Review
BibTex RIS Cite

Yapay Zekâ, Akıllı Uygulamalar ve Sürdürülebilir Tüketim: Teorik Bir Bakış

Year 2024, , 803 - 820, 31.10.2024
https://doi.org/10.25204/iktisad.1461652

Abstract

Sürdürülebilir tüketim, doğal kaynakların gelecek nesilleri de düşünmek suretiyle bilinçli bir şekilde tüketilmesi anlamına gelmektedir. Günümüz teknoloji çağında, sürdürülebilirlik hedeflerine ulaşmak amacıyla yapay zekâ ve akıllı uygulamalardan yararlanılmaktadır. Bu kapsam çerçevesinde çalışmada, bu makalede, yapay zekanın (AI) ve akıllı uygulamaların sürdürülebilir tüketim davranışını teşvik etmedeki etkisi incelenmektedir. Kapsamlı bir teorik çerçeve sunan bu çalışma, yapay zekâ teknolojilerinin bilinçli karar almayı nasıl desteklediğini, kaynak yönetimini en üst düzeye nasıl çıkardığını ve çeşitli endüstrilerde olumlu çevresel etkiyi nasıl sağladığını araştırmaktadır. Enerji yönetimi planlarından çevreye duyarlı perakende platformlarına kadar çeşitli örnekler aracılığıyla, sürdürülebilir tüketim üzerinde yapay zekanın ve akıllı uygulamaların etkileri vurgulanmaktadır. Bu çalışmada, dünyada ve Türkiye’de sürdürülebilir tüketimi teşvik etmek için kullanılan akıllı uygulama örneklerine yer verilmiştir. Bununla birlikte algoritmik önyargılar, veri gizliliği sorunları ve dijital uçurum gibi aşılması gereken doğal zorluklardan da söz edilmektedir. Çalışma, sürdürülebilir tüketim için yapay zekanın (AI) ve akıllı uygulamaların elzem olduğunu belirtmek amacıyla, dijital altyapının, veri gizliliği yasalarının, dijital okuryazarlık girişimlerinin ve inovasyon ekosistemlerinin finansmanının önemini vurgulayan Türkiye'ye yönelik öneriler sunmaktadır.

