Phytochemical screening and in vitro biological activity of Amaranthus viridis growing in Northern Cyprus
Year 2024,
Volume: 11 Issue: 3, 592 - 603, 29.08.2024
Melis Sümengen Özdenefe
,
Fikret Büyükkaya Kayış
,
Ümit Haydar Erol
,
Aysun Mercimek Takcı
Abstract
In this study, phenolic and non-phenolic metabolites in different parts of A. viridis (from the Turkish Republic of Northern Cyprus) were characterized with reversed-phase high-performance liquid chromatography (RP-HPLC) with diode array detector and high-performance liquid chromatography (HPLC), respectively. In total, approximately twenty-five phenolic compounds including quercetin, chrysin, t-Ferulic acid, and sinapic acid as the most abundant secondary metabolites were identified. On the other hand, four organic acids as non-phenolic compounds quantitatively predominant were identified for the first time in A. viridis extracts. The seed and flower extract showed strong ferric-reducing capacity, radical scavenging activity for DPPH˙, phosphomolybdenum assay, metal chelating, and α-amylase inhibition activity by in vitro assays. Our results suggest that A. viridis widely used in the human diet in Cyprus is a source of numerous metabolites showing antioxidant and antibacterial potential.
References
- Abdel-alim, M.E., Serag, M.S., Moussa, H.R., Elgendy, M.A., Mohesien, M.T., & Salim, N.S. (2023). Phytochemical screening and antioxidant potential of Lotus corniculatus and Amaranthus viridis. Egyptian Journal of Botany, 63(2), 1 17. http://dx.doi.org/10.21608/ejbo.2023.158720.2118
- Ahmed, S.A., Hanif, S., & Iftkhar, T. (2013). Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open Journal of Medical Microbiology, 3, 164-171. http://dx.doi.org/10.4236/ojmm.2013.33025
- Akbar, M., Sherazi, I.N., Iqbal, M.S., Khalil, T., & Waqas, H.M. (2018). Antibacterial and antioxidant activities of Slender Amaranth Weed. Planta Daninha, 38, e020192974, 1-8. http://dx.doi.org/10.1590/S0100-83582020380100006
- Başyiğit, B., Sağlam, H., Köroğlu, K., & Karaaslan, M. (2020). Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. Journal of Food Processing and Preservation, 44, e14692. https://doi.org/10.1111/jfpp.14692
- Blois, M.S. (1958). Antioxidant determinations by the use of stable free radical. Nature, 1199–1200.
- Chen, C.C., Huang, M.Y., Lin, K.H., & Hsueh, M.T. (2022). The effects of nitrogen application on the growth, photosynthesis, and antioxidant activity of Amaranthus viridis. Photosynthetica, 60(3), 420-429. http://dx.doi.org/10.32615/ps.2022.034
- CLSI, (2012). Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard (7th ed.). CLSI document M02-A11, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
- Datta, S., Sinha, B.K., Bhattacharjee, S., & Seal, T. (2019). Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon, 5, e01431, 1-37. https://doi.org/10.1016/j.heliyon.2019.e01431
- Dinis, T.C., Madeira, V.M., & Almeida, L.M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and assay peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169. https://doi.org/10.1006/abbi.1994.1485
- Gallardo-Guerrero, L., Perez-Galvez, A., Aranda, E., Minquez-Mosquera, M.I., & Hornero-Mendez, D. (2010). Physicochemical and microbiological characterization of the dehydration processing of red pepper fruits for paprika production. LWT - Food Science and Technology, 43, 1359-1367. http://dx.doi.org/10.1016/j.lwt.2010.04.015
- Gupta, M., Sasmal, S., Majumdar, S. & Mukherjee, A. (2012). HPLC profiles of standard phenolic compounds present in medicinal plants. International Journal of Pharmacognosy and Phytochemical Research, 4(3), 162-167.
