Research Article
BibTex RIS Cite

Antimicrobial activities of some species in Asteraceae and Lamiaceae families from Türkiye

Year 2024, Volume: 11 Issue: 2, 277 - 291, 03.06.2024
https://doi.org/10.21448/ijsm.1386142

Abstract

The study aimed to investigate the antimicrobial activities of the species belong to Asteraceae and Lamiaceae families collected from Çorum, Eskişehir and Kütahya provinces in Türkiye on Gram (+) and Gram (-) bacterial strains using EUCAST disc diffusion method. Ethanol (96%) and Ciprofloxacin (5mcg) were used as negative and positive controls, respectively. All plant extracts produced inhibition zones on S. aureus and E. faecalis ranged between 4.67-14.33 mm and 21.67-23.67 mm respectively. The variance in the antimicrobial activities of the plant extracts was significant between groups according to ANOVA. L. angustifolia samples collected from Eskişehir and Kütahya gave zone diameters close to the positive control on S. aureus and E. faecalis. It was determined that E. coli was the most resistant and S. aureus and E. faecalis were the most sensitive microorganisms in this study. L. angustifolia-E, M. piperita and S. officinalis were the species whose extracts were coming front with their high antimicrobial activities. Pearson's correlation analyses displayed that the antimicrobial activity on E. coli was correlated positively and negatively with altitude and latitude respectively, while on E. faecalis was positively correlated with altitude and negatively correlated with latitude and longitude. In conclusion, the variations in the antimicrobial activities of the secondary metabolites found in the extracts of medicinal aromatic plants are important and, although the quantity, quality, and diversity of these compounds are determined according to the genotypes of plants, the environmental conditions in which the plants grow might have an impact on these differences.