References

  • Adamowicz, M., and Zwolińska-Ligaj, M. (2020). The “smart village” as a way to achieve sustainable development in rural areas of Poland. Sustainability, 12(16), 1-28. https://doi.org/10.3390/su12166503
  • Adesipo, A., Fadeyi, O., Kuca, K., Krejcar, O., Maresova, P., Selamat, A., and Adenola, M. (2020). Smart and climate-smart agricultural trends as core aspects of smart village functions. Sensors, 20(21), 1-22. https://doi.org/10.3390/s20215977
  • Adewale, B. A., Ene, V. O., Ogunbayo, B. F., and Aigbavboa, C. O. (2024). Application of artificial intelligence (AI) in sustainable building lifecycle; a systematic literature review. Buildings 2024 (Preprints) https://doi.org/10.20944/preprints202405.2113.v1
  • Adewumi, A., Okoli, C. E., Usman, F. O., Olu-lawal, K. A., and Soyombo, O. T. (2024). Reviewing the impact of AI on renewable energy efficiency and management. International Journal of Science and Research Archive, 11(1), 1518-1527. https://doi.org/10.30574/ijsra.2024.11.1.0245
  • Akintayo, O. T., Eden, C. A., Ayeni, O. O., and Onyebuchi, N. C. (2024). Integrating AI with emotional and social learning in primary education: Developing a holistic adaptive learning ecosystem. Computer Science & IT Research Journal, 5(5), 1076-1089. https://doi.org/10.51594/csitrj.v5i5.1116
  • Akintoye, I. R., Ajayi, M., Joshua, A., and Okunlola, A. F. (2022). Business sustainability through e-commerce: a myth or reality in Nigeria. Business: Theory and Practice, 23(2), 408–416. https://doi.org/10.3846/btp.2022.16657
  • Ally, M., and Perris, K. (2022). Artificial intelligence in the fourth industrial revolution to educate for sustainable development. Canadian Journal of Learning and Technology, 48(4), 1-20. https://doi.org/10.21432/cjlt28287
  • Amani, M. A., and Sarkodie, S. A. (2022). Mitigating spread of contamination in meat supply chain management using deep learning. Scientific Reports, 12(1), 1-10. https://doi.org/10.1038/s41598-022-08993-5
  • Amofah, D. O., and Chai, J. (2022). Sustaining consumer e-commerce adoption in Sub-Saharan Africa: Do trust and payment method matter? Sustainability, 14(14), 1-20. https://doi.org/10.3390/su14148466
  • Baum, Z. J., Yu, X., Ayala, P. Y., Zhao, Y., Watkins, S. P., and Zhou, Q. (2021). Artificial intelligence in chemistry: Current trends and future directions. Journal of Chemical Information and Modeling, 61(7), 3197–3212. https://doi.org/10.1021/acs.jcim.1c00619
  • Bayashot, Z. (2024). The contribution of AI-powered mobile apps to smart city ecosystems. Journal of Software Engineering and Applications, 17(03), 143-154. https://doi.org/10.4236/jsea.2024.173008
  • Belhadi, A., Mani, V., Kamble, S., Khan, S., and Verma, S. (2021). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: An empirical investigation. Annals of Operations Research, 333(2-3), 627-652. https://doi.org/10.1007/s10479-021-03956-x
  • Blösser, M., and Weihrauch, A. (2024). A consumer perspective of AI certification – the current certification landscape, consumer approval and directions for future research. European Journal of Marketing, 58(2), 441–470. https://doi.org/10.1108/EJM-01-2023-0009
  • Bossert, L., and Hagendorff, T. (2023). The ethics of sustainable AI: why animals (should) matter for a sustainable use of ai. Sustainable Development, 31(5), 3459-3467. https://doi.org/10.1002/sd.2596
  • Bosworth, G., Price, L., Collison, M., and Fox, C. (2020). Unequal futures of rural mobility: Challenges for a “Smart Countryside.” Local Economy: The Journal of the Local Economy Policy Unit, 35(6), 586–608. https://doi.org/10.1177/0269094220968231
  • Bowen, G., Jahankhani, H., and Nawaz, I. Y. (2024). Black swan events: Mitigating disruption to a supply chain using blockchain and artificial intelligence. Preprints. https://doi.org/10.20944/preprints202403.1119.v1
  • Buolamwini, J., and Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on Fairness, Accountability and Transparency (pp. 77-91). PMLR.
  • Camaréna, S. (2021). Engaging with artificial intelligence (AI) with a bottom-up approach for the purpose of sustainability: Victorian farmers market association, Melbourne Australia. Sustainability, 13(16), 9314. https://doi.org/10.3390/su13169314