- Iqbal, M.J., Hanif, S., Mahmood, Z., Anwar, F., & Jamil, A. (2012). Antioxidant and antimicrobial activities of Chowlai (Amaranthus viridis L.) leaf and seed extracts. Journal of Medicinal Plants Research, 6(27), 4450-4455. https://doi.org/10.5897/JMPR12.822
- Javed, M.T., Akram, M.S., Habib, N., Tanwir, K., Ali, Q., Niazi, N. K., Gul, H., & Iqbal, N. (2018). Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environmental. Science and Pollution Research, 25(3), 2958-2971. https://doi.org/10.1007/s11356-017-0735-2
- Khan, M., Musharaf, S., Ibrar, M., & Hussain, F. (2011). Pharmacognostic evaluation of the Amaranthus viridis L. Research in Pharmaceutical Biotechnology, 3(1), 11-16.
- Kumari, S., Elancheran, R., & Devi, R. (2018). Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaranthus viridis extract. Indian Journal of Pharmacology, 50(3), 130-138. http://dx.doi.org/10.4103/ijp.IJP_77_18
- Mareshvaran, U.R., Murugan, L., Salvamani, S., Sharma, M., Okechukwu, P.N., & Gunasekaran, B. (2020). In vitro Inhibitory potential of Amaranthus viridis against alpha-amylase for diabetes and the antioxidant activity. Malaysian Journal of Biochemistry & Molecular Biolology, 2, 127 – 134.
- Naeem, Z., Jabeen, K., & Iqbal, S. (2022). Management of ochratoxigenic fungi by phytochemicals of Amaranthus viridis L. Journal of Animal and Plant Sciences, 32(4), 1136-1142. http://doi.org/10.36899/JAPS.2022.4.0518
- Olarewaju, O.A., Alashi, A.M., Taiwo, K.A., Oyedele, D., Adebooye, O.C., & Aluko, R.E. (2018). Influence of nitrogen fertilizer micro-dosing on phenolic content, antioxidant, and anticholinesterase properties of aqueous extracts of three tropical leafy vegetables. Journal of Food Biochemistry, 1-13. https://doi.org/10.1111/jfbc.12566
- Oluwagunwa, O.A., Alashi, A.M., & Aluko, R.E. (2021). Inhibition of the in vitro activities of α-amylase and pancreatic lipase by aqueous extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis leaves. Frontiers in Nutrition, 8, 1 17. https://doi.org/10.3389/fnut.2021.772903
- Owuso, E., Ahorlu, M.M., Afutu, E., Akumwena, A., & Asare, G.A. (2021). Antimicrobial activity of selected medicinal plants from a Sub-Saharan African Country against bacterial pathogens from post operative wound infections. Medical Sciences, 9(2), 23. https://doi.org/10.3390/medsci9020023
- Oyaizu, M. (1986). Studies on product of browning reaction - Antioxidative activities of products of browning reaction prepared from glucose amine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315.
- Pl@ntNet. (2024, Marc 22). Amaranthus viridis L. https://identify.plantnet.org/k-world-flora/species/Amaranthus%20viridis%20L./data
- Popoola, O.O. (2022). Phenolic compounds composition and in vitro antioxidant activity of Nigerian Amaranthus viridis seed as affected by autoclaving and germination. Measurement: Food, 6, 1-7. https://doi.org/10.1016/j.meafoo.2022.100028
- Pulipati, S., Babu, P.S., & Narasu, M.L. (2014). Phytochemical and pharmacological potential of Amaranthus viridis L. International Journal of Phytomedicine, 6(3), 322-326.
- Reyad-ul-Ferdous, Md., Shahjahan, D. M. S., Tanvir, S., & Mukti, M. (2015). Present biological status of potential medicinal plant of Amaranthus viridis: A comprehensive review. American Journal of Clinical and Experimental Medicine, 3(5-1), 12-17. http://dx.doi.org/10.11648/j.ajcem.s.2015030501.13
- Rose, A.L., Starlin, M., Wilsy, I., & Appavoo, R. (2021). Antibacterial activity of Amaranthus viridis L. International Journal of Innovative Research in Technology, 7(11), 420-422.
- Sadia, S., Mashwani, Z.U.R., Amin, H., Shedayi, A.A., Zhang, J-T., Bai, X., Nayyar, B.G., & Mazari, P. (2016). Qualitative and quantitative phytochemical analysis and antioxidant potential of Amaranthus Viridis L. from Pakistan. Proceedings of 54th The IIER International Conference, Beijing, China, 13th January 2016, ISBN: 978-93-82702-35-1, 10-16.
