Research Article
BibTex RIS Cite

Phytochemical screening and in vitro biological activity of Amaranthus viridis growing in Northern Cyprus

Year 2024, Volume: 11 Issue: 3, 592 - 603

Abstract

In this study, phenolic and non-phenolic metabolites in different parts of A. viridis (from the Turkish Republic of Northern Cyprus) were characterized with reversed-phase high-performance liquid chromatography (RP-HPLC) with diode array detector and high-performance liquid chromatography (HPLC), respectively. In total, approximately twenty-five phenolic compounds including quercetin, chrysin, t-Ferulic acid, and sinapic acid as the most abundant secondary metabolites were identified. On the other hand, four organic acids as non-phenolic compounds quantitatively predominant were identified for the first time in A. viridis extracts. The seed and flower extract showed strong ferric-reducing capacity, radical scavenging activity for DPPH˙, phosphomolybdenum assay, metal chelating, and α-amylase inhibition activity by in vitro assays. Our results suggest that A. viridis widely used in the human diet in Cyprus is a source of numerous metabolites showing antioxidant and antibacterial potential.

References

  • Abdel-alim, M.E., Serag, M.S., Moussa, H.R., Elgendy, M.A., Mohesien, M.T., & Salim, N.S. (2023). Phytochemical screening and antioxidant potential of Lotus corniculatus and Amaranthus viridis. Egyptian Journal of Botany, 63(2), 1 17. http://dx.doi.org/10.21608/ejbo.2023.158720.2118
  • Ahmed, S.A., Hanif, S., & Iftkhar, T. (2013). Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open Journal of Medical Microbiology, 3, 164-171. http://dx.doi.org/10.4236/ojmm.2013.33025
  • Akbar, M., Sherazi, I.N., Iqbal, M.S., Khalil, T., & Waqas, H.M. (2018). Antibacterial and antioxidant activities of Slender Amaranth Weed. Planta Daninha, 38, e020192974, 1-8. http://dx.doi.org/10.1590/S0100-83582020380100006
  • Başyiğit, B., Sağlam, H., Köroğlu, K., & Karaaslan, M. (2020). Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. Journal of Food Processing and Preservation, 44, e14692. https://doi.org/10.1111/jfpp.14692
  • Blois, M.S. (1958). Antioxidant determinations by the use of stable free radical. Nature, 1199–1200.
  • Chen, C.C., Huang, M.Y., Lin, K.H., & Hsueh, M.T. (2022). The effects of nitrogen application on the growth, photosynthesis, and antioxidant activity of Amaranthus viridis. Photosynthetica, 60(3), 420-429. http://dx.doi.org/10.32615/ps.2022.034
  • CLSI, (2012). Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard (7th ed.). CLSI document M02-A11, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
  • Datta, S., Sinha, B.K., Bhattacharjee, S., & Seal, T. (2019). Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon, 5, e01431, 1-37. https://doi.org/10.1016/j.heliyon.2019.e01431
  • Dinis, T.C., Madeira, V.M., & Almeida, L.M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and assay peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169. https://doi.org/10.1006/abbi.1994.1485
  • Gallardo-Guerrero, L., Perez-Galvez, A., Aranda, E., Minquez-Mosquera, M.I., & Hornero-Mendez, D. (2010). Physicochemical and microbiological characterization of the dehydration processing of red pepper fruits for paprika production. LWT - Food Science and Technology, 43, 1359-1367. http://dx.doi.org/10.1016/j.lwt.2010.04.015
  • Gupta, M., Sasmal, S., Majumdar, S. & Mukherjee, A. (2012). HPLC profiles of standard phenolic compounds present in medicinal plants. International Journal of Pharmacognosy and Phytochemical Research, 4(3), 162-167.