  • Chandratreya, A. (2024). AI-powered innovations in electrical engineering: Enhancing efficiency, reliability, and sustainability. Journal of Electrical Systems, 20(2), 1580-1587. https://doi.org/10.52783/jes.1463
  • Chen, R. (2024). Sustainable supply chain management as a strategic enterprise innovation. Advances in Economics Management and Political Sciences, 85(1), 24-29. https://doi.org/10.54254/2754-1169/85/20240831
  • Cowie, P., Townsend, L., and Salemink, K. (2020). Smart rural futures: Will rural areas be left behind in the 4th industrial revolution? Journal of Rural Studies, 79, 169–176. https://doi.org/10.1016/j.jrurstud.2020.08.042
  • Diachkova, A., Tikhonov, S., Tomyuk, O., and Tikhonova, N. (2022). Criteria for assessing food consumption patterns in the Brics countries in accordance with sustainable development goals. Bio Web of Conferences, 42, 04005. https://doi.org/10.1051/bioconf/20224204005
  • Dijmărescu, E. (2023, 8-10 June). AI trends: Salient aspects for the manufacturing sector and its global supply chain. R. Pamfilie, V. Dinu, C. Vasiliu, D. Pleșea, L. Tăchiciu (Eds). In 9th BASIQ International Conference on New Trends in Sustainable Business and Consumption, (pp. 168-175). Constanța, Romania. https://doi.org/10.24818/basiq/2023/09/053
  • Dikshit, S., Atiq, A., Shahid, M., Dwivedi, V., and Thusu, A. (2023). The use of artificial intelligence to optimize the routing of vehicles and reduce traffic congestion in urban areas. EAI Endorsed Transactions on Energy Web, 10, 1-13. https://doi.org/10.4108/ew.4613
  • Donati, F., Dente, S. M. R., Li, C., Vilaysouk, X., Froemelt, A., Nishant, R., Liu, G., Tukker, A., and Hashimoto, S. (2022). The future of artificial intelligence in the context of industrial ecology. Journal of Industrial Ecology, 26(4), 1175–1181. https://doi.org/10.1111/jiec.13313
  • Eyo-Udo, N. (2024). Leveraging artificial intelligence for enhanced supply chain optimization. Open Access Research Journal of Multidisciplinary Studies, 7(2), 001-015. https://doi.org/10.53022/oarjms.2024.7.2.0044
  • Hao, X. and Demir, E. (2023). Artificial intelligence in supply chain decision-making: An environmental, social, and governance triggering and technological inhibiting protocol. Journal of Modelling in Management, 19(2), 605-629. https://doi.org/10.1108/jm2-01-2023-0009
  • Hasan, R. and Ojala, A. (2024). Managing artificial intelligence in international business: Toward a research agenda on sustainable production and consumption. Thunderbird International Business Review, 66(2), 151-170. https://doi.org/10.1002/tie.22369
  • He, Q. (2024). Popularization of AI for psychological as well as educational applications. Lecture Notes in Education Psychology and Public Media, 42(1), 112-117. https://doi.org/10.54254/2753-7048/42/20240815
  • Hermann, E. (2023). Artificial intelligence in marketing: friend or foe of sustainable consumption? AI & Society, 38, 1975-1976. https://doi.org/10.1007/s00146-021-01227-8
  • Honarmand Ebrahimi, S., Ossewaarde, M. and Need, A. (2021). Smart fishery: A systematic review and research agenda for sustainable fisheries in the age of AI. Sustainability, 13(11), 6037, 1-20. https://doi.org/10.3390/su13116037
  • Joel, O. S., Oyewole, A. T., Odunaiya, O. G., and Soyombo, O. T. (2024). Leveraging artificial intelligence for enhanced supply chain optimization: A comprehensive review of current practices and future potentials. International Journal of Management & Entrepreneurship Research, 6(3), 707-721. https://doi.org/10.51594/ijmer.v6i3.882
  • Kamkar, M., Leonard, K. C., Ferrer, I., Loo, S. C. J., Biddinger, E. J., Brady, D., Carrier, D. J., Gathergood, N., Han, H., Hermans, I., Hii, K. K. M., Hwang, B. J., Loh, W., Meier, M. A. R., Marr, A. C., Newton, G. N., Srubar, W. V., Yan, N., Tam, M. K., Chen, J., Moores, A. H., Subramaniam, B., Licence, P. and Serrano, J. F. (2024). Artificial intelligence (AI) for sustainable resource management and chemical processes. ACS Sustainable Chemistry and Engineering, 12(8), 2924–2926. https://doi.org/10.1021/acssuschemeng.4c01004
  • Kar, A. K., Ilavarasan, V., Gupta, M. P., Janssen, M. and Kothari, R. (2019). Moving beyond smart cities: Digital nations for social innovation and sustainability. Information Systems Frontiers, 21(3), 495–501. https://doi.org/10.1007/s10796-019-09930-0
