.2005.055
- Zhang, Y., Yuan, T., Li, L., Nahar, P., Slitt, A., Seeram, N.P. (2014). Chemical compositional, biological, and safety studies of a novel maple syrup derived extract for nutraceutical applications. J. Agric. Food Chem., 62, 6687 6698. https://doi.org/10.1021/jf501924y
- Perkins, T.D., van den Berg, A.K. (2009). Maple syrup-production, composition, chemistry, and sensory characteristics. In Advances in Food and Nutrition Research; Taylor, S.L. Ed.; Academic Press, Elsevier, USA, 2009, Volume 56, pp. 101−143. ISBN: 978-0-12-374439-5
- Storz, G., Darvill, A.G., Albersheim, P. (1986). Characterization of polysaccharides isolated from maple syrup. Phytochemistry, 25, 437-441, https://doi.org/10.1016/S0031-9422(00)85497-7
- Ball, D. W. (2007). The chemical composition of maple syrup. J. Chem. Educ., 84, 1647-1650. https://doi.org/10.1021/ed084p1647
- Li, L., Seeram, N.P. (2010). Maple syrup phytochemicals include lignans, coumarins, a stilbene and other previously unreported antioxidant phenolic compounds. J. Agric. Food Chem., 58, 11673-11679. https://doi.org/10.1021/jf1033398
- Li, L., Seeram, N.P. (2011). Further investigation into maple syrup yields three new lignans, a new phenylpropanoid, and twenty-six other phytochemicals. J. Agric. Food Chem., 59, 7708-7716. https://doi.org/10.1021/jf2011613
- Li, L., Seeram, N.P. (2011). Quebecol, a novel phenolic compound isolated from Canadian maple syrup. J. Funct. Foods, 3, 125-128.
https://doi.org/10.1016/j.jff.2011.02.004
- Yuan, T., Li, L., Zhang, Y., Seeram, N.P. (2013). Pasteurized and sterilized maple sap as functional beverages: Chemical composition and antioxidant activities. J. Funct. Foods, 5, 1582−1590. https://doi.org/10.1016/j.jff.2013.06.009
- Kermasha, S., Goetghebeur, M., Dumont, J. (1995). Determination of phenolic compound profiles in maple products by high performance liquid chromatography. J. Agric. Food Chem., 43, 708−716. https://doi.org/10.1021/jf00051a028
- Abou-Zaid, M.M., Nozzolillo, C., Tonon, A., Coppens, M., Lombardo, A.D.A. (2008). High performance liquid chromatography characterization and identification of antioxidant polyphenols in maple syrup. Pharm. Biol., 46, 117−125. https://doi.org/10.1080/13880200701735031
- González-Sarrías, A., Li, L., Seeram, N. P. (2012). Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells. Phytother. Res., 26, 995−1002. https://doi.org/10.1002/ptr.3677
- Legault, J., Girard-Lalancette, K., Grenon, C., Dussault, C., Pichette, A. (2010). Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum. J. Med. Food, 13, 460−468. https://doi.org/10.1089/jmf.2009.0029
- Nahar, P.P., Driscoll, M. V., Li, L., Slitt, A. L., Seeram, N.P. (2014). Phenolic mediated anti-inflammatory properties of a maple syrup extract in RAW 264.7 murine macrophages. J. Funct. Foods, 6, 126−136. https://doi.org/10.1016/j.jff.2013.09.026
- Watanabe, Y., Kamei, A., Shinozaki, F., Ishijima, T., Iida, K., Nakai, Y., Arai, S., Abe, K. (2011). Ingested maple syrup evokes a possible liverprotecting effect-physiologic and genomic investigations with rats. Biosci. Biotechnol. Biochem., 75, 2408−2410. https://doi.org/10.1271/bbb.110532
- Nagai, N., Ito, Y., Taga, A. (2013). Comparison of the enhancement of plasma glucose levels in type 2 diabetes Otsuka Long-Evans Tokushima fatty rats by oral administration of sucrose or maple syrup. J. Oleo Sci., 62, 737−743. https://doi.org/10.5650/jos.62.737