  • Iqbal, M.J., Hanif, S., Mahmood, Z., Anwar, F., & Jamil, A. (2012). Antioxidant and antimicrobial activities of Chowlai (Amaranthus viridis L.) leaf and seed extracts. Journal of Medicinal Plants Research, 6(27), 4450-4455. https://doi.org/10.5897/JMPR12.822
  • Javed, M.T., Akram, M.S., Habib, N., Tanwir, K., Ali, Q., Niazi, N. K., Gul, H., & Iqbal, N. (2018). Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environmental. Science and Pollution Research, 25(3), 2958-2971. https://doi.org/10.1007/s11356-017-0735-2
  • Khan, M., Musharaf, S., Ibrar, M., & Hussain, F. (2011). Pharmacognostic evaluation of the Amaranthus viridis L. Research in Pharmaceutical Biotechnology, 3(1), 11-16.
  • Kumari, S., Elancheran, R., & Devi, R. (2018). Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaranthus viridis extract. Indian Journal of Pharmacology, 50(3), 130-138. http://dx.doi.org/10.4103/ijp.IJP_77_18
  • Mareshvaran, U.R., Murugan, L., Salvamani, S., Sharma, M., Okechukwu, P.N., & Gunasekaran, B. (2020). In vitro Inhibitory potential of Amaranthus viridis against alpha-amylase for diabetes and the antioxidant activity. Malaysian Journal of Biochemistry & Molecular Biolology, 2, 127 – 134.
  • Naeem, Z., Jabeen, K., & Iqbal, S. (2022). Management of ochratoxigenic fungi by phytochemicals of Amaranthus viridis L. Journal of Animal and Plant Sciences, 32(4), 1136-1142. http://doi.org/10.36899/JAPS.2022.4.0518
  • Olarewaju, O.A., Alashi, A.M., Taiwo, K.A., Oyedele, D., Adebooye, O.C., & Aluko, R.E. (2018). Influence of nitrogen fertilizer micro-dosing on phenolic content, antioxidant, and anticholinesterase properties of aqueous extracts of three tropical leafy vegetables. Journal of Food Biochemistry, 1-13. https://doi.org/10.1111/jfbc.12566
  • Oluwagunwa, O.A., Alashi, A.M., & Aluko, R.E. (2021). Inhibition of the in vitro activities of α-amylase and pancreatic lipase by aqueous extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis leaves. Frontiers in Nutrition, 8, 1 17. https://doi.org/10.3389/fnut.2021.772903
  • Owuso, E., Ahorlu, M.M., Afutu, E., Akumwena, A., & Asare, G.A. (2021). Antimicrobial activity of selected medicinal plants from a Sub-Saharan African Country against bacterial pathogens from post operative wound infections. Medical Sciences, 9(2), 23. https://doi.org/10.3390/medsci9020023
  • Oyaizu, M. (1986). Studies on product of browning reaction - Antioxidative activities of products of browning reaction prepared from glucose amine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315.
  • Pl@ntNet. (2024, Marc 22). Amaranthus viridis L. https://identify.plantnet.org/k-world-flora/species/Amaranthus%20viridis%20L./data
  • Popoola, O.O. (2022). Phenolic compounds composition and in vitro antioxidant activity of Nigerian Amaranthus viridis seed as affected by autoclaving and germination. Measurement: Food, 6, 1-7. https://doi.org/10.1016/j.meafoo.2022.100028
  • Pulipati, S., Babu, P.S., & Narasu, M.L. (2014). Phytochemical and pharmacological potential of Amaranthus viridis L. International Journal of Phytomedicine, 6(3), 322-326.
  • Reyad-ul-Ferdous, Md., Shahjahan, D. M. S., Tanvir, S., & Mukti, M. (2015). Present biological status of potential medicinal plant of Amaranthus viridis: A comprehensive review. American Journal of Clinical and Experimental Medicine, 3(5-1), 12-17. http://dx.doi.org/10.11648/j.ajcem.s.2015030501.13
  • Rose, A.L., Starlin, M., Wilsy, I., & Appavoo, R. (2021). Antibacterial activity of Amaranthus viridis L. International Journal of Innovative Research in Technology, 7(11), 420-422.