References

  • Abdel-Naime, W.A., Fahim, J.R., Fouad, M.A., Kamel, M.S. (2019). Antibacterial, Antifungal, and GC–MS Studies of Melissa officinalis. South African Journal of Botany, 124, 228-34.
  • Abu Darwish, M.S. (2014). Essential Oil Variation and Trace Metals Content in Garden Sage (Salvia officinalis L.) Grown at Different Environmental Conditions. Journal of Agricultural Science, 6(3), 209-214.
  • Afridi, M.S., Ali, J., Abbas, S., Rehman, S.U., Khan, F.A., Khan, M.A., Shahid, M. (2016). Essential Oil Composition of Mentha piperita L. and Its Antimicrobial Effects Against Common Human Pathogenic Bacterial and Fungal Strains. Pharmacology Online, 3, 90-97. http://pharmacologyonline.silae.it
  • Ahl, H.S., Hussein, M.S., Gendy, A.S.H., Kirill, G. (2015). Tkachenko Quality of sage (Salvia officinalis L.) essential oil grown in Egypt. Int. J. Plant. Sci. Ecol., 1(4), 119-123. http://www.aiscience.org/journal/ijpse
  • Algabar, F.A.A., Mohsen, S.M., Mageed, G.H. (2022). Antitumor Effect of Methanolic Extract of Echinacea purpureas Leaves and Determination of Antimicrobial Activity of Plant Extract in vitro. Ecology, Environment and Conservation Journal, 28(1), 574-581. http://doi.org/10.53550/EEC.2022.v28i01.086
  • Andrys, D., Kulpa, D., Grzeszczuk, M., Bihun, M., Dobrowolska, A. (2017). Antioxidant and Antimicrobial Activities of Lavandula angustifolia Mill. Field-grown and Propagated in vitro. Folia Horticulturae, 29(2), 161-180.
  • Asnaashari, S., Marefat, S., Vatankhah, A.M., Moghaddam, S.B., Delazar, A., Hamedeyazdan, S. (2023). Bioactivity Assays and Phytochemical Analysis upon Achillea filipendulina, Focusing on Xanthine Oxidase Inhibitory and Antimalarial Properties. Beni-Suef Univ. J. Basic Appl. Sci., 12, 46. https://doi.org/10.1186/s43088-023-00385-6
  • Burlou-Nagy, C., Banica, F., Jurca, T., Vicas, L.G., Marian, E., Muresan, M.E., Bácskay, I., Kiss, R., Fehér, P., Pallag, A. (2022). Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties a Review. Plants, 11, 1244.
  • Burt, S. (2004). Essential Oils: Their Antibacterial Properties and Potential Applications in Foods-a Review. International Journal of Food Microbiology, 94, 223-253.
  • Derwish, E., Benziane, Z., Taouil, R., Senhaji, O., Touzani, M. (2010). Aromatic Plants of Morocco: GC/MS Analysis of The Essential Oils of Leaves of Mentha piperita. Advances in Environmental Biology, 4(1), 80–85.
  • EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing Version 11.0 (2023). www.eucast.org
  • Goff, D.A., Kullar, R., Goldstein, E.J., Gilchrist, M., Nathwani, D., Cheng, A.C., Cairns, K.A., Escandon-Vargas, K., Villegas, M.V., Brink, A., van den Bergh, D., & Mendelson, M. (2017). A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail. Lancet Infect. Dis., 17(2), e56-e63.
  • Grulova, D., De Martino, L., Mancini, E., Salamon, I., De Feo, V. (2015) Seasonal variability of the main components in essential oil of Mentha × piperita L. J. Sci. Food Agric., 95, 621-627.
  • Gruľová, D., Martino, L., Mancini, E., Tkáčikovác, L., Šalamona, I., Fejera, J., Feob, V.D. (2016). Phytotoxic and antibacterial activity of essential oil of new peppermint cultivar. Nat. Prod. Commun., 11(11), 1721–1724. https://doi.org/10.1177/1934578X1601101124
  • Hassan, R.A., Abotaleb, S.T., Hamed, H.B., Eldeen, M.Sh. (2019). Antioxidant and Antimicrobial Activities of Melissa officinalis L. (Lemon balm) Extracts. J Agric. Chem Biotechnol Mansoura Univ., 10(9), 183-187.
  • Heidarian, S., Kachoie, M.A., Mousavi-Fard, S., Moattar, F. (2022). Antimicrobial Effects of Lemon balm (Melissa officinalis L.) Essential Oil Against Pathogenic Bacteria. Journal of Positive School Psychology, 6(7), 2033–2038.
  • Hudson, J.B. (2012). Applications of the Phytomedicine Echinacea purpurea (Purple Coneflower) in Infectious Diseases. Hindawi Publishing Corporation. Journal of Biomedicine and Biotechnology, Article ID 769896, 16. https://doi.org/10.1155/2012/769896
  • Hussain, A.I., Anwar, F., Nigam, P.S., Ashraf, M., Gilani, A. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. Journal of the Science of Food and Agriculture, 90(11), 1827-1836.
  • Iscan, G., Kirimer, N., Kurkcuoglu, M., Baser, K.H.C., Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem., 50, 3943-3946.