- Thériault, M., Caillet, S., Kermasha, S., Lacroix, M. (2006). Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food Chem., 98, 490–501. https://doi.org/10.1016/j.foodchem.2005.05.079
- González-Sarrías, A., Yuan, T., Seeram, N.P. (2012). Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum). Food Chem. Toxicol., 50, 1369–1376. https://doi.org/10.1016/j.fct.2012.02.031
- Honma, A., Koyama, T., Yazawa, K. (2010). Anti-hyperglycemic effects of sugar maple Acer saccharum and its constituent acertannin. Food Chem., 123, 390–394. https://doi.org/10.1016/j.foodchem.2010.04.052
- Wu, D., Wu, X.D., You, X.-F., Ma, X.-F., Tian, W.-X.. (2010). Inhibitory Effects on Bacterial Growth and beta-Ketoacyl-ACP Reductase by Different Species of Maple Leaf Extracts and Tannic Acid. Phytother. Res., 24, S35-S41. https://doi.org/10.1002/ptr.2873
- Jedinak, A., Valachova, M., Maliar, T., Sturdik, E. (2010). Antiprotease activity of selected Slovak medicinal plants. Pharmazie, 65, 137 140. https://doi.org/10.1691/ph.2010.9668
- Ecevit Genc G., Ozhatay N. (2006). An ethnobotanical study in Catalca (European part of Istanbul) II. Turk. J. Pharm. Sci., 3, 73-89.
- Tuzlacı, E. (2016). Turkiye Bitkileri Geleneksel Ilac Rehberi; Istanbul Medikal Saglik ve Yayincilik, Istanbul, Turkey, pp. 630-631. ISBN: 9786054949717
- Baytop, B. (1980). Farmakognozi, Volume I, 3. Edition; Istanbul Universitesi Yayinlari, Baha Matbaası, Istanbul, Turkey, pp. 206-207.
- Bardakci, H., Celep, E., Kurt-Celep, I., Deniz, I., Sen-Utsukarci, B., Akaydin, G. (2019). A comparative investigation on phenolic composition, antioxidant and antimicrobial potentials of Salvia heldreichiana Boiss. ex Bentham extracts. S. Afr. J. Bot., 125, 72-80.
https://doi.org/10.1016/j.sajb.2019.07.010
- Singleton, V.L., Rossi Jr., J.A. (1965). Colorimetry of total phenolics with phosphomolibdic-phosphotungtic acid reagents. Am. J. Enol. and Vitic., 16, 144-158.
- Clinical and Laboratory Standards Institute (CLSI), (2000). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard M27-A NCCLS, Wayne, Pennsylvania.
- Clinical and Laboratory Standards Institute (CLSI), (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard, Ninth edition, M7-A9. Wayne, Pennsylvania.
- de Freitas Araújo, M.G., Hilário, F., Vilegas, W., Dos Santos, L.C., Brunetti, I.L., Sotomayor, C.E., Bauab, T.M. (2012). Correlation among antioxidant, antimicrobial, hemolytic, and antiproliferative properties of Leiothrix spiralis leaves extract. Int. J. Mol. Sci., 13, 9260-9277. https://doi.org/10.3390/ijms13079260
- Park, S.J., Shin E.H., Kim, D.H., Rha, Y.-A. (2016). Nutrition components and physicochemical properties of Acer termentosum Maxim. leaf. Culi. Sci. & Hos. Res., 22, 27-38. https://doi.org/10.20878/cshr.2016.22.8.003
- Watanabe, M., Devkota, H.P. (2017). Antioxidant phenolic constituents from the leaves of Acer ginnala var. aidzuense. Journal of Natural Remedies, 17, 9-12. https://doi.org/10.18311/jnr/2017/15632
- Choi, Y.-H., Han S.S., Lee, H.O, Baek, S.H. (2005). Biological activity of bioactive components from Acer ginnala Max. Bull. Korean Chem. Soc., 26, 1450-1452. https://doi.org/10.5012/bkcs.2005.26.9.1450
- Meda, N.R., Suwal, S., Rott, M., Poubelle, P.E., Stevanovic, T. (2016). Investigation of extracts from red and sugar maple buds as potential sources of antioxidant phytochemicals. Current Topics in Phytochemistry, 13, 69-78.
