Review
BibTex RIS Cite

Effect of COVID-19 on Musculoskeletal System

Year 2020, Volume: 5 Issue: 2, 179 - 182, 30.06.2020

Abstract

COVID-19 disease caused by the SARS-CoV-2 virus adversely affects the musculoskeletal system. Pathological changes in the musculoskeletal system occur due to the direct viral exposure of muscle tissue, synovium and cortical bone cells via the transmembrane protease, serine 2 and angiotensin converting enzyme 2 (ACE2) receptor, or due to cytokines and proinflammatory molecules. In addition, corticosteroids used in the treatment of the disease increase the disruption in the musculoskeletal system. Severe myalgia and arthralgia, high creatine kinase level and decreased bone density are the main symptoms. Highly genetic and pathological similarities between SARS-CoV-1 – SARS-CoV-2 enable short and long-term musculoskeletal complications to be predicted for patients with severe COVID-19 disease. Aerobic and strengthening exercises can be used efficiently against the disruption of the musculoskeletal system caused by COVID-19.

References

  • Broussard, S. R., McCusker, R. H., Novakofski, J. E., Strle, K., Shen, W. H., Johnson, R. W., et al. (2004). IL-1beta impairs insulin-like growth factor i-induced differentiation and downstream activation signals of the insulin-like growth factor i receptor in myoblasts. The Journal of Immunology, 172(12), 7713-7720.
  • Cheng, H., Wang, Y., & Wang, G. Q. (2020). Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. Journal of Medical Virology.
  • Coronaviridae Study Group of the International Committee on Taxonomy of, V. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536-544.
  • Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192.
  • Ding, Y., Wang, H., Shen, H., Li, Z., Geng, J., Han, H.,et al. (2003). The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. The Journal of Pathology, 200(3), 282-289.
  • Disser, N. P., De Micheli, A. J., Schonk, M. M., Konnaris, M. A., Piacentini, A. N., Edon, D. L., et al. (2020). Musculoskeletal Consequences of COVID-19. The Journal of Bone and Joint Surgery, 00(e1), 1-8.
  • Disser, N. P., Ghahramani, G. C., Swanson, J. B., Wada, S., Chao, M. L., Rodeo, S. A., et al. (2020). Widespread diversity in the transcriptomes of functionally divergent limb tendons. The Journal of Physiology, 598(8), 1537-1550.
  • Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., et al. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences U S A, 117(17), 9490- 9496.
  • Fang, D. (2003). SARS: facts and considerations for the orthopaedic community. Journal of Orthopaedic Surgery (Hong Kong), 11(1), 3-5.
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods in Molecular Biology, 1282, 1-23.
  • Griffith, J. F. (2011). Musculoskeletal complications of severe acute respiratory syndrome. Semin Musculoskelet Radiol, 15(5), 554-560.
  • Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., . . . China Medical Treatment Expert Group for, C. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382(18), 1708-1720.
  • Gumucio, J. P., Qasawa, A. H., Ferrara, P. J., Malik, A. N., Funai, K., McDonagh, B., & Mendias, C. L. (2019). Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. The FASEB Journal, 33(7), 7863-7881.
  • Guo, K. J., Zhao, F. C., Guo, Y., Li, F. L., Zhu, L., & Zheng, W. (2014). The influence of age, gender and treatment with steroids on the incidence of osteonecrosis of the femoral head during the management of severe acute respiratory syndrome: a retrospective study. The Bone & Joint Journal, 96-B(2), 259-262.
  • Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., et al. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Military Medical Research, 7(1), 11.
  • Guzzi, P. H., Mercatelli, D., Ceraolo, C., & Giorgi, F. M. (2020). Master Regulator Analysis of the SARS-CoV-2/Human Interactome. Journal of Clinical Medicine, 9(4).
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280 e278.
  • Hong, N., & Du, X. K. (2004). Avascular necrosis of bone in severe acute respiratory syndrome. Clinical Radiology, 59(7), 602-608.
  • Hsiao, C. H., Chang, M. F., Hsueh, P. R., & Su, I. J. (2005). Immunohistochemical study of severe acute respiratory syndrome-associated coronavirus in tissue sections of patients. Journal of the Formosan Medical Association, 104(3), 150-156.
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497-506.
  • Kou, K., Momosaki, R., Miyazaki, S., Wakabayashi, H., & Shamoto, H. (2019). Impact of Nutrition Therapy and Rehabilitation on Acute and Critical Illness: A Systematic Review. Journal of UOEH, 41(3), 303-315.
  • Latourte, A., Cherifi, C., Maillet, J., Ea, H. K., Bouaziz, W., Funck-Brentano, T., et al. (2017). Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Annals of the Rheumatic Diseases, 76(4), 748-755. d
  • Lau, H. M., Lee, E. W., Wong, C. N., Ng, G. Y., Jones, A. Y., & Hui, D. S. (2005). The impact of severe acute respiratory syndrome on the physical profile and quality of life. Archives of Physical Medicine and Rehabilitation, 86(6), 1134-1140.
  • Lau, H. M., Ng, G. Y., Jones, A. Y., Lee, E. W., Siu, E. H., & Hui, D. S. (2005). A randomised controlled trial of the effectiveness of an exercise training program in patients recovering from severe acute respiratory syndrome. Australian Journal of Physiotherapy, 51(4), 213-219.
  • Layne, M. D., & Farmer, S. R. (1999). Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Experimental Cell Research, 249(1), 177-187.
  • Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G. M., et al. (2003). A major outbreak of severe acute respiratory syndrome in Hong Kong. The New England Journal of Medicine, 348(20), 1986-1994.
  • Liu, P., Lee, S., Knoll, J., Rauch, A., Ostermay, S., Luther, J., et al. (2017). Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death & Differentiation, 24(4), 672-682.
  • Madaro, L., Passafaro, M., Sala, D., Etxaniz, U., Lugarini, F., Proietti, D., et al. (2018). Denervation-activated STAT3-IL-6 signalling in fibroadipogenic progenitors promotes myofibres atrophy and fibrosis. Nature Cell Biology, 20(8), 917-927.
  • Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., et al. (2020). Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology.
  • McCray, P. B., Jr., Pewe, L., Wohlford-Lenane, C., Hickey, M., Manzel, L., Shi, L., et al. (2007). Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. Journal of Virology, 81(2), 813-821.
  • Mendias, C. L., Roche, S. M., Harning, J. A., Davis, M. E., Lynch, E. B., Sibilsky Enselman, E. R., et al. (2015). Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears. Journal of Shoulder and Elbow Surgery, 24(1), 111-119.
  • Rahmati-Ahmadabad, S., & Hosseini, F. (2020). Exercise against SARSCoV- 2 (COVID-19): Does workout intensity matter? (A mini review of some indirect evidence related to obesity). Obesity Medicine, 100245.
  • Reid, M. B., & Li, Y. P. (2001). Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respiratory Research, 2(5), 269-272.
  • Srinivasan, S., Cui, H., Gao, Z., Liu, M., Lu, S., Mkandawire, W., et al. (2020). Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses, 12(4).
  • World Health Organization. (2020). Coronavirus disease (COVID-19) pandemic. Retrieved from https://www.who.int/emergencies/ diseases/novel-coronavirus-2019?gclid=CjwKCAjw2a32BRBXEiwA UcugiLkHUvUSXotOHRIKlM8uQmuDWm3TFhE0DjAFCAo53S5jTHaVAwfMRoCQeQQAvD_BwE
  • Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA.
  • Zhang, X., Cai, H., Hu, J., Lian, J., Gu, J., Zhang, S., et al. (2020). Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. International Journal of Infectious Diseases, 94, 81-87.

