Research Article
BibTex RIS Cite

The Effect of some secondary metabolites on food consumption and pupal parameters of male and female Malacosoma neustria L. (Lepidoptera: Lasiocampidae) larvae

Year 2024, Volume: 11 Issue: 1, 1 - 14, 05.02.2024
https://doi.org/10.21448/ijsm.1273049

Abstract

Plants produce secondary metabolites for defense against herbivorous insects. In this study, the effects of different concentrations of quinine, nicotine, and tannic acid on food consumption and pupal parameters of the larva of a severe pest, Malacosoma neustria L. (Lepidoptera: Lasiocampidae), were investigated in 2007. Artificial diets containing 0.125%, 0.25%, and 0.5% concentrations of quinine or nicotine were prepared. In addition, diets containing 1.25%, 2.5%, and 5% tannin and a control diet without secondary metabolite were prepared. The feeding experiments revealed that the food consumption and pupal parameters of male and female larvae were different, and all parameters of female individuals were higher than those of male larvae. It has been determined that tannins cause more reductions in food consumption and pupal parameters than alkaloids in male and female individuals. We observed an increase in male larvae's pupal mass with increased concentration of nicotine to 0.5%. Nicotine did not cause a decrease in pupal parameters of larvae compared to quinine. In addition, all parameters of female individuals decreased with the addition of secondary metabolite. Although food consumption in alkaloid-containing diets was less than in the control group, there was a positive relationship between food consumption and pupal lipid and protein content. However, quinine had a more significant effect on triggering protein storage than nicotine. In diets containing tannins, more lipids were stored. A decrease was observed in the food consumption and pupal parameters of all individuals in the tannin-containing diets compared to the other diets.