  • Kaur, H., Bose, S.K., Vadekeetil, A., Geeta, G, Harjai, K., Richa, R. (2017). Essential Oil Composition and Antibacterial Activity of Flowers of Achillea filipendulina. Int. J. Pharm. Sci. Drug. Res., 9(4), 182-186. https://doi.org/10.25004/IJPSDR.2017.090405
  • Kızıl, S., Haşimi, N., Tolan, V., Kılınc, E., Yüksel, U. (2010). Mineral Content, Essential Oil Components and Biological Activity of Two Mentha Species (M. piperita L., M. spicata L.). Turkish J. Field Crop., 15(2), 148–153.
  • Lis-Balchin, M. (2002). Lavender: the genus Lavandula. Taylor and Francis, London, p 2002
  • McKay, D.L., Blumberg, J.B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research, 20, 619-633
  • Mimica-Dukic, N., Bozin, B., Sokovic, M., Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food. Chem., 52(9), 2485-2489. https://doi.org/10.1021/jf030698a
  • Napoli, E., Siracusa, L., Ruberto, G. (2020). New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications, and Exploitation of Selected Species from the Lamiaceae Family. Chemistry & Biodiversity, 17(3), e1900677.
  • Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot, P., Purugganan, M.D., Richards, C.L., Valladares, F., van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684-92. https://doi.org/10.1016/j.tplants.2010.09.008
  • Nikšić, H., Kovač-Bešović, E., Makarević, E., Durić, K., Kusturica, J., Muratovic, S. (2017). Antiproliferative, Antimicrobial, and Antioxidant Activity of Lavandula angustifolia Mill. Essential Oil. Journal of Health Sciences, 7(1), 35-43.
  • Panuccio, M.R., Fazio, A., Papalia, T., (2016). Barreca, D. Antioxidant Properties, and Flavonoid Profile in Leaves of Calabrian Lavandula multifida L., an Autochthon Plant of Mediterranean Southern Regions. Chemistry & Biodiversity, 13(4), 416-421.
  • Rubinstein, E., Kollef, M.H., Nathwani, D. (2008). Pneumonia caused by methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis., 46(5), 378–S385
  • Shakeri, A., Sahebkar, A., Javadi, B. (2016). Melissa officinalis L. A Review of Its Traditional Uses, Phytochemistry and Pharmacology. Journal of Ethnopharmacology, 188, 204-28.
  • Saharkhiz, M.J., Ghani, A., Khayat, M. (2009). Changes in essential oil composition of Clary sage (Salvia sclarea L.) aerial parts during its phenological cycle. J Med Aromat Plant Sci Biotechnol, 3, 90–93.
  • Slimani, C., Sqalli, H., Rais, C, Farah, A, Lazraq, A., Ghadraoui, L.E., Belmalha, S. & Echchgadda, G. (2022). Chemical composition and evaluation of biological effects of essential oil and aqueous extract of Lavandula angustifolia L. Notulae Scientia Biologicae, 14(1), 11172. https://doi.org/10.15835/nsb14111172
  • Śmigielski, K., Raj, A., Krosowiak, K., Gruska, R. (2009). Chemical Composition of the Essentials Oil of Lavandula angustifolia Cultivated in Poland Journal of Essential Oil. Bear Plants, 12(3), 338-347. https://doi.org/10.1155/2014/953451
  • Soheili, M., Salami, M. (2019). Lavandula angustifolia Biological Characteristics: An in vitro Study. Journal of Cellular Physiology, 234(9), 16424-16430.
  • Sulaiman, A.M., Abdulaziz, A.S., Almutawea, A.M., Alansari, S.A., Aldoseri, F.M., Bekhit, S.A., Al-Thawadi, S.M., Alqallaf, S.M., Bekhit, A.A. (2023). Evaluation of the Antibacterial Effect of Salvia officinalis Essential Oil and its Synergistic Effect with Meropenem. Letters in Applied NanoBioScience, 12(2), 44.
  • Tarayre, M., Thompson J.D, Escarre, J., Linhart, Y.B. (1995). Intraspecific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed germination. Oecologia, 101, 110-118.
  • Upson, T., Andrews, S. (2004). The Genus Lavandula. Timber Press. Inc., USA.
  • Velickovic, D., Ristic, M., Randjelovlc, N., Smelcerovic, A. (2002). Chemical Composition and Antimicrobial Characteristics of the Essential Oils Obtained from Flower, Leaf and Stem of Salvia officinalis L. Originated from Southern Serbia. J. Essent. Oil Res., 14, 453-458.
  • Vokou, D. (1993). The allelopathic potential of aromatic shrubs in phryganic (east Mediterranean) ecosystem. In Bioactive volatile compounds from plants. ACS Symposium Series, 525
  • Xiaotian, C., Lanyue, Z., Chenyu, Q., Zhiyun, D., Peng, X., Zhangmin, X. (2020). Chemical Compositions of Essential Oil Extracted from Lavandula angustifolia and Its Prevention of TPA Induced Inflammation. Microchemical Journal, 153, 104458. https://doi.org/10.1016/j.microc.2019.104458