COVID-19’un Kas İskelet Sistemine Etkisi

Year 2020, Volume: 5 Issue: 2, 179 - 182, 30.06.2020

Abstract

Özet


SARS-CoV-2 virüsünün neden olduğu COVID-19 hastalığı, kas-iskelet sistemini olumsuz etkilemektedir. Kas iskelet sistemindeki patolojik değişiklikler kas dokusu, sinovyum ve kortikal kemikte bulunan transmembran proteaz, serin 2 ve anjiyotensin dönüştürücü enzim 2 (ACE2) reseptörüyle bu hücrelerin doğrudan viral enfeksiyona maruz kalmasıyla ya da sitokinler ve proenflamatuar moleküller nedeniyle meydana gelmektedir. Ayrıca hastalığın tedavi sürecinde kullanılan kortikosteroidler de kas iskelet sistemindeki harabiyeti arttırmaktadır. Şiddetli miyalji ve artralji, yüksek kreatin kinaz seviyesi ve kemik yoğunluğunun azalması görülen başlıca semptomlardır. SARS-CoV-1 ile SARSCoV- 2 arasındaki yüksek genetik ve patolojik benzerlikler, COVID-19 hastalığını şiddetli düzeyde geçiren hastaların kısa ve uzun vadeli kas-iskelet sistemi komplikasyonlarının öngörülebilmesini sağlamaktadır. Aerobik ve kuvvetlendirme egzersizleri COVID-19’un neden olduğu kas iskelet sistemi harabiyetine karşı etkin olarak kullanılabilir.


Anahtar Kelimeler: Koronavirüs, kas, kemik, sinovyum.