References

  • Allen, S., Grimshaw, H.M., Parkinson, J.A., Quarmby, C., & Roberts, J.D. (1986). Chemical Analysis. In: Champman, S.B. (Ed.), Methods in plant ecology (pp.411-466). Blackwell Scientific Publications.
  • Barbehenn, R.V., & Kochmanski, J. (2013). Searching for synergism: effects of combinations of phenolic compounds and other toxins on oxidative stress in Lymantria dispar caterpillars. Chemoecology, 23, 219-231. https://doi.org/10.1007/s00049-013-0136-z
  • Bate-Smith, E.C. (1973) Haemanalysis of tannins: The concept of relative astringency. Phytochemistry, 12, 907-912. https://doi.org/10.1016/0031-9422(73)80701-0
  • Beenakkers, A.M.T., Vanderhorst, D.J., & Vanmarrewijk W.J.A. (1985). Insect lipids and lipoproteins, and their role in physiological processes. Progress in Lipid Research, 24(1), 19-67. https://doi.org/10.1016/0163-7827(85)90007-4 Belete, T. (2018). Defense Mechanisms of Plants to Insect Pests: From Morphological to Biochemical Approach. Trends in Technical & Scientific Research, 2(2), 555584. https://doi.org/10.19080/TTSR.2018.02.555584
  • Bergvinson, D.J., Arnason, J.T., & Hamilton, R.I. (1997). Phytochemical changes during recurrent selection for resistance to the European Corn Borer. Crop Science, 37(5), 1567-1572.
  • Bernays, E.A., Cooper-Driver, G., & Bilgener, M. (1989). Herbivores and plant tannins. Advances in Ecological Research, 19, 263 275. https://doi.org/10.1016/S0065 2504(08)60160-9
  • Carrel, J.E., & Tanner, E.M. (2002). Sex-Specific food preferences in the Madagascar hissing cockroach Gromphadorhina portentosa (Dictyoptera:Blaberidae). Journal of Insect Behavior, 15(5), 707-714.
  • Cresswell, J.V., Merritt, S.Z., & Martin, M.M. (1992). The effect of dietary nicotine on the allocation of assimilated food to energy metabolism and growth in fourth-instar larvae of the southern armyworm, Spodoptera eridania (Lepidoptera: Noctuidae). Oecologia, 89, 449-453. https://doi.org/10.1007/BF00317425
  • Divekar, P.A., Narayana, S., Divekar, B.A., Kumar, R., Gadratagi, B.G., Ray, A., Singh, A. K., Rani, V., Singh, V., Singh, A.K., Kumar, A., Singh, R.P., Meena, R.S., & Behera, T.K. (2022). Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. International Journal of Molecular Sciences, 23, 2690. https://doi.org/10.3390/ijms23052690
  • Dixit, G., Praveen, A., Tripathi, T., Yadav, V.K., & Verma, P.C. (2017). Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. Journal of Asia-Pacific Entomology, 20, 341-351.
  • Dhillon, M.K., Tanwar, A.K., Hasan, F., Bhadauriya, A.S., 2022. Phenotypic variation in adults of Chilopartellus (Swinhoe) from diverse ecological regions of India. Acta Zoologica, 103, 335-345.
  • Gajger, I.T., & Dar, S.A. (2021). Plant Allelochemicals as Sources of Insecticides. Insects, 12, 189. https://doi.org/10.3390/insects12030189
  • Harvey, J.A., Van Dam, N.M., Witjes, L.M.A., Soler, R., & Gols, R. (2007), Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Ecological Entomology, 32, 15-23.
  • Jiang, D., Tan, M., Guo, Q., & Yan, S. (2021). Transfer of heavy metal along food chain: a mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. Pest Management Science, 77 (3), 1115-1120. https://doi.org/10.1002/ps.6103
  • Roya, K., Jalal Jalali, S., & Mohammad, G. (2010). Effect of Artemisia annua L. on deterrence and nutritional efficiency of lesser mulberry pyralid (Glyphodes pylolais Walker) (Lepidoptera: Pyralidae). Journal of Plant Protection Research, 50 (4), 423-428. https://doi.org/10.2478/v10045-010-0071-8.
  • Lease, H.M., & Wolf, B.O. (2011). Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology, 36(1), 29 38. https://doi.org/10.1111/j.1365-3032.2010.00767.x
  • Lee, K.P., Behmer,, S.T., Simpson, S.J., & Raubenheimer, D. (2002). A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). Journal of Insect Physiology, 48, 655–665. https://doi.org/10.1016/S0022-1910(02)00088-4
  • Loveridge, J.P. (1973). Age and the changes in water and fat content of adult laboratory-reared Locusta migratoria migratorioides. Rhodesian Journal of Agricultural Research, 11, 131–143.
  • Manosalva, L., Mutis, A., Palma, R., Fajardo, V., & Quiroz, A. (2019). Antifeedant activity of alkaloid extracts from calafate (Berberis microphylla, G. Forst, 1789) against diamondback moth larvae (Plutella xylostella, Linnaeus, 1758). Anales Instituto Patagonia (Chile), 47(1), 17-23
  • Mole, S., & Waterman, P.G. (1987). A critical analysis of techniques for measuring tannins in ecological studies. Oecologia, 72, 148-156. https://doi.org/10.1007/BF00385059
  • Munoz, I.J., Schilman, P.E., & Barrozo, R.B. (2020). Impact of alkaloids in food consumption, metabolism and survival in a blood-sucking insect. Scientific Reports, 10, 9443. . https://doi.org/10.1038/s41598-020-65932-y.
  • Myers, J.H., Malakar, R., & Cory, J.S. (2000). Sublethal Nucleopolyhedrovirus Infection Effects on Female Pupal Weight, Egg Mass Size, and Vertical Transmission in Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 29(6), 1268-1272. https://doi.org/10.1603/0046-225X-29.6.1268