Antimicrobial activities of some species in Asteraceae and Lamiaceae families from Türkiye

Year 2024, Volume: 11 Issue: 2, 277 - 291, 03.06.2024
https://doi.org/10.21448/ijsm.1386142

Abstract

The study aimed to investigate the antimicrobial activities of the species belong to Asteraceae and Lamiaceae families collected from Çorum, Eskişehir and Kütahya provinces in Türkiye on Gram (+) and Gram (-) bacterial strains using EUCAST disc diffusion method. Ethanol (96%) and Ciprofloxacin (5mcg) were used as negative and positive controls, respectively. All plant extracts produced inhibition zones on S. aureus and E. faecalis ranged between 4.67-14.33 mm and 21.67-23.67 mm respectively. The variance in the antimicrobial activities of the plant extracts was significant between groups according to ANOVA. L. angustifolia samples collected from Eskişehir and Kütahya gave zone diameters close to the positive control on S. aureus and E. faecalis. It was determined that E. coli was the most resistant and S. aureus and E. faecalis were the most sensitive microorganisms in this study. L. angustifolia-E, M. piperita and S. officinalis were the species whose extracts were coming front with their high antimicrobial activities. Pearson's correlation analyses displayed that the antimicrobial activity on E. coli was correlated positively and negatively with altitude and latitude respectively, while on E. faecalis was positively correlated with altitude and negatively correlated with latitude and longitude. In conclusion, the variations in the antimicrobial activities of the secondary metabolites found in the extracts of medicinal aromatic plants are important and, although the quantity, quality, and diversity of these compounds are determined according to the genotypes of plants, the environmental conditions in which the plants grow might have an impact on these differences.

Ethical Statement

The authors declare no conflict of interest. This research study complies with research and publishing ethics. The scientific and legal responsibility for manuscripts published in IJSM belongs to the authors.