  • Kindylidi, I. and Cabral, T. S. (2021). Sustainability of AI: The case of provision of information to consumers. Sustainability, 13(21), 1-14. https://doi.org/10.3390/su132112064
  • Le, T. (2020). Strength from the past: How nostalgia and self-construal affect consumers’ willingness to continue participating in sustainable behavior. American Journal of Industrial and Business Management, 10(02), 432–450. https://doi.org/10.4236/ajibm.2020.102029
  • Lee, K. (2021). A systematic review on social sustainability of artificial intelligence in product design. Sustainability, 13(5), 1-29. https://doi.org/10.3390/su13052668
  • Liao, H. T., Pan, C.-L. and Zhang, Y. (2023). Smart digital platforms for carbon neutral management and services: Business models based on ITU standards for green digital transformation. Frontiers in Ecology and Evolution, 11, 1-10. https://doi.org/10.3389/fevo.2023.1134381
  • Liu, L., Liu, R., Lee, M. and Chen, J. (2019). When will consumers be ready? A psychological perspective on consumer engagement in social media brand communities. Internet Research, 29(4), 704–724. https://doi.org/10.1108/IntR-05-2017-0177
  • Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies?. Sustainability, 13(11), 5788. https://doi.org/10.3390/su13115788
  • Mhlanga, D. (2022). The role of artificial intelligence and machine learning amid the COVID-19 Pandemic: What lessons are we learning on 4IR and the sustainable development goals. International Journal of Environmental Research and Public Health, 19(3), 1-22. https://doi.org/10.3390/ijerph19031879
  • Michels, L., Ochmann, J., Günther, S. A., Laumer, S. and Tiefenbeck, V. (2022). Empowering consumers to make environmentally sustainable online shopping decisions: A digital nudging approach, Proceedings of the 55th Hawaii International Conference on System Sciences, 4707-4716. https://doi.org/10.24251/HICSS.2022.574
  • Moktadir, M. A., Rahman, T., Rahman, M. H., Ali, S. M. and Paul, S. K. (2018). Drivers to sustainable manufacturing practices and circular economy: A perspective of leather industries in Bangladesh. Journal of Cleaner Production, 174, 1366–1380. https://doi.org/10.1016/j.jclepro.2017.11.063
  • Muniandi, B., Maurya, P. K., Bhavani, C. H., Kulkarni, S., Yellu, R. R., and Chauhan, N. (2024). AI-driven energy management systems for smart buildings. Power System Technology, 48(1), 322-337. https://doi.org/10.52783/pst.280
  • Naeeni, S. K., and Nouhi, N. (2023). The environmental impacts of AI and digital technologies. AI and Tech in Behavioral and Social Sciences, 1(4), 11-18. https://doi.org/10.61838/kman.aitech.1.4.3
  • Olan, F., Arakpogun, E., Jayawickrama, U., Suklan, J., and Liu, S. (2024). Sustainable supply chain finance and supply networks: the role of artificial intelligence. IEEE Transactions on Engineering Management, 71, 13296-13311. https://doi.org/10.1109/tem.2021.3133104
  • Olan, F., Liu, S., Suklan, J., Jayawickrama, U., and Arakpogun, E. (2021). The role of artificial intelligence networks in sustainable supply chain finance for food and drink industry. International Journal of Production Research, 60(14), 4418-4433. https://doi.org/10.1080/00207543.2021.1915510
  • Olatunde, T. M., Okwandu, A. C., Akande, D. O., and Sikhakhane, Z. Q. (2024). Reviewing the role of artificial intelligence in energy efficiency optimization. Engineering Science & Technology Journal, 5(4), 1243-1256. https://doi.org/10.51594/estj.v5i4.1015
  • Padmanaban, H. (2024). Privacy-preserving architectures for AI/ML applications: Methods, balances, and illustrations. JAIGS, 3(1), 66-85. https://doi.org/10.60087/jaigs.vol03.issue01.p85
  • Paiva, S., Ahad, M., Tripathi, G., Feroz, N. and Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), 1-41. https://doi.org/10.3390/s21062143
  • Radanliev, P., Santos, O., Brandon-Jones, A., and Joinson, A. (2024). Ethics and responsible AI deployment. Frontiers in Artificial Intelligence, 7, 1-17. https://doi.org/10.3389/frai.2024.1377011
  • Reynolds, S. (2024). Exploring the influence of corporate social responsibility on supply chain sustainability in renewable energy. Preprints. https://doi.org/10.20944/preprints202405.1888.v1
  • Singh, R., Modgil, S., and Shore, A. (2023). Building artificial intelligence enabled resilient supply chain: a multi-method approach. Journal of Enterprise Information Management, 37(2), 414-436. https://doi.org/10.1108/jeim-09-2022-0326