  • Oonincx, D.G.A.B., Van Broekhoven, S., Van Huis, A., & Van Loon, J.J.A. (2015). Feed conversion, survival and development and composition of four insect species on diets composed of food by products. PloS One, 10, 1 20. https://doi.org/10.1371/journal.pone.0144601
  • Özbek, H., & Çoruh, S. (2010). Egg parasitoids of Malacosoma neustria L. (Lepidoptera: Lasiocampidae) in Erzurum province of Turkey. Turkish Journal of Entomology, 34 (4), 551-560.
  • Pizzi, A., Pasch, H., Rode, K., & Giovando, S. (2009). Polymer structure of commercial hydrolyzable tannins by matrix-assisted laser desorption/ionizationtime- of-flight mass spectrometry. Journal of Applied Polymer Science, 113, 3847 3859. https://doi.org/10.1002/app.30377
  • Price, D.L., Pirbay, S., Weiland, L.W., Zhu, J., & Fuller-Thomson, E. (2019). Tannins as a Pesticide: The Impact of Tannic Acid on the Growth Rates of Myzus persicae and Arabidopsis thaliana. The IScientist, 4(1), 26-35.
  • Randt, E.E., Smit, S., Beukes, M., Apostolides, Z., Pirk, C.W.W., & Nicolson, S.W. (2015). Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports, 5, 11779. https://doi.org/10.1038/srep11779
  • Rattan, R.S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29, 913-920. https://doi.org/10.1016/j.cropro.2010.05.008
  • Sak, O., Ergin, E., Uçkan, F., Rivers, D.B., & Er, A. (2011). Changes in the hemolymph total protein of Galleria mellonella (Lepidoptera: Pyralidae) after parasitism and envenomation by Pimpla turionellae (Hymenoptera: Ichneumonidae). Turkish Journal of Biology, 35(4), 425-432. https://doi.org/10.3906/biy-1001-22
  • Sak, O., Uçkan, F., & Ergin, E. (2006). Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Belgian Journal of Zoology, 136(1), 53-58
  • Saremba, B.M., Murch S.J., Tymm, J.M., & Rheault, M.R. (2018). The metabolic fate of dietary nicotine in the cabbage looper, Trichoplusia ni (Hübner). Journal of Insect Physiology, 109, 1-10. https://doi.org/10.1016/j.jinsphys.2018.05.010
  • Schultz, J.C., & Lechowicz, M.J. (1986). Hostplant, larval age, and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar). Oecologia, 71, 133-137. https://doi.org/10.1007/BF00377332
  • Senthil-Nathan, S. (2013). Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Frontiers in Physiology, 4, 359. https://doi.org/10.3389/fphys.2013.00359
  • Simpson, S.J., & Raubenheimer, D. (2001). The geometric analysis of nutrient allelochemical interactions: a case study using locusts. Ecology, 82(2), 422 439. https://doi.org/10.1890/0012-9658(2001)082[0422:TGAONA]2.0.CO;2
  • Teder, T., & Tammaru, T. (2005). Sexual size dimorphism within species increases with body size in insects. Oikos, 108, 321-334. https://doi.org/10.1111/j.0030-1299.2005.13609.x
  • Telang, A., Booton, V., Chapman, R.F., & Wheeler, D.E. (2001). How female caterpillars accumulate their nutrient reserves. Journal of Insect Physiology, 47, 1055–1064. https://doi.org/10.1016/S0022-1910(01)00085-3
  • Thompson, S.N., & Redak, R.A. (2007). Nicotine moderates the eVects of macronutrient balance on nutrient intake by parasitized Manduca sexta L. Journal of Comparative Physiology B, 177, 375-391. https://doi.org/10.1007/s00360-006-0136-1
  • Wink, M. (2000). Interference of alkaloids with neuroreceptors and ion channels. In Rattan, A. (Ed.) Studies in natural products chemistry (pp. 3-122). Elseiver.
  • Xu, L., Li, D., Qin, J., Zhao, W., & Qiu, L. (2016). Over-expression of multiple cytochrome P450 genes in fenvalerate-resistant field strains of Helicoverpa armigera from north of China. Pesticide Biochemistry and Physiology, 132, 53 58. https://doi.org/10.1016/j.pestbp.2016.01.003
  • Yamamoto, R.T. (1969). Mass rearing of tobacco hornworm. II. Larval rearing and pupation. Journal of Economic Entomology, 62, 1427-1431. https://doi.org/10.1093/jee/62.6.1427
  • Yoder, J.A., & Grojean, N.C. (1997).Group influence on water conservation in the giant Madagascar hissing-cockroach, Gromphadorhina portentosa (Dictyoptera:Blaberidae). Physiological Entomology, 22, 79–82.
  • Yuan, Y., Li, L., Zhao, J., & Chen, M. (2020). Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae). Journal of Insect Science, 20(1), 8, 1 7. https://doi.org/10.1093/jisesa/ieaa001
  • Yuan, G.-G., Zhao, L.-C., Du, Y.-W., Yu, H., Shi, X.-B., Chen, W.-C., & Chen, G. (2022), Repellence or attraction: secondary metabolites in pepper mediate attraction and defense against Spodoptera litura. Pest Management Science, 78, 4859 4870. https://doi.org/10.1002/ps.7107
  • Zhao, Y.H., Xu, C.M., Wang, Q.H., Wei, Y., Liu, F., & Mu, W. (2016). Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae). Pesticide Biochemistry and Physiology, 129, 49-55. https://doi.org/10.1016/j.pestbp.2015.10.017
  • Zikic, V., Stankovic, S.S., Kavallieratos, N.G., Athanassiou, C., Georgiou, P., Tschorsnig, H.P., & Van Achterberg, C. (2017) Parasitoids associated with Lymantria dispar (Lepidoptera: Erebidae) and Malacosoma neustria L. (Lepidoptera: Lasiocampidae) in Greece and comparative analysis of their parasitoid spectrums in Europe. Zoologischer Anzeiger, 270, 166–175. https://doi.org/10.1016/j.jcz.2017.10.006