References

  • Abdel-Naime, W.A., Fahim, J.R., Fouad, M.A., Kamel, M.S. (2019). Antibacterial, Antifungal, and GC–MS Studies of Melissa officinalis. South African Journal of Botany, 124, 228-34.
  • Abu Darwish, M.S. (2014). Essential Oil Variation and Trace Metals Content in Garden Sage (Salvia officinalis L.) Grown at Different Environmental Conditions. Journal of Agricultural Science, 6(3), 209-214.
  • Afridi, M.S., Ali, J., Abbas, S., Rehman, S.U., Khan, F.A., Khan, M.A., Shahid, M. (2016). Essential Oil Composition of Mentha piperita L. and Its Antimicrobial Effects Against Common Human Pathogenic Bacterial and Fungal Strains. Pharmacology Online, 3, 90-97. http://pharmacologyonline.silae.it
  • Ahl, H.S., Hussein, M.S., Gendy, A.S.H., Kirill, G. (2015). Tkachenko Quality of sage (Salvia officinalis L.) essential oil grown in Egypt. Int. J. Plant. Sci. Ecol., 1(4), 119-123. http://www.aiscience.org/journal/ijpse
  • Algabar, F.A.A., Mohsen, S.M., Mageed, G.H. (2022). Antitumor Effect of Methanolic Extract of Echinacea purpureas Leaves and Determination of Antimicrobial Activity of Plant Extract in vitro. Ecology, Environment and Conservation Journal, 28(1), 574-581. http://doi.org/10.53550/EEC.2022.v28i01.086
  • Andrys, D., Kulpa, D., Grzeszczuk, M., Bihun, M., Dobrowolska, A. (2017). Antioxidant and Antimicrobial Activities of Lavandula angustifolia Mill. Field-grown and Propagated in vitro. Folia Horticulturae, 29(2), 161-180.
  • Asnaashari, S., Marefat, S., Vatankhah, A.M., Moghaddam, S.B., Delazar, A., Hamedeyazdan, S. (2023). Bioactivity Assays and Phytochemical Analysis upon Achillea filipendulina, Focusing on Xanthine Oxidase Inhibitory and Antimalarial Properties. Beni-Suef Univ. J. Basic Appl. Sci., 12, 46. https://doi.org/10.1186/s43088-023-00385-6
  • Burlou-Nagy, C., Banica, F., Jurca, T., Vicas, L.G., Marian, E., Muresan, M.E., Bácskay, I., Kiss, R., Fehér, P., Pallag, A. (2022). Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties a Review. Plants, 11, 1244.
  • Burt, S. (2004). Essential Oils: Their Antibacterial Properties and Potential Applications in Foods-a Review. International Journal of Food Microbiology, 94, 223-253.
  • Derwish, E., Benziane, Z., Taouil, R., Senhaji, O., Touzani, M. (2010). Aromatic Plants of Morocco: GC/MS Analysis of The Essential Oils of Leaves of Mentha piperita. Advances in Environmental Biology, 4(1), 80–85.
  • EUCAST Disk Diffusion Method for Antimicrobial Susceptibility Testing Version 11.0 (2023). www.eucast.org
  • Goff, D.A., Kullar, R., Goldstein, E.J., Gilchrist, M., Nathwani, D., Cheng, A.C., Cairns, K.A., Escandon-Vargas, K., Villegas, M.V., Brink, A., van den Bergh, D., & Mendelson, M. (2017). A global call from five countries to collaborate in antibiotic stewardship: united we succeed, divided we might fail. Lancet Infect. Dis., 17(2), e56-e63.
  • Grulova, D., De Martino, L., Mancini, E., Salamon, I., De Feo, V. (2015) Seasonal variability of the main components in essential oil of Mentha × piperita L. J. Sci. Food Agric., 95, 621-627.
  • Gruľová, D., Martino, L., Mancini, E., Tkáčikovác, L., Šalamona, I., Fejera, J., Feob, V.D. (2016). Phytotoxic and antibacterial activity of essential oil of new peppermint cultivar. Nat. Prod. Commun., 11(11), 1721–1724. https://doi.org/10.1177/1934578X1601101124
  • Hassan, R.A., Abotaleb, S.T., Hamed, H.B., Eldeen, M.Sh. (2019). Antioxidant and Antimicrobial Activities of Melissa officinalis L. (Lemon balm) Extracts. J Agric. Chem Biotechnol Mansoura Univ., 10(9), 183-187.
  • Heidarian, S., Kachoie, M.A., Mousavi-Fard, S., Moattar, F. (2022). Antimicrobial Effects of Lemon balm (Melissa officinalis L.) Essential Oil Against Pathogenic Bacteria. Journal of Positive School Psychology, 6(7), 2033–2038.
  • Hudson, J.B. (2012). Applications of the Phytomedicine Echinacea purpurea (Purple Coneflower) in Infectious Diseases. Hindawi Publishing Corporation. Journal of Biomedicine and Biotechnology, Article ID 769896, 16. https://doi.org/10.1155/2012/769896
  • Hussain, A.I., Anwar, F., Nigam, P.S., Ashraf, M., Gilani, A. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. Journal of the Science of Food and Agriculture, 90(11), 1827-1836.
  • Iscan, G., Kirimer, N., Kurkcuoglu, M., Baser, K.H.C., Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem., 50, 3943-3946.
  • Kaur, H., Bose, S.K., Vadekeetil, A., Geeta, G, Harjai, K., Richa, R. (2017). Essential Oil Composition and Antibacterial Activity of Flowers of Achillea filipendulina. Int. J. Pharm. Sci. Drug. Res., 9(4), 182-186. https://doi.org/10.25004/IJPSDR.2017.090405