  • Sadia, S., Mashwani, Z.U.R., Amin, H., Shedayi, A.A., Zhang, J-T., Bai, X., Nayyar, B.G., & Mazari, P. (2016). Qualitative and quantitative phytochemical analysis and antioxidant potential of Amaranthus Viridis L. from Pakistan. Proceedings of 54th The IIER International Conference, Beijing, China, 13th January 2016, ISBN: 978-93-82702-35-1, 10-16.
  • Sarker, U., & Oba, S. (2019). Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep., 9:20413, 1-10. https://doi.org/10.1038/s41598-019-50977-5
  • Sarker, U., & Oba, S. (2020). Phenolic profiles and antioxidant activities in selected drought‑tolerant leafy vegetable amaranth. Scientific Reports, 10:18287, 1-11. https://doi.org/10.1038/s41598-020-71727-y
  • Sarker, U., Hossain, M., & Oba, S. (2020). Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Scientific Reports, 10:1336, 1-10. https://doi.org/10.1038/s41598-020-57687-3
  • Sharma, S., & Vig, A.P. (2013). Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. leaves. The Scientific World Journal, 1, 2–7. http://doi.org/10.1155/2013/604865
  • Stanković, M.S. (2011). Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac Journal of Science, 33, 63–72.
  • Sunday, E.A., Gift, W.P., & Boobondah, W.J. (2021). Phytochemistry and antioxidant activity of Amaranthus viridis L (Green leaf). World Journal of Advanced Research and Reviews, 12(02), 306–314. https://doi.org/10.30574/wjarr.2021.12.2.0468
  • Swarnakumari, S., Mohan, S., Sasikala, M., & Umapoorani, T. (2021). Comparative studies on Amaranthus viridus and Amaranthus spinosus. International Journal of Pharmaceutical Sciences and Research, 12(10), 5618-5623. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(10).5618-23
  • Torres, M.P., Carlos, L.A., Pedrosa, M.W., Silva, A.P.C.M., Silva, E.C., & Ferraz, L.C.L. (2018). Profile of phytochemistry and antioxidant activity of sorrel in function of organic fertilization and density of plantio. Bioscience Journal, 35(3), 775-783.
  • Ucan Turkmen, F., & Mercimek Takci, H.A. (2018). Ultraviolet-C and ultraviolet-B lights effect on black carrot (Daucus carota ssp. sativus) juice. Journal of Food Measurement and Characterization, 12, 1038-1046.
  • Zahir, S., Pal, T.K., Sengupta, A., Biswas, S., Bar, S., & Bose, S. (2021). Determination of lethal concentration fifty (LC50) of whole plant ethanolic extract of Amaranthus Viridis, Cynodon Dactylon & Aerva Sanguinolenta on Zebrafish (Danio Rerio) embryos. International Journal of Pharmaceutical Sciences and Research, 12(4), 2394-2404. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(4).2394-04
  • Zhang, Q-W., Lin, L-G., & Ye, W-C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13(20), 1 26. https://doi.org/10.1186/s13020-018-0177-x
  • Zaware, O.R., Wakchaure, R.S., Tambe, A.V., & Lokhande, R.P. (2022). Antioxidant activity of Amaranthus Viridis Linn. International Journal of Advanced Research in Science, Communication and Technology, 2(5), 664-670. http://dx.doi.org/10.48175/IJARSCT-4880
  • Zengin, G., Sarikurkcu, C., Aktumsek, A., & Ceylan. R. (2014). Sideritis galatica Bornm.: A source of multifunctional agents for the management of oxidative damage, Alzheimer’s and diabetes mellitus. Journal of Functional Foods, 11, 538 547. https://doi.org/10.1016/j.jff.2014.08.011
  • Zong, Y., Li, J., Sun, W., Liu, G., Lu, J., & Shan, G. (2016). Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography. Chinese Journal of Chromatography, 34(2), 189-193. https://doi.org/10.3724/SP.J.1123.2015.08017