The Effect of some secondary metabolites on food consumption and pupal parameters of male and female Malacosoma neustria L. (Lepidoptera: Lasiocampidae) larvae

Year 2024, Volume: 11 Issue: 1, 1 - 14, 05.02.2024
https://doi.org/10.21448/ijsm.1273049

Abstract

Plants produce secondary metabolites for defense against herbivorous insects. In this study, the effects of different concentrations of quinine, nicotine, and tannic acid on food consumption and pupal parameters of the larva of a severe pest, Malacosoma neustria L. (Lepidoptera: Lasiocampidae), were investigated in 2007. Artificial diets containing 0.125%, 0.25%, and 0.5% concentrations of quinine or nicotine were prepared. In addition, diets containing 1.25%, 2.5%, and 5% tannin and a control diet without secondary metabolite were prepared. The feeding experiments revealed that the food consumption and pupal parameters of male and female larvae were different, and all parameters of female individuals were higher than those of male larvae. It has been determined that tannins cause more reductions in food consumption and pupal parameters than alkaloids in male and female individuals. We observed an increase in male larvae's pupal mass with increased concentration of nicotine to 0.5%. Nicotine did not cause a decrease in pupal parameters of larvae compared to quinine. In addition, all parameters of female individuals decreased with the addition of secondary metabolite. Although food consumption in alkaloid-containing diets was less than in the control group, there was a positive relationship between food consumption and pupal lipid and protein content. However, quinine had a more significant effect on triggering protein storage than nicotine. In diets containing tannins, more lipids were stored. A decrease was observed in the food consumption and pupal parameters of all individuals in the tannin-containing diets compared to the other diets.