Abstract


COVID-19 disease caused by the SARS-CoV-2 virus adversely affects the musculoskeletal system. Pathological changes in the musculoskeletal system occur due to the direct viral exposure of muscle tissue, synovium and cortical bone cells via the transmembrane protease, serine 2 and angiotensin converting enzyme 2 (ACE2) receptor, or due to cytokines and proinflammatory molecules. In addition, corticosteroids used in the treatment of the disease increase the disruption in the musculoskeletal system. Severe myalgia and arthralgia, high creatine kinase level and decreased bone density are the main symptoms. Highly genetic and pathological similarities between SARSCoV- 1 – SARS-CoV-2 enable the prediction of short and long-term musculoskeletal complications for patients with severe COVID-19 disease. Aerobic and strengthening exercises can be used efficiently against the disruption of the musculoskeletal system caused by COVID-19.


Keywords: Coronavirus, muscle, bone, synovium

References

  • Broussard, S. R., McCusker, R. H., Novakofski, J. E., Strle, K., Shen, W. H., Johnson, R. W., et al. (2004). IL-1beta impairs insulin-like growth factor i-induced differentiation and downstream activation signals of the insulin-like growth factor i receptor in myoblasts. The Journal of Immunology, 172(12), 7713-7720.
  • Cheng, H., Wang, Y., & Wang, G. Q. (2020). Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. Journal of Medical Virology.
  • Coronaviridae Study Group of the International Committee on Taxonomy of, V. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536-544.
  • Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17(3), 181-192.
  • Ding, Y., Wang, H., Shen, H., Li, Z., Geng, J., Han, H.,et al. (2003). The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. The Journal of Pathology, 200(3), 282-289.
  • Disser, N. P., De Micheli, A. J., Schonk, M. M., Konnaris, M. A., Piacentini, A. N., Edon, D. L., et al. (2020). Musculoskeletal Consequences of COVID-19. The Journal of Bone and Joint Surgery, 00(e1), 1-8.
  • Disser, N. P., Ghahramani, G. C., Swanson, J. B., Wada, S., Chao, M. L., Rodeo, S. A., et al. (2020). Widespread diversity in the transcriptomes of functionally divergent limb tendons. The Journal of Physiology, 598(8), 1537-1550.
  • Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., et al. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences U S A, 117(17), 9490- 9496.
  • Fang, D. (2003). SARS: facts and considerations for the orthopaedic community. Journal of Orthopaedic Surgery (Hong Kong), 11(1), 3-5.
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods in Molecular Biology, 1282, 1-23.
  • Griffith, J. F. (2011). Musculoskeletal complications of severe acute respiratory syndrome. Semin Musculoskelet Radiol, 15(5), 554-560.
  • Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., . . . China Medical Treatment Expert Group for, C. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382(18), 1708-1720.
  • Gumucio, J. P., Qasawa, A. H., Ferrara, P. J., Malik, A. N., Funai, K., McDonagh, B., & Mendias, C. L. (2019). Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. The FASEB Journal, 33(7), 7863-7881.
  • Guo, K. J., Zhao, F. C., Guo, Y., Li, F. L., Zhu, L., & Zheng, W. (2014). The influence of age, gender and treatment with steroids on the incidence of osteonecrosis of the femoral head during the management of severe acute respiratory syndrome: a retrospective study. The Bone & Joint Journal, 96-B(2), 259-262.
  • Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., et al. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Military Medical Research, 7(1), 11.
  • Guzzi, P. H., Mercatelli, D., Ceraolo, C., & Giorgi, F. M. (2020). Master Regulator Analysis of the SARS-CoV-2/Human Interactome. Journal of Clinical Medicine, 9(4).
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., et al. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280 e278.
  • Hong, N., & Du, X. K. (2004). Avascular necrosis of bone in severe acute respiratory syndrome. Clinical Radiology, 59(7), 602-608.
  • Hsiao, C. H., Chang, M. F., Hsueh, P. R., & Su, I. J. (2005). Immunohistochemical study of severe acute respiratory syndrome-associated coronavirus in tissue sections of patients. Journal of the Formosan Medical Association, 104(3), 150-156.
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497-506.
  • Kou, K., Momosaki, R., Miyazaki, S., Wakabayashi, H., & Shamoto, H. (2019). Impact of Nutrition Therapy and Rehabilitation on Acute and Critical Illness: A Systematic Review. Journal of UOEH, 41(3), 303-315.
  • Latourte, A., Cherifi, C., Maillet, J., Ea, H. K., Bouaziz, W., Funck-Brentano, T., et al. (2017). Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Annals of the Rheumatic Diseases, 76(4), 748-755. d
  • Lau, H. M., Lee, E. W., Wong, C. N., Ng, G. Y., Jones, A. Y., & Hui, D. S. (2005). The impact of severe acute respiratory syndrome on the physical profile and quality of life. Archives of Physical Medicine and Rehabilitation, 86(6), 1134-1140.
  • Lau, H. M., Ng, G. Y., Jones, A. Y., Lee, E. W., Siu, E. H., & Hui, D. S. (2005). A randomised controlled trial of the effectiveness of an exercise training program in patients recovering from severe acute respiratory syndrome. Australian Journal of Physiotherapy, 51(4), 213-219.
  • Layne, M. D., & Farmer, S. R. (1999). Tumor necrosis factor-alpha and basic fibroblast growth factor differentially inhibit the insulin-like growth factor-I induced expression of myogenin in C2C12 myoblasts. Experimental Cell Research, 249(1), 177-187.
  • Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G. M., et al. (2003). A major outbreak of severe acute respiratory syndrome in Hong Kong. The New England Journal of Medicine, 348(20), 1986-1994.
  • Liu, P., Lee, S., Knoll, J., Rauch, A., Ostermay, S., Luther, J., et al. (2017). Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death & Differentiation, 24(4), 672-682.
  • Madaro, L., Passafaro, M., Sala, D., Etxaniz, U., Lugarini, F., Proietti, D., et al. (2018). Denervation-activated STAT3-IL-6 signalling in fibroadipogenic progenitors promotes myofibres atrophy and fibrosis. Nature Cell Biology, 20(8), 917-927.
  • Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., et al. (2020). Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology.
  • McCray, P. B., Jr., Pewe, L., Wohlford-Lenane, C., Hickey, M., Manzel, L., Shi, L., et al. (2007). Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. Journal of Virology, 81(2), 813-821.
  • Mendias, C. L., Roche, S. M., Harning, J. A., Davis, M. E., Lynch, E. B., Sibilsky Enselman, E. R., et al. (2015). Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears. Journal of Shoulder and Elbow Surgery, 24(1), 111-119.
  • Rahmati-Ahmadabad, S., & Hosseini, F. (2020). Exercise against SARSCoV- 2 (COVID-19): Does workout intensity matter? (A mini review of some indirect evidence related to obesity). Obesity Medicine, 100245.
  • Reid, M. B., & Li, Y. P. (2001). Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respiratory Research, 2(5), 269-272.
  • Srinivasan, S., Cui, H., Gao, Z., Liu, M., Lu, S., Mkandawire, W., et al. (2020). Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses, 12(4).
  • World Health Organization. (2020). Coronavirus disease (COVID-19) pandemic. Retrieved from https://www.who.int/emergencies/ diseases/novel-coronavirus-2019?gclid=CjwKCAjw2a32BRBXEiwA UcugiLkHUvUSXotOHRIKlM8uQmuDWm3TFhE0DjAFCAo53S5jTHaVAwfMRoCQeQQAvD_BwE
  • Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA.
  • Zhang, X., Cai, H., Hu, J., Lian, J., Gu, J., Zhang, S., et al. (2020). Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. International Journal of Infectious Diseases, 94, 81-87.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Derlemeler
Authors