  • Kızıl, S., Haşimi, N., Tolan, V., Kılınc, E., Yüksel, U. (2010). Mineral Content, Essential Oil Components and Biological Activity of Two Mentha Species (M. piperita L., M. spicata L.). Turkish J. Field Crop., 15(2), 148–153.
  • Lis-Balchin, M. (2002). Lavender: the genus Lavandula. Taylor and Francis, London, p 2002
  • McKay, D.L., Blumberg, J.B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research, 20, 619-633
  • Mimica-Dukic, N., Bozin, B., Sokovic, M., Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food. Chem., 52(9), 2485-2489. https://doi.org/10.1021/jf030698a
  • Napoli, E., Siracusa, L., Ruberto, G. (2020). New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications, and Exploitation of Selected Species from the Lamiaceae Family. Chemistry & Biodiversity, 17(3), e1900677.
  • Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot, P., Purugganan, M.D., Richards, C.L., Valladares, F., van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684-92. https://doi.org/10.1016/j.tplants.2010.09.008
  • Nikšić, H., Kovač-Bešović, E., Makarević, E., Durić, K., Kusturica, J., Muratovic, S. (2017). Antiproliferative, Antimicrobial, and Antioxidant Activity of Lavandula angustifolia Mill. Essential Oil. Journal of Health Sciences, 7(1), 35-43.
  • Panuccio, M.R., Fazio, A., Papalia, T., (2016). Barreca, D. Antioxidant Properties, and Flavonoid Profile in Leaves of Calabrian Lavandula multifida L., an Autochthon Plant of Mediterranean Southern Regions. Chemistry & Biodiversity, 13(4), 416-421.
  • Rubinstein, E., Kollef, M.H., Nathwani, D. (2008). Pneumonia caused by methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis., 46(5), 378–S385
  • Shakeri, A., Sahebkar, A., Javadi, B. (2016). Melissa officinalis L. A Review of Its Traditional Uses, Phytochemistry and Pharmacology. Journal of Ethnopharmacology, 188, 204-28.
  • Saharkhiz, M.J., Ghani, A., Khayat, M. (2009). Changes in essential oil composition of Clary sage (Salvia sclarea L.) aerial parts during its phenological cycle. J Med Aromat Plant Sci Biotechnol, 3, 90–93.
  • Slimani, C., Sqalli, H., Rais, C, Farah, A, Lazraq, A., Ghadraoui, L.E., Belmalha, S. & Echchgadda, G. (2022). Chemical composition and evaluation of biological effects of essential oil and aqueous extract of Lavandula angustifolia L. Notulae Scientia Biologicae, 14(1), 11172. https://doi.org/10.15835/nsb14111172
  • Śmigielski, K., Raj, A., Krosowiak, K., Gruska, R. (2009). Chemical Composition of the Essentials Oil of Lavandula angustifolia Cultivated in Poland Journal of Essential Oil. Bear Plants, 12(3), 338-347. https://doi.org/10.1155/2014/953451
  • Soheili, M., Salami, M. (2019). Lavandula angustifolia Biological Characteristics: An in vitro Study. Journal of Cellular Physiology, 234(9), 16424-16430.
  • Sulaiman, A.M., Abdulaziz, A.S., Almutawea, A.M., Alansari, S.A., Aldoseri, F.M., Bekhit, S.A., Al-Thawadi, S.M., Alqallaf, S.M., Bekhit, A.A. (2023). Evaluation of the Antibacterial Effect of Salvia officinalis Essential Oil and its Synergistic Effect with Meropenem. Letters in Applied NanoBioScience, 12(2), 44.
  • Tarayre, M., Thompson J.D, Escarre, J., Linhart, Y.B. (1995). Intraspecific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed germination. Oecologia, 101, 110-118.
  • Upson, T., Andrews, S. (2004). The Genus Lavandula. Timber Press. Inc., USA.
  • Velickovic, D., Ristic, M., Randjelovlc, N., Smelcerovic, A. (2002). Chemical Composition and Antimicrobial Characteristics of the Essential Oils Obtained from Flower, Leaf and Stem of Salvia officinalis L. Originated from Southern Serbia. J. Essent. Oil Res., 14, 453-458.
  • Vokou, D. (1993). The allelopathic potential of aromatic shrubs in phryganic (east Mediterranean) ecosystem. In Bioactive volatile compounds from plants. ACS Symposium Series, 525
  • Xiaotian, C., Lanyue, Z., Chenyu, Q., Zhiyun, D., Peng, X., Zhangmin, X. (2020). Chemical Compositions of Essential Oil Extracted from Lavandula angustifolia and Its Prevention of TPA Induced Inflammation. Microchemical Journal, 153, 104458. https://doi.org/10.1016/j.microc.2019.104458
There are 40 citations in total.

Details

Primary Language English
Subjects Natural Products and Bioactive Compounds
Journal Section Articles
Authors

Sibel Kerem This is me 0000-0002-3560-5806

Özlem Özbek 0000-0002-7683-4197

Early Pub Date April 22, 2024
Publication Date June 3, 2024
Submission Date November 5, 2023
Acceptance Date January 6, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Kerem, S., & Özbek, Ö. (2024). Antimicrobial activities of some species in Asteraceae and Lamiaceae families from Türkiye. International Journal of Secondary Metabolite, 11(2), 277-291. https://doi.org/10.21448/ijsm.1386142
International Journal of Secondary Metabolite

e-ISSN: 2148-6905