References

  • Allen, S., Grimshaw, H.M., Parkinson, J.A., Quarmby, C., & Roberts, J.D. (1986). Chemical Analysis. In: Champman, S.B. (Ed.), Methods in plant ecology (pp.411-466). Blackwell Scientific Publications.
  • Barbehenn, R.V., & Kochmanski, J. (2013). Searching for synergism: effects of combinations of phenolic compounds and other toxins on oxidative stress in Lymantria dispar caterpillars. Chemoecology, 23, 219-231. https://doi.org/10.1007/s00049-013-0136-z
  • Bate-Smith, E.C. (1973) Haemanalysis of tannins: The concept of relative astringency. Phytochemistry, 12, 907-912. https://doi.org/10.1016/0031-9422(73)80701-0
  • Beenakkers, A.M.T., Vanderhorst, D.J., & Vanmarrewijk W.J.A. (1985). Insect lipids and lipoproteins, and their role in physiological processes. Progress in Lipid Research, 24(1), 19-67. https://doi.org/10.1016/0163-7827(85)90007-4 Belete, T. (2018). Defense Mechanisms of Plants to Insect Pests: From Morphological to Biochemical Approach. Trends in Technical & Scientific Research, 2(2), 555584. https://doi.org/10.19080/TTSR.2018.02.555584
  • Bergvinson, D.J., Arnason, J.T., & Hamilton, R.I. (1997). Phytochemical changes during recurrent selection for resistance to the European Corn Borer. Crop Science, 37(5), 1567-1572.
  • Bernays, E.A., Cooper-Driver, G., & Bilgener, M. (1989). Herbivores and plant tannins. Advances in Ecological Research, 19, 263 275. https://doi.org/10.1016/S0065 2504(08)60160-9
  • Carrel, J.E., & Tanner, E.M. (2002). Sex-Specific food preferences in the Madagascar hissing cockroach Gromphadorhina portentosa (Dictyoptera:Blaberidae). Journal of Insect Behavior, 15(5), 707-714.
  • Cresswell, J.V., Merritt, S.Z., & Martin, M.M. (1992). The effect of dietary nicotine on the allocation of assimilated food to energy metabolism and growth in fourth-instar larvae of the southern armyworm, Spodoptera eridania (Lepidoptera: Noctuidae). Oecologia, 89, 449-453. https://doi.org/10.1007/BF00317425
  • Divekar, P.A., Narayana, S., Divekar, B.A., Kumar, R., Gadratagi, B.G., Ray, A., Singh, A. K., Rani, V., Singh, V., Singh, A.K., Kumar, A., Singh, R.P., Meena, R.S., & Behera, T.K. (2022). Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. International Journal of Molecular Sciences, 23, 2690. https://doi.org/10.3390/ijms23052690
  • Dixit, G., Praveen, A., Tripathi, T., Yadav, V.K., & Verma, P.C. (2017). Herbivore-responsive cotton phenolics and their impact on insect performance and biochemistry. Journal of Asia-Pacific Entomology, 20, 341-351.
  • Dhillon, M.K., Tanwar, A.K., Hasan, F., Bhadauriya, A.S., 2022. Phenotypic variation in adults of Chilopartellus (Swinhoe) from diverse ecological regions of India. Acta Zoologica, 103, 335-345.
  • Gajger, I.T., & Dar, S.A. (2021). Plant Allelochemicals as Sources of Insecticides. Insects, 12, 189. https://doi.org/10.3390/insects12030189
  • Harvey, J.A., Van Dam, N.M., Witjes, L.M.A., Soler, R., & Gols, R. (2007), Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Ecological Entomology, 32, 15-23.
  • Jiang, D., Tan, M., Guo, Q., & Yan, S. (2021). Transfer of heavy metal along food chain: a mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress. Pest Management Science, 77 (3), 1115-1120. https://doi.org/10.1002/ps.6103
  • Roya, K., Jalal Jalali, S., & Mohammad, G. (2010). Effect of Artemisia annua L. on deterrence and nutritional efficiency of lesser mulberry pyralid (Glyphodes pylolais Walker) (Lepidoptera: Pyralidae). Journal of Plant Protection Research, 50 (4), 423-428. https://doi.org/10.2478/v10045-010-0071-8.