Orhan Öztürk 0000-0003-1924-1413

Derya Özer Kaya 0000-0002-6899-852X

Publication Date June 30, 2020
Submission Date May 30, 2020
Published in Issue Year 2020 Volume: 5 Issue: 2

Cite

APA Öztürk, O., & Özer Kaya, D. (2020). COVID-19’un Kas İskelet Sistemine Etkisi. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 5(2), 179-182.
AMA Öztürk O, Özer Kaya D. COVID-19’un Kas İskelet Sistemine Etkisi. İKÇÜSBFD. June 2020;5(2):179-182.
Chicago Öztürk, Orhan, and Derya Özer Kaya. “COVID-19’un Kas İskelet Sistemine Etkisi”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 5, no. 2 (June 2020): 179-82.
EndNote Öztürk O, Özer Kaya D (June 1, 2020) COVID-19’un Kas İskelet Sistemine Etkisi. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 5 2 179–182.
IEEE O. Öztürk and D. Özer Kaya, “COVID-19’un Kas İskelet Sistemine Etkisi”, İKÇÜSBFD, vol. 5, no. 2, pp. 179–182, 2020.
ISNAD Öztürk, Orhan - Özer Kaya, Derya. “COVID-19’un Kas İskelet Sistemine Etkisi”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi 5/2 (June 2020), 179-182.
JAMA Öztürk O, Özer Kaya D. COVID-19’un Kas İskelet Sistemine Etkisi. İKÇÜSBFD. 2020;5:179–182.
MLA Öztürk, Orhan and Derya Özer Kaya. “COVID-19’un Kas İskelet Sistemine Etkisi”. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, vol. 5, no. 2, 2020, pp. 179-82.
Vancouver Öztürk O, Özer Kaya D. COVID-19’un Kas İskelet Sistemine Etkisi. İKÇÜSBFD. 2020;5(2):179-82.



Licensed under a Creative Commons Attribution 4.0 International License.