- Sarker, U., & Oba, S. (2019). Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep., 9:20413, 1-10. https://doi.org/10.1038/s41598-019-50977-5
- Sarker, U., & Oba, S. (2020). Phenolic profiles and antioxidant activities in selected drought‑tolerant leafy vegetable amaranth. Scientific Reports, 10:18287, 1-11. https://doi.org/10.1038/s41598-020-71727-y
- Sarker, U., Hossain, M., & Oba, S. (2020). Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Scientific Reports, 10:1336, 1-10. https://doi.org/10.1038/s41598-020-57687-3
- Sharma, S., & Vig, A.P. (2013). Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. leaves. The Scientific World Journal, 1, 2–7. http://doi.org/10.1155/2013/604865
- Stanković, M.S. (2011). Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac Journal of Science, 33, 63–72.
- Sunday, E.A., Gift, W.P., & Boobondah, W.J. (2021). Phytochemistry and antioxidant activity of Amaranthus viridis L (Green leaf). World Journal of Advanced Research and Reviews, 12(02), 306–314. https://doi.org/10.30574/wjarr.2021.12.2.0468
- Swarnakumari, S., Mohan, S., Sasikala, M., & Umapoorani, T. (2021). Comparative studies on Amaranthus viridus and Amaranthus spinosus. International Journal of Pharmaceutical Sciences and Research, 12(10), 5618-5623. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(10).5618-23
- Torres, M.P., Carlos, L.A., Pedrosa, M.W., Silva, A.P.C.M., Silva, E.C., & Ferraz, L.C.L. (2018). Profile of phytochemistry and antioxidant activity of sorrel in function of organic fertilization and density of plantio. Bioscience Journal, 35(3), 775-783.
- Ucan Turkmen, F., & Mercimek Takci, H.A. (2018). Ultraviolet-C and ultraviolet-B lights effect on black carrot (Daucus carota ssp. sativus) juice. Journal of Food Measurement and Characterization, 12, 1038-1046.
- Zahir, S., Pal, T.K., Sengupta, A., Biswas, S., Bar, S., & Bose, S. (2021). Determination of lethal concentration fifty (LC50) of whole plant ethanolic extract of Amaranthus Viridis, Cynodon Dactylon & Aerva Sanguinolenta on Zebrafish (Danio Rerio) embryos. International Journal of Pharmaceutical Sciences and Research, 12(4), 2394-2404. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(4).2394-04
- Zhang, Q-W., Lin, L-G., & Ye, W-C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13(20), 1 26. https://doi.org/10.1186/s13020-018-0177-x
- Zaware, O.R., Wakchaure, R.S., Tambe, A.V., & Lokhande, R.P. (2022). Antioxidant activity of Amaranthus Viridis Linn. International Journal of Advanced Research in Science, Communication and Technology, 2(5), 664-670. http://dx.doi.org/10.48175/IJARSCT-4880
- Zengin, G., Sarikurkcu, C., Aktumsek, A., & Ceylan. R. (2014). Sideritis galatica Bornm.: A source of multifunctional agents for the management of oxidative damage, Alzheimer’s and diabetes mellitus. Journal of Functional Foods, 11, 538 547. https://doi.org/10.1016/j.jff.2014.08.011
- Zong, Y., Li, J., Sun, W., Liu, G., Lu, J., & Shan, G. (2016). Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography. Chinese Journal of Chromatography, 34(2), 189-193. https://doi.org/10.3724/SP.J.1123.2015.08017
Phytochemical screening and in vitro biological activity of Amaranthus viridis growing in Northern Cyprus
Year 2024,
Volume: 11 Issue: 3, 592 - 603, 29.08.2024
Melis Sümengen Özdenefe
,
Fikret Büyükkaya Kayış
,
Ümit Haydar Erol
,
Aysun Mercimek Takcı
Abstract
In this study, phenolic and non-phenolic metabolites in different parts of A. viridis (from the Turkish Republic of Northern Cyprus) were characterized with reversed-phase high-performance liquid chromatography (RP-HPLC) with diode array detector and high-performance liquid chromatography (HPLC), respectively. In total, approximately twenty-five phenolic compounds including quercetin, chrysin, t-Ferulic acid, and sinapic acid as the most abundant secondary metabolites were identified. On the other hand, four organic acids as non-phenolic compounds quantitatively predominant were identified for the first time in A. viridis extracts. The seed and flower extract showed strong ferric-reducing capacity, radical scavenging activity for DPPH˙, phosphomolybdenum assay, metal chelating, and α-amylase inhibition activity by in vitro assays. Our results suggest that A. viridis widely used in the human diet in Cyprus is a source of numerous metabolites showing antioxidant and antibacterial potential.