- Atroune, F., Chaker, S., Djebbar, R., Dahmani-Megrerouche, M. (2019). Comparative evaluation of phenolics content and antioxidant activity of leaves and branches of field maple (Acer campestre) from two populations of Northeastern Algeria. Analele Universităţii din Oradea, Fascicula Biologie, 26, 7-13.
- Geoffroy, T.R., Fortin, Y., Stevanovic, T. (2017). Hot-water extraction optimization of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) bark applying principal component analysis. J. Wood Chem. Technol., 37, 261-272. https://doi.org/10.1080/02773813.2017.1279631
- Park, K.H., Yoon, K.H., Yin, J., Le, T.T., Ahn, H.S., Yoon, S.H., Lee, M.W. (2017). Antioxidative and anti-inflammatory activities of galloyl derivatives and antidiabetic activities of Acer ginnala. Evid.-Based Complementary Altern. Med., Article ID 6945912, 8 pages. https://doi.org/10.1155/2017/6945912
- Lee, C.S., Jang, E.-R., Kim, Y.J., Seo, S.J., Choi, S.E., Lee, M.W. (2011). Polyphenol acertannin prevents TRAIL-induced apoptosis in human keratinocytes by suppressing apoptosis-related protein activation. Chem.-Biol. Interact., 189, 52–59. https://doi.org/10.1016/j.cbi.2010.10.009
- Moskalenko, S.A. (1986). Preliminary screening of far-eastern ethnomedicinal plants for antibacterial activity. J. Ethnopharmacol., 15,231-259. https://doi.org/10.1016/0378-8741(86)90163-7
- Zhang, F., Luo, S.Y., Ye, Y.B., Zhao, W.H., Sun, X.G., Wang, Z.Q., Li, R., Sun, Y.H., Tian, W.X., Zhang, Y.X. (2008). The antibacterial efficacy of an aceraceous plant [shantung maple (Acer truncatum Bunge)] may be related to inhibition of bacterial beta-oxoacyl-acyl carrier protein reductase (FabG). Biotechnol. Appl. Biochem., 51, 73-78. https://doi.org/10.1042/BA20070255
- Khan, S., Bakht, J., Shafi M. (2018). Antinociceptive, antimicrobial potential and phytochemical screening of different solvent extracted samples from the stem of Acer pentapomicum. Pak. J. Pharm. Sci., 31, 1457-1461.
Pharmacognostical Studies on Acer campestre L. subsp. campestre
Year 2020,
Volume: 7 Issue: 2, 126 - 138, 13.06.2020
Burcu Şen Utsukarçi
,
Yavuz Bal
,
Bahar Gurdal
,
Hilal Bardakçı Altan
,
Fatıma Nur Yılmaz
,
Sibel Döşler
Abstract
This study on Acer campestre L. subsp. campestre, used traditionally in treatments of various inflammation disorders, especially hemorrhoids and rheumatism, aimed to determine the total phenolic contents, the antioxidant and antimicrobial potentials, and the chemical composition profile of the extracts and subextracts from maple syrup and Acer campestre L. subsp. campestre leaves and twigs. The antioxidant activities of maple syrup extracts and subextracts were examined by 2,2-diphenyl-1-picryl-hydrazyl (DPPH), and the total phenolic contents of all samples were determined using the Folin-Ciocalteu reagent (FCR) method. Also, they were tested for their antimicrobial activities by microbroth dilution technique. Catechic tannin, saponins and flavonoids are determined in its leaves and twigs by preliminary qualitative phytochemical analysis. The alcoholic extracts obtained by 48-hour maceration (91.2%), ethyl acetate subextract of alcohol extracts obtained by 24-hour maceration (91.1%) and alcohol extracts obtained by 24-hour maceration (88.8%) exhibited higher radical scavenging activity than other samples, while the decoction and infusion had moderate activities. Beside of this, it was found that the syrup and its subextracts have more total phenolic contents than other extracts. The alcohol extracts obtained by 24-hour maceration and by 48-hour maceration exhibited higher activity against Candida albicans (78 μg/mL and 156 μg/mL, respectively). Only the alcohol extract obtained by 48-hour maceration and ethyl acetate subextract of syrup showed an activity against Escherichia coli, while all samples except butanol subextract of syrup have an antibacterial activity against Pseudomonas aeruginosa.