Phytochemical screening and in vitro biological activity of Amaranthus viridis growing in Northern Cyprus

Year 2024, Volume: 11 Issue: 3, 592 - 603

Abstract

In this study, phenolic and non-phenolic metabolites in different parts of A. viridis (from the Turkish Republic of Northern Cyprus) were characterized with reversed-phase high-performance liquid chromatography (RP-HPLC) with diode array detector and high-performance liquid chromatography (HPLC), respectively. In total, approximately twenty-five phenolic compounds including quercetin, chrysin, t-Ferulic acid, and sinapic acid as the most abundant secondary metabolites were identified. On the other hand, four organic acids as non-phenolic compounds quantitatively predominant were identified for the first time in A. viridis extracts. The seed and flower extract showed strong ferric-reducing capacity, radical scavenging activity for DPPH˙, phosphomolybdenum assay, metal chelating, and α-amylase inhibition activity by in vitro assays. Our results suggest that A. viridis widely used in the human diet in Cyprus is a source of numerous metabolites showing antioxidant and antibacterial potential.

References

  • Abdel-alim, M.E., Serag, M.S., Moussa, H.R., Elgendy, M.A., Mohesien, M.T., & Salim, N.S. (2023). Phytochemical screening and antioxidant potential of Lotus corniculatus and Amaranthus viridis. Egyptian Journal of Botany, 63(2), 1 17. http://dx.doi.org/10.21608/ejbo.2023.158720.2118
  • Ahmed, S.A., Hanif, S., & Iftkhar, T. (2013). Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open Journal of Medical Microbiology, 3, 164-171. http://dx.doi.org/10.4236/ojmm.2013.33025
  • Akbar, M., Sherazi, I.N., Iqbal, M.S., Khalil, T., & Waqas, H.M. (2018). Antibacterial and antioxidant activities of Slender Amaranth Weed. Planta Daninha, 38, e020192974, 1-8. http://dx.doi.org/10.1590/S0100-83582020380100006
  • Başyiğit, B., Sağlam, H., Köroğlu, K., & Karaaslan, M. (2020). Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. Journal of Food Processing and Preservation, 44, e14692. https://doi.org/10.1111/jfpp.14692
  • Blois, M.S. (1958). Antioxidant determinations by the use of stable free radical. Nature, 1199–1200.
  • Chen, C.C., Huang, M.Y., Lin, K.H., & Hsueh, M.T. (2022). The effects of nitrogen application on the growth, photosynthesis, and antioxidant activity of Amaranthus viridis. Photosynthetica, 60(3), 420-429. http://dx.doi.org/10.32615/ps.2022.034
  • CLSI, (2012). Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard (7th ed.). CLSI document M02-A11, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
  • Datta, S., Sinha, B.K., Bhattacharjee, S., & Seal, T. (2019). Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon, 5, e01431, 1-37. https://doi.org/10.1016/j.heliyon.2019.e01431
  • Dinis, T.C., Madeira, V.M., & Almeida, L.M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and assay peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169. https://doi.org/10.1006/abbi.1994.1485
  • Gallardo-Guerrero, L., Perez-Galvez, A., Aranda, E., Minquez-Mosquera, M.I., & Hornero-Mendez, D. (2010). Physicochemical and microbiological characterization of the dehydration processing of red pepper fruits for paprika production. LWT - Food Science and Technology, 43, 1359-1367. http://dx.doi.org/10.1016/j.lwt.2010.04.015
  • Gupta, M., Sasmal, S., Majumdar, S. & Mukherjee, A. (2012). HPLC profiles of standard phenolic compounds present in medicinal plants. International Journal of Pharmacognosy and Phytochemical Research, 4(3), 162-167.
  • Iqbal, M.J., Hanif, S., Mahmood, Z., Anwar, F., & Jamil, A. (2012). Antioxidant and antimicrobial activities of Chowlai (Amaranthus viridis L.) leaf and seed extracts. Journal of Medicinal Plants Research, 6(27), 4450-4455. https://doi.org/10.5897/JMPR12.822