References
- Abdel-alim, M.E., Serag, M.S., Moussa, H.R., Elgendy, M.A., Mohesien, M.T., & Salim, N.S. (2023). Phytochemical screening and antioxidant potential of Lotus corniculatus and Amaranthus viridis. Egyptian Journal of Botany, 63(2), 1 17. http://dx.doi.org/10.21608/ejbo.2023.158720.2118
- Ahmed, S.A., Hanif, S., & Iftkhar, T. (2013). Phytochemical profiling with antioxidant and antimicrobial screening of Amaranthus viridis L. leaf and seed extracts. Open Journal of Medical Microbiology, 3, 164-171. http://dx.doi.org/10.4236/ojmm.2013.33025
- Akbar, M., Sherazi, I.N., Iqbal, M.S., Khalil, T., & Waqas, H.M. (2018). Antibacterial and antioxidant activities of Slender Amaranth Weed. Planta Daninha, 38, e020192974, 1-8. http://dx.doi.org/10.1590/S0100-83582020380100006
- Başyiğit, B., Sağlam, H., Köroğlu, K., & Karaaslan, M. (2020). Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. Journal of Food Processing and Preservation, 44, e14692. https://doi.org/10.1111/jfpp.14692
- Blois, M.S. (1958). Antioxidant determinations by the use of stable free radical. Nature, 1199–1200.
- Chen, C.C., Huang, M.Y., Lin, K.H., & Hsueh, M.T. (2022). The effects of nitrogen application on the growth, photosynthesis, and antioxidant activity of Amaranthus viridis. Photosynthetica, 60(3), 420-429. http://dx.doi.org/10.32615/ps.2022.034
- CLSI, (2012). Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard (7th ed.). CLSI document M02-A11, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
- Datta, S., Sinha, B.K., Bhattacharjee, S., & Seal, T. (2019). Nutritional composition, mineral content, antioxidant activity and quantitative estimation of water soluble vitamins and phenolics by RP-HPLC in some lesser used wild edible plants. Heliyon, 5, e01431, 1-37. https://doi.org/10.1016/j.heliyon.2019.e01431
- Dinis, T.C., Madeira, V.M., & Almeida, L.M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and assay peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315(1), 161–169. https://doi.org/10.1006/abbi.1994.1485
- Gallardo-Guerrero, L., Perez-Galvez, A., Aranda, E., Minquez-Mosquera, M.I., & Hornero-Mendez, D. (2010). Physicochemical and microbiological characterization of the dehydration processing of red pepper fruits for paprika production. LWT - Food Science and Technology, 43, 1359-1367. http://dx.doi.org/10.1016/j.lwt.2010.04.015
- Gupta, M., Sasmal, S., Majumdar, S. & Mukherjee, A. (2012). HPLC profiles of standard phenolic compounds present in medicinal plants. International Journal of Pharmacognosy and Phytochemical Research, 4(3), 162-167.
- Iqbal, M.J., Hanif, S., Mahmood, Z., Anwar, F., & Jamil, A. (2012). Antioxidant and antimicrobial activities of Chowlai (Amaranthus viridis L.) leaf and seed extracts. Journal of Medicinal Plants Research, 6(27), 4450-4455. https://doi.org/10.5897/JMPR12.822
- Javed, M.T., Akram, M.S., Habib, N., Tanwir, K., Ali, Q., Niazi, N. K., Gul, H., & Iqbal, N. (2018). Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environmental. Science and Pollution Research, 25(3), 2958-2971. https://doi.org/10.1007/s11356-017-0735-2
- Khan, M., Musharaf, S., Ibrar, M., & Hussain, F. (2011). Pharmacognostic evaluation of the Amaranthus viridis L. Research in Pharmaceutical Biotechnology, 3(1), 11-16.