References
- Ravipati, A.S., Zhang, L., Koyyalamudi, S.R., Jeong, S.C., Reddy, N., Bartlett, J., Satyanarayanan, M. (2012). Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med., 12, Article number: 173. https://doi.org/10.1186/1472-6882-12-173
- Schinella, G.R., Tournier, H.A., Prieto, J.M. (2002). Antioxidant activity of anti-inflammatory plant extracts. Life Sciences, 70, 1023-1033. https://doi.org/10.1016/S0024-3205(01)01482-5
- Zhang, L., Ravipati, A.S., Koyyalamudi, S.R., Jeong, S.C., Reddy, N., Smith, P.T., Bartlett, J., Shanmugam, K., Münch, D.G., Wu, M.J. (2011). Antioxidant and Anti-inflammatory Activities of Selected Medicinal Plants Containing Phenolic and Flavonoid compounds. J. Agric. Food Chem., 59, 12361–12367. https://doi.org/10.1021/jf203146e
- Talhouk, R., Karam, C., Fostok, S., El-Jouni, W., Barbour, E. (2007). Anti-inflammatory bioactivities in plant extracts. J. Med. Food, 10, 1 10. https://doi.org/10.1089/jmf.2005.055
- Zhang, Y., Yuan, T., Li, L., Nahar, P., Slitt, A., Seeram, N.P. (2014). Chemical compositional, biological, and safety studies of a novel maple syrup derived extract for nutraceutical applications. J. Agric. Food Chem., 62, 6687 6698. https://doi.org/10.1021/jf501924y
- Perkins, T.D., van den Berg, A.K. (2009). Maple syrup-production, composition, chemistry, and sensory characteristics. In Advances in Food and Nutrition Research; Taylor, S.L. Ed.; Academic Press, Elsevier, USA, 2009, Volume 56, pp. 101−143. ISBN: 978-0-12-374439-5
- Storz, G., Darvill, A.G., Albersheim, P. (1986). Characterization of polysaccharides isolated from maple syrup. Phytochemistry, 25, 437-441, https://doi.org/10.1016/S0031-9422(00)85497-7
- Ball, D. W. (2007). The chemical composition of maple syrup. J. Chem. Educ., 84, 1647-1650. https://doi.org/10.1021/ed084p1647
- Li, L., Seeram, N.P. (2010). Maple syrup phytochemicals include lignans, coumarins, a stilbene and other previously unreported antioxidant phenolic compounds. J. Agric. Food Chem., 58, 11673-11679. https://doi.org/10.1021/jf1033398
- Li, L., Seeram, N.P. (2011). Further investigation into maple syrup yields three new lignans, a new phenylpropanoid, and twenty-six other phytochemicals. J. Agric. Food Chem., 59, 7708-7716. https://doi.org/10.1021/jf2011613
- Li, L., Seeram, N.P. (2011). Quebecol, a novel phenolic compound isolated from Canadian maple syrup. J. Funct. Foods, 3, 125-128.