  • Javed, M.T., Akram, M.S., Habib, N., Tanwir, K., Ali, Q., Niazi, N. K., Gul, H., & Iqbal, N. (2018). Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environmental. Science and Pollution Research, 25(3), 2958-2971. https://doi.org/10.1007/s11356-017-0735-2
  • Khan, M., Musharaf, S., Ibrar, M., & Hussain, F. (2011). Pharmacognostic evaluation of the Amaranthus viridis L. Research in Pharmaceutical Biotechnology, 3(1), 11-16.
  • Kumari, S., Elancheran, R., & Devi, R. (2018). Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaranthus viridis extract. Indian Journal of Pharmacology, 50(3), 130-138. http://dx.doi.org/10.4103/ijp.IJP_77_18
  • Mareshvaran, U.R., Murugan, L., Salvamani, S., Sharma, M., Okechukwu, P.N., & Gunasekaran, B. (2020). In vitro Inhibitory potential of Amaranthus viridis against alpha-amylase for diabetes and the antioxidant activity. Malaysian Journal of Biochemistry & Molecular Biolology, 2, 127 – 134.
  • Naeem, Z., Jabeen, K., & Iqbal, S. (2022). Management of ochratoxigenic fungi by phytochemicals of Amaranthus viridis L. Journal of Animal and Plant Sciences, 32(4), 1136-1142. http://doi.org/10.36899/JAPS.2022.4.0518
  • Olarewaju, O.A., Alashi, A.M., Taiwo, K.A., Oyedele, D., Adebooye, O.C., & Aluko, R.E. (2018). Influence of nitrogen fertilizer micro-dosing on phenolic content, antioxidant, and anticholinesterase properties of aqueous extracts of three tropical leafy vegetables. Journal of Food Biochemistry, 1-13. https://doi.org/10.1111/jfbc.12566
  • Oluwagunwa, O.A., Alashi, A.M., & Aluko, R.E. (2021). Inhibition of the in vitro activities of α-amylase and pancreatic lipase by aqueous extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis leaves. Frontiers in Nutrition, 8, 1 17. https://doi.org/10.3389/fnut.2021.772903
  • Owuso, E., Ahorlu, M.M., Afutu, E., Akumwena, A., & Asare, G.A. (2021). Antimicrobial activity of selected medicinal plants from a Sub-Saharan African Country against bacterial pathogens from post operative wound infections. Medical Sciences, 9(2), 23. https://doi.org/10.3390/medsci9020023
  • Oyaizu, M. (1986). Studies on product of browning reaction - Antioxidative activities of products of browning reaction prepared from glucose amine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315.
  • Pl@ntNet. (2024, Marc 22). Amaranthus viridis L. https://identify.plantnet.org/k-world-flora/species/Amaranthus%20viridis%20L./data
  • Popoola, O.O. (2022). Phenolic compounds composition and in vitro antioxidant activity of Nigerian Amaranthus viridis seed as affected by autoclaving and germination. Measurement: Food, 6, 1-7. https://doi.org/10.1016/j.meafoo.2022.100028
  • Pulipati, S., Babu, P.S., & Narasu, M.L. (2014). Phytochemical and pharmacological potential of Amaranthus viridis L. International Journal of Phytomedicine, 6(3), 322-326.
  • Reyad-ul-Ferdous, Md., Shahjahan, D. M. S., Tanvir, S., & Mukti, M. (2015). Present biological status of potential medicinal plant of Amaranthus viridis: A comprehensive review. American Journal of Clinical and Experimental Medicine, 3(5-1), 12-17. http://dx.doi.org/10.11648/j.ajcem.s.2015030501.13
  • Rose, A.L., Starlin, M., Wilsy, I., & Appavoo, R. (2021). Antibacterial activity of Amaranthus viridis L. International Journal of Innovative Research in Technology, 7(11), 420-422.
  • Sadia, S., Mashwani, Z.U.R., Amin, H., Shedayi, A.A., Zhang, J-T., Bai, X., Nayyar, B.G., & Mazari, P. (2016). Qualitative and quantitative phytochemical analysis and antioxidant potential of Amaranthus Viridis L. from Pakistan. Proceedings of 54th The IIER International Conference, Beijing, China, 13th January 2016, ISBN: 978-93-82702-35-1, 10-16.
  • Sarker, U., & Oba, S. (2019). Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep., 9:20413, 1-10. https://doi.org/10.1038/s41598-019-50977-5