  • Lease, H.M., & Wolf, B.O. (2011). Lipid content of terrestrial arthropods in relation to body size, phylogeny, ontogeny and sex. Physiological Entomology, 36(1), 29 38. https://doi.org/10.1111/j.1365-3032.2010.00767.x
  • Lee, K.P., Behmer,, S.T., Simpson, S.J., & Raubenheimer, D. (2002). A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). Journal of Insect Physiology, 48, 655–665. https://doi.org/10.1016/S0022-1910(02)00088-4
  • Loveridge, J.P. (1973). Age and the changes in water and fat content of adult laboratory-reared Locusta migratoria migratorioides. Rhodesian Journal of Agricultural Research, 11, 131–143.
  • Manosalva, L., Mutis, A., Palma, R., Fajardo, V., & Quiroz, A. (2019). Antifeedant activity of alkaloid extracts from calafate (Berberis microphylla, G. Forst, 1789) against diamondback moth larvae (Plutella xylostella, Linnaeus, 1758). Anales Instituto Patagonia (Chile), 47(1), 17-23
  • Mole, S., & Waterman, P.G. (1987). A critical analysis of techniques for measuring tannins in ecological studies. Oecologia, 72, 148-156. https://doi.org/10.1007/BF00385059
  • Munoz, I.J., Schilman, P.E., & Barrozo, R.B. (2020). Impact of alkaloids in food consumption, metabolism and survival in a blood-sucking insect. Scientific Reports, 10, 9443. . https://doi.org/10.1038/s41598-020-65932-y.
  • Myers, J.H., Malakar, R., & Cory, J.S. (2000). Sublethal Nucleopolyhedrovirus Infection Effects on Female Pupal Weight, Egg Mass Size, and Vertical Transmission in Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 29(6), 1268-1272. https://doi.org/10.1603/0046-225X-29.6.1268
  • Oonincx, D.G.A.B., Van Broekhoven, S., Van Huis, A., & Van Loon, J.J.A. (2015). Feed conversion, survival and development and composition of four insect species on diets composed of food by products. PloS One, 10, 1 20. https://doi.org/10.1371/journal.pone.0144601
  • Özbek, H., & Çoruh, S. (2010). Egg parasitoids of Malacosoma neustria L. (Lepidoptera: Lasiocampidae) in Erzurum province of Turkey. Turkish Journal of Entomology, 34 (4), 551-560.
  • Pizzi, A., Pasch, H., Rode, K., & Giovando, S. (2009). Polymer structure of commercial hydrolyzable tannins by matrix-assisted laser desorption/ionizationtime- of-flight mass spectrometry. Journal of Applied Polymer Science, 113, 3847 3859. https://doi.org/10.1002/app.30377
  • Price, D.L., Pirbay, S., Weiland, L.W., Zhu, J., & Fuller-Thomson, E. (2019). Tannins as a Pesticide: The Impact of Tannic Acid on the Growth Rates of Myzus persicae and Arabidopsis thaliana. The IScientist, 4(1), 26-35.
  • Randt, E.E., Smit, S., Beukes, M., Apostolides, Z., Pirk, C.W.W., & Nicolson, S.W. (2015). Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports, 5, 11779. https://doi.org/10.1038/srep11779
  • Rattan, R.S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29, 913-920. https://doi.org/10.1016/j.cropro.2010.05.008
  • Sak, O., Ergin, E., Uçkan, F., Rivers, D.B., & Er, A. (2011). Changes in the hemolymph total protein of Galleria mellonella (Lepidoptera: Pyralidae) after parasitism and envenomation by Pimpla turionellae (Hymenoptera: Ichneumonidae). Turkish Journal of Biology, 35(4), 425-432. https://doi.org/10.3906/biy-1001-22
  • Sak, O., Uçkan, F., & Ergin, E. (2006). Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Belgian Journal of Zoology, 136(1), 53-58
  • Saremba, B.M., Murch S.J., Tymm, J.M., & Rheault, M.R. (2018). The metabolic fate of dietary nicotine in the cabbage looper, Trichoplusia ni (Hübner). Journal of Insect Physiology, 109, 1-10. https://doi.org/10.1016/j.jinsphys.2018.05.010
  • Schultz, J.C., & Lechowicz, M.J. (1986). Hostplant, larval age, and feeding behavior influence midgut pH in the gypsy moth (Lymantria dispar). Oecologia, 71, 133-137. https://doi.org/10.1007/BF00377332