https://doi.org/10.1016/j.jff.2011.02.004
- Yuan, T., Li, L., Zhang, Y., Seeram, N.P. (2013). Pasteurized and sterilized maple sap as functional beverages: Chemical composition and antioxidant activities. J. Funct. Foods, 5, 1582−1590. https://doi.org/10.1016/j.jff.2013.06.009
- Kermasha, S., Goetghebeur, M., Dumont, J. (1995). Determination of phenolic compound profiles in maple products by high performance liquid chromatography. J. Agric. Food Chem., 43, 708−716. https://doi.org/10.1021/jf00051a028
- Abou-Zaid, M.M., Nozzolillo, C., Tonon, A., Coppens, M., Lombardo, A.D.A. (2008). High performance liquid chromatography characterization and identification of antioxidant polyphenols in maple syrup. Pharm. Biol., 46, 117−125. https://doi.org/10.1080/13880200701735031
- González-Sarrías, A., Li, L., Seeram, N. P. (2012). Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells. Phytother. Res., 26, 995−1002. https://doi.org/10.1002/ptr.3677
- Legault, J., Girard-Lalancette, K., Grenon, C., Dussault, C., Pichette, A. (2010). Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum. J. Med. Food, 13, 460−468. https://doi.org/10.1089/jmf.2009.0029
- Nahar, P.P., Driscoll, M. V., Li, L., Slitt, A. L., Seeram, N.P. (2014). Phenolic mediated anti-inflammatory properties of a maple syrup extract in RAW 264.7 murine macrophages. J. Funct. Foods, 6, 126−136. https://doi.org/10.1016/j.jff.2013.09.026
- Watanabe, Y., Kamei, A., Shinozaki, F., Ishijima, T., Iida, K., Nakai, Y., Arai, S., Abe, K. (2011). Ingested maple syrup evokes a possible liverprotecting effect-physiologic and genomic investigations with rats. Biosci. Biotechnol. Biochem., 75, 2408−2410. https://doi.org/10.1271/bbb.110532
- Nagai, N., Ito, Y., Taga, A. (2013). Comparison of the enhancement of plasma glucose levels in type 2 diabetes Otsuka Long-Evans Tokushima fatty rats by oral administration of sucrose or maple syrup. J. Oleo Sci., 62, 737−743. https://doi.org/10.5650/jos.62.737
- Thériault, M., Caillet, S., Kermasha, S., Lacroix, M. (2006). Antioxidant, antiradical and antimutagenic activities of phenolic compounds present in maple products. Food Chem., 98, 490–501. https://doi.org/10.1016/j.foodchem.2005.05.079
- González-Sarrías, A., Yuan, T., Seeram, N.P. (2012). Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum). Food Chem. Toxicol., 50, 1369–1376. https://doi.org/10.1016/j.fct.2012.02.031
- Honma, A., Koyama, T., Yazawa, K. (2010). Anti-hyperglycemic effects of sugar maple Acer saccharum and its constituent acertannin. Food Chem., 123, 390–394. https://doi.org/10.1016/j.foodchem.2010.04.052
- Wu, D., Wu, X.D., You, X.-F., Ma, X.-F., Tian, W.-X.. (2010). Inhibitory Effects on Bacterial Growth and beta-Ketoacyl-ACP Reductase by Different Species of Maple Leaf Extracts and Tannic Acid. Phytother. Res., 24, S35-S41. https://doi.org/10.1002/ptr.2873
- Jedinak, A., Valachova, M., Maliar, T., Sturdik, E. (2010). Antiprotease activity of selected Slovak medicinal plants. Pharmazie, 65, 137 140. https://doi.org/10.1691/ph.2010.9668
- Ecevit Genc G., Ozhatay N. (2006). An ethnobotanical study in Catalca (European part of Istanbul) II. Turk. J. Pharm. Sci., 3, 73-89.
- Tuzlacı, E. (2016). Turkiye Bitkileri Geleneksel Ilac Rehberi; Istanbul Medikal Saglik ve Yayincilik, Istanbul, Turkey, pp. 630-631. ISBN: 9786054949717
- Baytop, B. (1980). Farmakognozi, Volume I, 3. Edition; Istanbul Universitesi Yayinlari, Baha Matbaası, Istanbul, Turkey, pp. 206-207.
- Bardakci, H., Celep, E., Kurt-Celep, I., Deniz, I., Sen-Utsukarci, B., Akaydin, G. (2019). A comparative investigation on phenolic composition, antioxidant and antimicrobial potentials of Salvia heldreichiana Boiss. ex Bentham extracts. S. Afr. J. Bot., 125, 72-80.
https://doi.org/10.1016/j.sajb.2019.07.010
- Singleton, V.L., Rossi Jr., J.A. (1965). Colorimetry of total phenolics with phosphomolibdic-phosphotungtic acid reagents. Am. J. Enol. and Vitic., 16, 144-158.