  • Sarker, U., & Oba, S. (2020). Phenolic profiles and antioxidant activities in selected drought‑tolerant leafy vegetable amaranth. Scientific Reports, 10:18287, 1-11. https://doi.org/10.1038/s41598-020-71727-y
  • Sarker, U., Hossain, M., & Oba, S. (2020). Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Scientific Reports, 10:1336, 1-10. https://doi.org/10.1038/s41598-020-57687-3
  • Sharma, S., & Vig, A.P. (2013). Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. leaves. The Scientific World Journal, 1, 2–7. http://doi.org/10.1155/2013/604865
  • Stanković, M.S. (2011). Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac Journal of Science, 33, 63–72.
  • Sunday, E.A., Gift, W.P., & Boobondah, W.J. (2021). Phytochemistry and antioxidant activity of Amaranthus viridis L (Green leaf). World Journal of Advanced Research and Reviews, 12(02), 306–314. https://doi.org/10.30574/wjarr.2021.12.2.0468
  • Swarnakumari, S., Mohan, S., Sasikala, M., & Umapoorani, T. (2021). Comparative studies on Amaranthus viridus and Amaranthus spinosus. International Journal of Pharmaceutical Sciences and Research, 12(10), 5618-5623. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(10).5618-23
  • Torres, M.P., Carlos, L.A., Pedrosa, M.W., Silva, A.P.C.M., Silva, E.C., & Ferraz, L.C.L. (2018). Profile of phytochemistry and antioxidant activity of sorrel in function of organic fertilization and density of plantio. Bioscience Journal, 35(3), 775-783.
  • Ucan Turkmen, F., & Mercimek Takci, H.A. (2018). Ultraviolet-C and ultraviolet-B lights effect on black carrot (Daucus carota ssp. sativus) juice. Journal of Food Measurement and Characterization, 12, 1038-1046.
  • Zahir, S., Pal, T.K., Sengupta, A., Biswas, S., Bar, S., & Bose, S. (2021). Determination of lethal concentration fifty (LC50) of whole plant ethanolic extract of Amaranthus Viridis, Cynodon Dactylon & Aerva Sanguinolenta on Zebrafish (Danio Rerio) embryos. International Journal of Pharmaceutical Sciences and Research, 12(4), 2394-2404. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(4).2394-04
  • Zhang, Q-W., Lin, L-G., & Ye, W-C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13(20), 1 26. https://doi.org/10.1186/s13020-018-0177-x
  • Zaware, O.R., Wakchaure, R.S., Tambe, A.V., & Lokhande, R.P. (2022). Antioxidant activity of Amaranthus Viridis Linn. International Journal of Advanced Research in Science, Communication and Technology, 2(5), 664-670. http://dx.doi.org/10.48175/IJARSCT-4880
  • Zengin, G., Sarikurkcu, C., Aktumsek, A., & Ceylan. R. (2014). Sideritis galatica Bornm.: A source of multifunctional agents for the management of oxidative damage, Alzheimer’s and diabetes mellitus. Journal of Functional Foods, 11, 538 547. https://doi.org/10.1016/j.jff.2014.08.011
  • Zong, Y., Li, J., Sun, W., Liu, G., Lu, J., & Shan, G. (2016). Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography. Chinese Journal of Chromatography, 34(2), 189-193. https://doi.org/10.3724/SP.J.1123.2015.08017
There are 41 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Microbiology (Other)
Journal Section Articles
Authors

Melis Sümengen Özdenefe 0000-0003-0804-9557

Fikret Büyükkaya Kayış 0000-0002-3890-1635

Ümit Haydar Erol 0000-0001-6126-5844

Aysun Mercimek Takcı 0000-0002-3388-1153

Early Pub Date August 6, 2024
Publication Date
Submission Date January 24, 2024
Acceptance Date April 20, 2024
Published in Issue Year 2024 Volume: 11 Issue: 3

Cite

APA Sümengen Özdenefe, M., Büyükkaya Kayış, F., Erol, Ü. H., Mercimek Takcı, A. (2024). Phytochemical screening and in vitro biological activity of Amaranthus viridis growing in Northern Cyprus. International Journal of Secondary Metabolite, 11(3), 592-603.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905