Research Article
BibTex RIS Cite

Antimicrobial and Antiproliferative Activities of Chia (Salvia hispanica L.) Seeds

Year 2020, Volume: 7 Issue: 3, 174 - 180, 15.09.2020
https://doi.org/10.21448/ijsm.722574

Abstract

The genus Salvia L. (Lamiaceae) has been traditionally used for the treatment of various illnesses since ancient times. Salvia hispanica L., commonly known as Chia, is an annual herbaceous plant which was one of the most significant crops for pre-Columbian civilizations (Aztec and Maya) in America. Nutritional potential and beneficial effects of Chia seeds on human health have been previously reported. Therefore, this study aims to investigate anti(myco)bacterial, antifungal, and antiproliferative activities of Chia seeds. Ethanol extract of Chia seeds were tested against Staphylococcus aureus (ATCC 25925), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC 25923), Acinetobacter baumannii (ATCC 02026), Aeromonas hydrophila (ATCC 95080), Candida albicans (ATCC 14053), Candida tropicalis (ATCC 1369), and Candida glabrata (ATCC 15126) using broth microdilution method. Antimycobacterial activity was performed against Mycobacterium tuberculosis H37Rv using resazurin microtiter plate method. Ampicillin, Ethambutol, Isoniazid, and Fluconazole were chosen as reference drugs. Antiproliferative effect of the various concentrations (200, 100, 50, and 25 μg/mL) of ethanol extract was tested against A549 human lung cancer cell lines using MTT method. Ethanol extract was found to be more effective against A. baumannii (MIC: 62.5 µg/mL) than reference drug Ampicillin (MIC: 125 µg/mL). There was a correlation between increased doses and antiproliferative activity of extract against A549 human lung cancer cell lines (p <0.05).