- Clinical and Laboratory Standards Institute (CLSI), (2000). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard M27-A NCCLS, Wayne, Pennsylvania.
- Clinical and Laboratory Standards Institute (CLSI), (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard, Ninth edition, M7-A9. Wayne, Pennsylvania.
- de Freitas Araújo, M.G., Hilário, F., Vilegas, W., Dos Santos, L.C., Brunetti, I.L., Sotomayor, C.E., Bauab, T.M. (2012). Correlation among antioxidant, antimicrobial, hemolytic, and antiproliferative properties of Leiothrix spiralis leaves extract. Int. J. Mol. Sci., 13, 9260-9277. https://doi.org/10.3390/ijms13079260
- Park, S.J., Shin E.H., Kim, D.H., Rha, Y.-A. (2016). Nutrition components and physicochemical properties of Acer termentosum Maxim. leaf. Culi. Sci. & Hos. Res., 22, 27-38. https://doi.org/10.20878/cshr.2016.22.8.003
- Watanabe, M., Devkota, H.P. (2017). Antioxidant phenolic constituents from the leaves of Acer ginnala var. aidzuense. Journal of Natural Remedies, 17, 9-12. https://doi.org/10.18311/jnr/2017/15632
- Choi, Y.-H., Han S.S., Lee, H.O, Baek, S.H. (2005). Biological activity of bioactive components from Acer ginnala Max. Bull. Korean Chem. Soc., 26, 1450-1452. https://doi.org/10.5012/bkcs.2005.26.9.1450
- Meda, N.R., Suwal, S., Rott, M., Poubelle, P.E., Stevanovic, T. (2016). Investigation of extracts from red and sugar maple buds as potential sources of antioxidant phytochemicals. Current Topics in Phytochemistry, 13, 69-78.
- Atroune, F., Chaker, S., Djebbar, R., Dahmani-Megrerouche, M. (2019). Comparative evaluation of phenolics content and antioxidant activity of leaves and branches of field maple (Acer campestre) from two populations of Northeastern Algeria. Analele Universităţii din Oradea, Fascicula Biologie, 26, 7-13.
- Geoffroy, T.R., Fortin, Y., Stevanovic, T. (2017). Hot-water extraction optimization of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) bark applying principal component analysis. J. Wood Chem. Technol., 37, 261-272. https://doi.org/10.1080/02773813.2017.1279631
- Park, K.H., Yoon, K.H., Yin, J., Le, T.T., Ahn, H.S., Yoon, S.H., Lee, M.W. (2017). Antioxidative and anti-inflammatory activities of galloyl derivatives and antidiabetic activities of Acer ginnala. Evid.-Based Complementary Altern. Med., Article ID 6945912, 8 pages. https://doi.org/10.1155/2017/6945912
- Lee, C.S., Jang, E.-R., Kim, Y.J., Seo, S.J., Choi, S.E., Lee, M.W. (2011). Polyphenol acertannin prevents TRAIL-induced apoptosis in human keratinocytes by suppressing apoptosis-related protein activation. Chem.-Biol. Interact., 189, 52–59. https://doi.org/10.1016/j.cbi.2010.10.009
- Moskalenko, S.A. (1986). Preliminary screening of far-eastern ethnomedicinal plants for antibacterial activity. J. Ethnopharmacol., 15,231-259. https://doi.org/10.1016/0378-8741(86)90163-7
- Zhang, F., Luo, S.Y., Ye, Y.B., Zhao, W.H., Sun, X.G., Wang, Z.Q., Li, R., Sun, Y.H., Tian, W.X., Zhang, Y.X. (2008). The antibacterial efficacy of an aceraceous plant [shantung maple (Acer truncatum Bunge)] may be related to inhibition of bacterial beta-oxoacyl-acyl carrier protein reductase (FabG). Biotechnol. Appl. Biochem., 51, 73-78. https://doi.org/10.1042/BA20070255
- Khan, S., Bakht, J., Shafi M. (2018). Antinociceptive, antimicrobial potential and phytochemical screening of different solvent extracted samples from the stem of Acer pentapomicum. Pak. J. Pharm. Sci., 31, 1457-1461.