- Kumari, S., Elancheran, R., & Devi, R. (2018). Phytochemical screening, antioxidant, antityrosinase, and antigenotoxic potential of Amaranthus viridis extract. Indian Journal of Pharmacology, 50(3), 130-138. http://dx.doi.org/10.4103/ijp.IJP_77_18
- Mareshvaran, U.R., Murugan, L., Salvamani, S., Sharma, M., Okechukwu, P.N., & Gunasekaran, B. (2020). In vitro Inhibitory potential of Amaranthus viridis against alpha-amylase for diabetes and the antioxidant activity. Malaysian Journal of Biochemistry & Molecular Biolology, 2, 127 – 134.
- Naeem, Z., Jabeen, K., & Iqbal, S. (2022). Management of ochratoxigenic fungi by phytochemicals of Amaranthus viridis L. Journal of Animal and Plant Sciences, 32(4), 1136-1142. http://doi.org/10.36899/JAPS.2022.4.0518
- Olarewaju, O.A., Alashi, A.M., Taiwo, K.A., Oyedele, D., Adebooye, O.C., & Aluko, R.E. (2018). Influence of nitrogen fertilizer micro-dosing on phenolic content, antioxidant, and anticholinesterase properties of aqueous extracts of three tropical leafy vegetables. Journal of Food Biochemistry, 1-13. https://doi.org/10.1111/jfbc.12566
- Oluwagunwa, O.A., Alashi, A.M., & Aluko, R.E. (2021). Inhibition of the in vitro activities of α-amylase and pancreatic lipase by aqueous extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis leaves. Frontiers in Nutrition, 8, 1 17. https://doi.org/10.3389/fnut.2021.772903
- Owuso, E., Ahorlu, M.M., Afutu, E., Akumwena, A., & Asare, G.A. (2021). Antimicrobial activity of selected medicinal plants from a Sub-Saharan African Country against bacterial pathogens from post operative wound infections. Medical Sciences, 9(2), 23. https://doi.org/10.3390/medsci9020023
- Oyaizu, M. (1986). Studies on product of browning reaction - Antioxidative activities of products of browning reaction prepared from glucose amine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315.
- Pl@ntNet. (2024, Marc 22). Amaranthus viridis L. https://identify.plantnet.org/k-world-flora/species/Amaranthus%20viridis%20L./data
- Popoola, O.O. (2022). Phenolic compounds composition and in vitro antioxidant activity of Nigerian Amaranthus viridis seed as affected by autoclaving and germination. Measurement: Food, 6, 1-7. https://doi.org/10.1016/j.meafoo.2022.100028
- Pulipati, S., Babu, P.S., & Narasu, M.L. (2014). Phytochemical and pharmacological potential of Amaranthus viridis L. International Journal of Phytomedicine, 6(3), 322-326.
- Reyad-ul-Ferdous, Md., Shahjahan, D. M. S., Tanvir, S., & Mukti, M. (2015). Present biological status of potential medicinal plant of Amaranthus viridis: A comprehensive review. American Journal of Clinical and Experimental Medicine, 3(5-1), 12-17. http://dx.doi.org/10.11648/j.ajcem.s.2015030501.13
- Rose, A.L., Starlin, M., Wilsy, I., & Appavoo, R. (2021). Antibacterial activity of Amaranthus viridis L. International Journal of Innovative Research in Technology, 7(11), 420-422.
- Sadia, S., Mashwani, Z.U.R., Amin, H., Shedayi, A.A., Zhang, J-T., Bai, X., Nayyar, B.G., & Mazari, P. (2016). Qualitative and quantitative phytochemical analysis and antioxidant potential of Amaranthus Viridis L. from Pakistan. Proceedings of 54th The IIER International Conference, Beijing, China, 13th January 2016, ISBN: 978-93-82702-35-1, 10-16.