References

  • Jaradat, N.A., Shawahna, R., Hussein, F., Al-Lahham, S. (2016). Analysis of the antioxidant potential in aerial parts of Trigonella arabica and Trigonella berythea grown widely in Palestine: A comparative study. Eur. J. Integr. Med., 8 (5), 623-630. https://doi.org/10.1016/j.eujim.2016.04.004
  • Kahraman, A., Buyukkartal, H.N., Dogan, M. (2018). Pericarp ultrastructure of Salvia section Hemisphace (Mentheae; Nepetoideae; Lamiaceae). Commagene J. Biol., 2(1), 1-7.https://doi.org/10.31594/commagene.397144
  • Kamatou, G.P.P., Makunga, N.P., Ramogola, W.P.N., Viljoen, A.M. (2008). South African Salvia species: a review of biological activities and phytochemistry. J. Ethnopharmacol, 119, 664-672.https://doi.org/10.1016/j.jep.2008.06.030
  • Falco, B., Amato, M., Lanzotti, V. (2017). Chia seeds products: an overview. Phytochem Rev, 16, 745-760.https://doi.org/10.1007/s11101-017-9511-7
  • Capitani, M.I., Spotorno, V., Nolasco, S.M., Tomás, M.C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Sci. Technol., 45, 94-102. https://doi.org/10.1016/j.lwt.2011.07.012
  • Muñoz, L.A., Cobos, A., Diaz, O., Aguilera, J.M. (2013). Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food Rev. Int., 29, 394-408. 10.1080/87559129.2013.818014
  • Rosas-Ramírez, D.G., Fragoso-Serrano, M.F., Escandón-Rivera, S., Vargas-Ramírez, A.L., Reyes-Grajeda, J.P., Soriano-Gracía, M. (2017). Resistance-modifying activity in vinblastine-resistant human breast cancer cells by oligosaccharides obtained from mucilage of chia seeds (Salvia hispanica). Phytother. Res., 31, 906-914. https://doi.org/10.1002/ptr.5815
  • Carnier, M., Silva, F.P., Araujo de Miranda, D., Losinskas Hachul, A.C., Rischiteli, A.B.S., Neto, N.I.P., Boldarine, V.T., Seelaender, M., Oller do Nascimento, C.M., Oyama L.M. (2018). Diet supplemented with chia flour did not modified the inflammatory process and tumor development in wistar rats inoculated with walker 256 cells. Nutr. Cancer., 70(7), 1007-1016.https://doi.org/10.1080/01635581.2018.1502329
  • Segura-Campos, M.R., Salazar-Vega, I.M., Chel-Guerrero, L.A., Betancur-Ancona, D.A. (2013). Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT - Food Sci. Technol., 50, 723-731. https://doi.org/10.1016/j.lwt.2012.07.017
  • Kobus-Cisowska, J., Szymanowska, D., Maciejewska, P., Kmiecik, D., Gramza-Michalowska, A., Kulczyński, B., Cielecka-Piontek, J. (2019). In vitro screening for acetylcholinesterase and butyrylcholinoesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron J. Biotechn., 37, 1-10. https://doi.org/10.1016/j.ejbt.2018.10.002
  • Guzel, S., Ozay, Y., Kumas, M., Uzun, C., Gokalp Ozkorkmaz, E., Yildirim, Z., Ulger, M., Guler, G., Celik, A., Camlica, Y., Kahraman, A. (2019). Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed. Pharmacother., 111, 1260-1276. https://doi.org/10.1016/j.biopha.2019.01.038
  • NCCLS. (2002). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Second Edition. NCCLS document M27-A2 (ISBN 1-56238-469-4). Pennsylvania.
  • Guzel, S., Kahraman, A., Ulger, M., Ozay, Y., Bozgeyik, I., Sarıkaya, O. (2019). Morphology, myxocarpy, mineral content and in vitro antimicrobial and antiproliferative activities of mericarps of the vulnerable Turkish endemic Salvia pilifera. J. Res. Pharm., 23 (4), 729-739. https://doi.org/10.12991/jrp.2019.182
  • Bajpai, V.K. (2016). Antimicrobial bioactive compounds from marine algae: a mini review. Indian J. Geomarine Sci., 45, 1076-1085.
  • Lean, S.S., Yeo, C.C. (2017). Small, enigmatic plasmids of the nosocomial pathogen, Acinetobacter baumannii: good, bad, who knows? Front Microbiol. 8, 1547-1555. https://doi.org/10.3389/fmicb.2017.01547
  • Sak, K., Lust, H., Kase, M., Jaal, J. (2018). Cytotoxic action of methylquercetins in human lung adenocarcinoma cells. Oncol Lett., 15, 1973-1978. https://doi.org/10.3892/ol.2017.7466
  • Gazdar, A.F., Girard, L., Lockwood, W.W., Lam, W.L., Minna, J.D. (2010). Lung cancer cell lines as tools for biomedical discovery and research. J. Natl. Cancer Inst., 102 (17), 1310-1321.https://doi.org/10.1093/jnci/djq279
  • Ding, Y., Lin, H., Lin, Y., Yang, D., Yu, Y., Chen, R., Wang, S., Chen, Y. (2018). Nutritional composition in the chia seed and its processing properties on restructured ham-like products. J. Food Drug Anal., 26, 124-134. https://doi.org/10.1016/j.jfda.2016.12.012
  • Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., Hussain, J. (2016). Nutritional and therapeutic perspectives of chia (Salvia hispanica L.): a review. J. Food Sci. Technol., 53(4), 1750-1758.https://doi.org/10.1007/s13197-015-1967-0
  • Cowan, M.M. (1999). Plant products as antimicrobial agents. Clin Microbiol Rev., 12(4), 564-582.
  • Kowalczyk, D., Świeca, M., Cichocka, J., Gawlik-Dziki, U. (2013). The phenolic content and antioxidant activity of the aqueous and hydroalcoholic extracts of hops and their pellets. J. Inst. Brew., 119,103-110.https://doi.org/10.1002/jib.73
  • Alcântara, M.A., Brito Polari, I.L., Albuquerque Meireles, B.R.L., Alcântara de Lima, A.E., Silva Junior, J.C., Andrade Vieira, E., Albuquerque dos Santos, N., Magalhães Cordeiro, A.M.T. (2019). Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chem., 275, 489-496. https://doi.org/10.1016/j.foodchem.2018.09.133

Antimicrobial and Antiproliferative Activities of Chia (Salvia hispanica L.) Seeds

Year 2020, Volume: 7 Issue: 3, 174 - 180, 15.09.2020
https://doi.org/10.21448/ijsm.722574