  • Senthil-Nathan, S. (2013). Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Frontiers in Physiology, 4, 359. https://doi.org/10.3389/fphys.2013.00359
  • Simpson, S.J., & Raubenheimer, D. (2001). The geometric analysis of nutrient allelochemical interactions: a case study using locusts. Ecology, 82(2), 422 439. https://doi.org/10.1890/0012-9658(2001)082[0422:TGAONA]2.0.CO;2
  • Teder, T., & Tammaru, T. (2005). Sexual size dimorphism within species increases with body size in insects. Oikos, 108, 321-334. https://doi.org/10.1111/j.0030-1299.2005.13609.x
  • Telang, A., Booton, V., Chapman, R.F., & Wheeler, D.E. (2001). How female caterpillars accumulate their nutrient reserves. Journal of Insect Physiology, 47, 1055–1064. https://doi.org/10.1016/S0022-1910(01)00085-3
  • Thompson, S.N., & Redak, R.A. (2007). Nicotine moderates the eVects of macronutrient balance on nutrient intake by parasitized Manduca sexta L. Journal of Comparative Physiology B, 177, 375-391. https://doi.org/10.1007/s00360-006-0136-1
  • Wink, M. (2000). Interference of alkaloids with neuroreceptors and ion channels. In Rattan, A. (Ed.) Studies in natural products chemistry (pp. 3-122). Elseiver.
  • Xu, L., Li, D., Qin, J., Zhao, W., & Qiu, L. (2016). Over-expression of multiple cytochrome P450 genes in fenvalerate-resistant field strains of Helicoverpa armigera from north of China. Pesticide Biochemistry and Physiology, 132, 53 58. https://doi.org/10.1016/j.pestbp.2016.01.003
  • Yamamoto, R.T. (1969). Mass rearing of tobacco hornworm. II. Larval rearing and pupation. Journal of Economic Entomology, 62, 1427-1431. https://doi.org/10.1093/jee/62.6.1427
  • Yoder, J.A., & Grojean, N.C. (1997).Group influence on water conservation in the giant Madagascar hissing-cockroach, Gromphadorhina portentosa (Dictyoptera:Blaberidae). Physiological Entomology, 22, 79–82.
  • Yuan, Y., Li, L., Zhao, J., & Chen, M. (2020). Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae). Journal of Insect Science, 20(1), 8, 1 7. https://doi.org/10.1093/jisesa/ieaa001
  • Yuan, G.-G., Zhao, L.-C., Du, Y.-W., Yu, H., Shi, X.-B., Chen, W.-C., & Chen, G. (2022), Repellence or attraction: secondary metabolites in pepper mediate attraction and defense against Spodoptera litura. Pest Management Science, 78, 4859 4870. https://doi.org/10.1002/ps.7107
  • Zhao, Y.H., Xu, C.M., Wang, Q.H., Wei, Y., Liu, F., & Mu, W. (2016). Effects of the microbial secondary metabolite benzothiazole on the nutritional physiology and enzyme activities of Bradysia odoriphaga (Diptera: Sciaridae). Pesticide Biochemistry and Physiology, 129, 49-55. https://doi.org/10.1016/j.pestbp.2015.10.017
  • Zikic, V., Stankovic, S.S., Kavallieratos, N.G., Athanassiou, C., Georgiou, P., Tschorsnig, H.P., & Van Achterberg, C. (2017) Parasitoids associated with Lymantria dispar (Lepidoptera: Erebidae) and Malacosoma neustria L. (Lepidoptera: Lasiocampidae) in Greece and comparative analysis of their parasitoid spectrums in Europe. Zoologischer Anzeiger, 270, 166–175. https://doi.org/10.1016/j.jcz.2017.10.006
There are 45 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Mahmut Bilgener 0000-0001-7883-6973

Nurver Altun 0000-0002-2657-9263

Publication Date February 5, 2024
Submission Date March 29, 2023
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Bilgener, M., & Altun, N. (2024). The Effect of some secondary metabolites on food consumption and pupal parameters of male and female Malacosoma neustria L. (Lepidoptera: Lasiocampidae) larvae. International Journal of Secondary Metabolite, 11(1), 1-14. https://doi.org/10.21448/ijsm.1273049
International Journal of Secondary Metabolite

e-ISSN: 2148-6905