- Sarker, U., & Oba, S. (2019). Nutraceuticals, antioxidant pigments, and phytochemicals in the leaves of Amaranthus spinosus and Amaranthus viridis weedy species. Sci. Rep., 9:20413, 1-10. https://doi.org/10.1038/s41598-019-50977-5
- Sarker, U., & Oba, S. (2020). Phenolic profiles and antioxidant activities in selected drought‑tolerant leafy vegetable amaranth. Scientific Reports, 10:18287, 1-11. https://doi.org/10.1038/s41598-020-71727-y
- Sarker, U., Hossain, M., & Oba, S. (2020). Nutritional and antioxidant components and antioxidant capacity in green morph Amaranthus leafy vegetable. Scientific Reports, 10:1336, 1-10. https://doi.org/10.1038/s41598-020-57687-3
- Sharma, S., & Vig, A.P. (2013). Evaluation of in vitro antioxidant properties of methanol and aqueous extracts of Parkinsonia aculeata L. leaves. The Scientific World Journal, 1, 2–7. http://doi.org/10.1155/2013/604865
- Stanković, M.S. (2011). Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac Journal of Science, 33, 63–72.
- Sunday, E.A., Gift, W.P., & Boobondah, W.J. (2021). Phytochemistry and antioxidant activity of Amaranthus viridis L (Green leaf). World Journal of Advanced Research and Reviews, 12(02), 306–314. https://doi.org/10.30574/wjarr.2021.12.2.0468
- Swarnakumari, S., Mohan, S., Sasikala, M., & Umapoorani, T. (2021). Comparative studies on Amaranthus viridus and Amaranthus spinosus. International Journal of Pharmaceutical Sciences and Research, 12(10), 5618-5623. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(10).5618-23
- Torres, M.P., Carlos, L.A., Pedrosa, M.W., Silva, A.P.C.M., Silva, E.C., & Ferraz, L.C.L. (2018). Profile of phytochemistry and antioxidant activity of sorrel in function of organic fertilization and density of plantio. Bioscience Journal, 35(3), 775-783.
- Ucan Turkmen, F., & Mercimek Takci, H.A. (2018). Ultraviolet-C and ultraviolet-B lights effect on black carrot (Daucus carota ssp. sativus) juice. Journal of Food Measurement and Characterization, 12, 1038-1046.
- Zahir, S., Pal, T.K., Sengupta, A., Biswas, S., Bar, S., & Bose, S. (2021). Determination of lethal concentration fifty (LC50) of whole plant ethanolic extract of Amaranthus Viridis, Cynodon Dactylon & Aerva Sanguinolenta on Zebrafish (Danio Rerio) embryos. International Journal of Pharmaceutical Sciences and Research, 12(4), 2394-2404. http://dx.doi.org/10.13040/IJPSR.0975-8232.12(4).2394-04
- Zhang, Q-W., Lin, L-G., & Ye, W-C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13(20), 1 26. https://doi.org/10.1186/s13020-018-0177-x
- Zaware, O.R., Wakchaure, R.S., Tambe, A.V., & Lokhande, R.P. (2022). Antioxidant activity of Amaranthus Viridis Linn. International Journal of Advanced Research in Science, Communication and Technology, 2(5), 664-670. http://dx.doi.org/10.48175/IJARSCT-4880
- Zengin, G., Sarikurkcu, C., Aktumsek, A., & Ceylan. R. (2014). Sideritis galatica Bornm.: A source of multifunctional agents for the management of oxidative damage, Alzheimer’s and diabetes mellitus. Journal of Functional Foods, 11, 538 547. https://doi.org/10.1016/j.jff.2014.08.011
- Zong, Y., Li, J., Sun, W., Liu, G., Lu, J., & Shan, G. (2016). Determination of succinic acid in desvenlafaxine succinate by high performance ion-exclusion chromatography and high performance ion-exchange chromatography. Chinese Journal of Chromatography, 34(2), 189-193. https://doi.org/10.3724/SP.J.1123.2015.08017