Abstract

The genus Salvia L. (Lamiaceae) has been traditionally used for the treatment of various illnesses since ancient times. Salvia hispanica L., commonly known as Chia, is an annual herbaceous plant which was one of the most significant crops for pre-Columbian civilizations (Aztec and Maya) in America. Nutritional potential and beneficial effects of Chia seeds on human health have been previously reported. Therefore, this study aims to investigate anti(myco)bacterial, antifungal, and antiproliferative activities of Chia seeds. Ethanol extract of Chia seeds were tested against Staphylococcus aureus (ATCC 25925), Bacillus subtilis (ATCC 6633), Escherichia coli (ATCC 25923), Acinetobacter baumannii (ATCC 02026), Aeromonas hydrophila (ATCC 95080), Candida albicans (ATCC 14053), Candida tropicalis (ATCC 1369), and Candida glabrata (ATCC 15126) using broth microdilution method. Antimycobacterial activity was performed against Mycobacterium tuberculosis H37Rv using resazurin microtiter plate method. Ampicillin, Ethambutol, Isoniazid, and Fluconazole were chosen as reference drugs. Antiproliferative effect of the various concentrations (200, 100, 50, and 25 μg/mL) of ethanol extract was tested against A549 human lung cancer cell lines using MTT method. Ethanol extract was found to be more effective against A. baumannii (MIC: 62.5 µg/mL) than reference drug Ampicillin (MIC: 125 µg/mL). There was a correlation between increased doses and antiproliferative activity of extract against A549 human lung cancer cell lines (p <0.05).

References

  • Jaradat, N.A., Shawahna, R., Hussein, F., Al-Lahham, S. (2016). Analysis of the antioxidant potential in aerial parts of Trigonella arabica and Trigonella berythea grown widely in Palestine: A comparative study. Eur. J. Integr. Med., 8 (5), 623-630. https://doi.org/10.1016/j.eujim.2016.04.004
  • Kahraman, A., Buyukkartal, H.N., Dogan, M. (2018). Pericarp ultrastructure of Salvia section Hemisphace (Mentheae; Nepetoideae; Lamiaceae). Commagene J. Biol., 2(1), 1-7.https://doi.org/10.31594/commagene.397144
  • Kamatou, G.P.P., Makunga, N.P., Ramogola, W.P.N., Viljoen, A.M. (2008). South African Salvia species: a review of biological activities and phytochemistry. J. Ethnopharmacol, 119, 664-672.https://doi.org/10.1016/j.jep.2008.06.030
  • Falco, B., Amato, M., Lanzotti, V. (2017). Chia seeds products: an overview. Phytochem Rev, 16, 745-760.https://doi.org/10.1007/s11101-017-9511-7
  • Capitani, M.I., Spotorno, V., Nolasco, S.M., Tomás, M.C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT - Food Sci. Technol., 45, 94-102. https://doi.org/10.1016/j.lwt.2011.07.012
  • Muñoz, L.A., Cobos, A., Diaz, O., Aguilera, J.M. (2013). Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food Rev. Int., 29, 394-408. 10.1080/87559129.2013.818014
  • Rosas-Ramírez, D.G., Fragoso-Serrano, M.F., Escandón-Rivera, S., Vargas-Ramírez, A.L., Reyes-Grajeda, J.P., Soriano-Gracía, M. (2017). Resistance-modifying activity in vinblastine-resistant human breast cancer cells by oligosaccharides obtained from mucilage of chia seeds (Salvia hispanica). Phytother. Res., 31, 906-914. https://doi.org/10.1002/ptr.5815
  • Carnier, M., Silva, F.P., Araujo de Miranda, D., Losinskas Hachul, A.C., Rischiteli, A.B.S., Neto, N.I.P., Boldarine, V.T., Seelaender, M., Oller do Nascimento, C.M., Oyama L.M. (2018). Diet supplemented with chia flour did not modified the inflammatory process and tumor development in wistar rats inoculated with walker 256 cells. Nutr. Cancer., 70(7), 1007-1016.https://doi.org/10.1080/01635581.2018.1502329
  • Segura-Campos, M.R., Salazar-Vega, I.M., Chel-Guerrero, L.A., Betancur-Ancona, D.A. (2013). Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT - Food Sci. Technol., 50, 723-731. https://doi.org/10.1016/j.lwt.2012.07.017
  • Kobus-Cisowska, J., Szymanowska, D., Maciejewska, P., Kmiecik, D., Gramza-Michalowska, A., Kulczyński, B., Cielecka-Piontek, J. (2019). In vitro screening for acetylcholinesterase and butyrylcholinoesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron J. Biotechn., 37, 1-10. https://doi.org/10.1016/j.ejbt.2018.10.002
  • Guzel, S., Ozay, Y., Kumas, M., Uzun, C., Gokalp Ozkorkmaz, E., Yildirim, Z., Ulger, M., Guler, G., Celik, A., Camlica, Y., Kahraman, A. (2019). Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed. Pharmacother., 111, 1260-1276. https://doi.org/10.1016/j.biopha.2019.01.038
  • NCCLS. (2002). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Second Edition. NCCLS document M27-A2 (ISBN 1-56238-469-4). Pennsylvania.
  • Guzel, S., Kahraman, A., Ulger, M., Ozay, Y., Bozgeyik, I., Sarıkaya, O. (2019). Morphology, myxocarpy, mineral content and in vitro antimicrobial and antiproliferative activities of mericarps of the vulnerable Turkish endemic Salvia pilifera. J. Res. Pharm., 23 (4), 729-739. https://doi.org/10.12991/jrp.2019.182
  • Bajpai, V.K. (2016). Antimicrobial bioactive compounds from marine algae: a mini review. Indian J. Geomarine Sci., 45, 1076-1085.
  • Lean, S.S., Yeo, C.C. (2017). Small, enigmatic plasmids of the nosocomial pathogen, Acinetobacter baumannii: good, bad, who knows? Front Microbiol. 8, 1547-1555. https://doi.org/10.3389/fmicb.2017.01547
  • Sak, K., Lust, H., Kase, M., Jaal, J. (2018). Cytotoxic action of methylquercetins in human lung adenocarcinoma cells. Oncol Lett., 15, 1973-1978. https://doi.org/10.3892/ol.2017.7466
  • Gazdar, A.F., Girard, L., Lockwood, W.W., Lam, W.L., Minna, J.D. (2010). Lung cancer cell lines as tools for biomedical discovery and research. J. Natl. Cancer Inst., 102 (17), 1310-1321.https://doi.org/10.1093/jnci/djq279
  • Ding, Y., Lin, H., Lin, Y., Yang, D., Yu, Y., Chen, R., Wang, S., Chen, Y. (2018). Nutritional composition in the chia seed and its processing properties on restructured ham-like products. J. Food Drug Anal., 26, 124-134. https://doi.org/10.1016/j.jfda.2016.12.012
  • Ullah, R., Nadeem, M., Khalique, A., Imran, M., Mehmood, S., Javid, A., Hussain, J. (2016). Nutritional and therapeutic perspectives of chia (Salvia hispanica L.): a review. J. Food Sci. Technol., 53(4), 1750-1758.https://doi.org/10.1007/s13197-015-1967-0
  • Cowan, M.M. (1999). Plant products as antimicrobial agents. Clin Microbiol Rev., 12(4), 564-582.
  • Kowalczyk, D., Świeca, M., Cichocka, J., Gawlik-Dziki, U. (2013). The phenolic content and antioxidant activity of the aqueous and hydroalcoholic extracts of hops and their pellets. J. Inst. Brew., 119,103-110.https://doi.org/10.1002/jib.73
  • Alcântara, M.A., Brito Polari, I.L., Albuquerque Meireles, B.R.L., Alcântara de Lima, A.E., Silva Junior, J.C., Andrade Vieira, E., Albuquerque dos Santos, N., Magalhães Cordeiro, A.M.T. (2019). Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chem., 275, 489-496. https://doi.org/10.1016/j.foodchem.2018.09.133
There are 22 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Sevda Güzel 0000-0002-6642-5824

Mahmut Ülger This is me 0000-0001-6649-4195

Yusuf Özay This is me 0000-0003-3855-6197

Publication Date September 15, 2020
Submission Date April 18, 2020
Published in Issue Year 2020 Volume: 7 Issue: 3

Cite

APA Güzel, S., Ülger, M., & Özay, Y. (2020). Antimicrobial and Antiproliferative Activities of Chia (Salvia hispanica L.) Seeds. International Journal of Secondary Metabolite, 7(3), 174-180. https://doi.org/10.21448/ijsm.722574

Cited By










International Journal of Secondary Metabolite

e-ISSN: 2148-6905