  • Sova, O., Bieliaieva, N., Antypenko, N., and Drozd, N. (2023). Impact of artificial intelligence and digital HRM on the resource consumption within sustainable development perspective. E3s Web of Conferences, 408, 01006. https://doi.org/10.1051/e3sconf/202340801006
  • Strother, J. B., and Fazal, Z. (2011). Can green fatigue hamper sustainability communication efforts?. In 2011 IEEE International Professional Communication Conference (pp. 1-6). IEEE. https://doi.org/10.1109/IPCC.2011.6087206
  • Tomar, P., and Grover, V. (2023). Transforming the energy sector: Addressing key challenges through generative AI, digital twins, AI, data science and analysis. EAI Endorsed Transactions on Energy Web, 10. https://doi.org/10.4108/ew.4825
  • Tran, L. T. T. (2021). Managing the effectiveness of e-commerce platforms in a pandemic. Journal of Retailing and Consumer Services, 58, 1-9. https://doi.org/10.1016/j.jretconser.2020.102287
  • Tsolakis, N., Schumacher, R., Dora, M., and Kumar, M. (2023). Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation? Annals of Operations Research, 327(1), 157–210. https://doi.org/10.1007/s10479-022-04785-2
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., and Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 1-10. https://doi.org/10.1038/s41467-019-14108-y
  • Visvizi, A., and Lytras, M. (2018). It’s not a fad: smart cities and smart villages research in European and global contexts. Sustainability, 10(8), 1-10. https://doi.org/10.3390/su10082727
  • Visvizi, A., and Lytras, M. D. (2019). Sustainable smart cities and smart villages research: Rethinking security, safety, well-being, and happiness. Sustainability, 12(1), 1-4. https://doi.org/10.3390/su12010215
  • Wang, C., Zhang, J., Lassi, N., and Zhang, X. (2022). Privacy protection in using artificial intelligence for healthcare: Chinese regulation in comparative perspective. Healthcare, 10(10), 1878. https://doi.org/10.3390/healthcare10101878
  • Wehlmann, C. Z. (2024). Resilient and Sustainable AI. Positioning paper on the relation of AI, resilience and sustainability. In: Zinke-Wehlmann, C., Friedrich, J. (Eds), First Working Conference on Artificial Intelligence Development for a Resilient and Sustainable Tomorrow (pp. 5-19). Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-43705-3_2
  • White, K., Habib, R., and Hardisty, D. J. (2019). How to shift consumer behaviors to be more sustainable: A literature review and guiding framework. Journal of Marketing, 83(3), 22–49. https://doi.org/10.1177/0022242919825649
  • Wilfred, P., Milner-Gulland, E. J., and Travers, H. (2019). Attitudes to illegal behaviour and conservation in western Tanzania. Oryx, 53(3), 513-522. https://doi.org/10.1017/S0030605317000862
  • Williamson, S. M., and Prybutok, V. (2024). Balancing privacy and progress: A review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences, 14(2), 675. https://doi.org/10.3390/app14020675
  • Xiao, D. (2023). Neuroscience-inspired continuous learning: A sustainable approach to AI energy challenge. Preprints. https://doi.org/10.31219/osf.io/twn9q
  • Yan, K., Wang, X., Du, Y., Jin, N., Huang, H., and Zhou, H. (2018). Multi-step short-term power consumption forecasting with a hybrid deep learning strategy. Energies, 11(11), 1-15. https://doi.org/10.3390/en11113089
  • Yigitcanlar, T. (2021). Greening the artificial intelligence for a sustainable planet: An editorial commentary. Sustainability, 13(24), 1-9. https://doi.org/10.3390/su132413508
  • Yigitcanlar, T. and Cugurullo, F. (2020). The sustainability of artificial intelligence: An urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability, 12(20), 1-24. https://doi.org/10.3390/su12208548
  • Yigitcanlar, T., Desouza, K., Butler, L., and Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: İnsights from a systematic review of the literature. Energies, 13(6), 1-38. https://doi.org/10.3390/en13061473
  • Yu, S., Carroll, F., and Bentley, B. L. (2024). Insights into privacy protection research in AI. IEEE Access, 12, 41704-41726. https://doi.org/10.1109/access.2024.3378126
  • Zavratnik, V., Kos, A., and Stojmenova Duh, E. (2018). Smart villages: Comprehensive review of initiatives and practices. Sustainability, 10(7), 1-14. https://doi.org/10.3390/su10072559

Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview

Year 2024, , 803 - 820, 31.10.2024
https://doi.org/10.25204/iktisad.1461652

Abstract

Sustainable consumption means consuming natural resources consciously, considering future generations. In today's technological age, artificial intelligence and smart applications are used to achieve sustainability goals. In this context, this article examines the impact of artificial intelligence (AI) and smart applications on promoting sustainable consumption behavior. Providing a comprehensive theoretical framework, this article explores how AI technologies support informed decision-making, maximize resource management, and deliver positive environmental impact across a variety of industries. Through a variety of examples, from energy management plans to environmentally friendly retail platforms, the effects of artificial intelligence and smart applications on sustainable consumption are highlighted. This article includes examples of smart applications used to promote sustainable consumption around the world and in Türkiye. Natural challenges that need to be overcome, such as algorithmic biases, data privacy issues and the digital divide, are also mentioned. The article offers recommendations for Türkiye, highlighting the importance of financing digital infrastructure, data privacy laws, digital literacy initiatives and innovation ecosystems, with the aim of emphasizing the importance of artificial intelligence (AI) and smart applications for sustainable consumption.

References

  • Adamowicz, M., and Zwolińska-Ligaj, M. (2020). The “smart village” as a way to achieve sustainable development in rural areas of Poland. Sustainability, 12(16), 1-28. https://doi.org/10.3390/su12166503
  • Adesipo, A., Fadeyi, O., Kuca, K., Krejcar, O., Maresova, P., Selamat, A., and Adenola, M. (2020). Smart and climate-smart agricultural trends as core aspects of smart village functions. Sensors, 20(21), 1-22. https://doi.org/10.3390/s20215977
  • Adewale, B. A., Ene, V. O., Ogunbayo, B. F., and Aigbavboa, C. O. (2024). Application of artificial intelligence (AI) in sustainable building lifecycle; a systematic literature review. Buildings 2024 (Preprints) https://doi.org/10.20944/preprints202405.2113.v1
  • Adewumi, A., Okoli, C. E., Usman, F. O., Olu-lawal, K. A., and Soyombo, O. T. (2024). Reviewing the impact of AI on renewable energy efficiency and management. International Journal of Science and Research Archive, 11(1), 1518-1527. https://doi.org/10.30574/ijsra.2024.11.1.0245
  • Akintayo, O. T., Eden, C. A., Ayeni, O. O., and Onyebuchi, N. C. (2024). Integrating AI with emotional and social learning in primary education: Developing a holistic adaptive learning ecosystem. Computer Science & IT Research Journal, 5(5), 1076-1089. https://doi.org/10.51594/csitrj.v5i5.1116
  • Akintoye, I. R., Ajayi, M., Joshua, A., and Okunlola, A. F. (2022). Business sustainability through e-commerce: a myth or reality in Nigeria. Business: Theory and Practice, 23(2), 408–416. https://doi.org/10.3846/btp.2022.16657
  • Ally, M., and Perris, K. (2022). Artificial intelligence in the fourth industrial revolution to educate for sustainable development. Canadian Journal of Learning and Technology, 48(4), 1-20. https://doi.org/10.21432/cjlt28287
  • Amani, M. A., and Sarkodie, S. A. (2022). Mitigating spread of contamination in meat supply chain management using deep learning. Scientific Reports, 12(1), 1-10. https://doi.org/10.1038/s41598-022-08993-5
  • Amofah, D. O., and Chai, J. (2022). Sustaining consumer e-commerce adoption in Sub-Saharan Africa: Do trust and payment method matter? Sustainability, 14(14), 1-20. https://doi.org/10.3390/su14148466
  • Baum, Z. J., Yu, X., Ayala, P. Y., Zhao, Y., Watkins, S. P., and Zhou, Q. (2021). Artificial intelligence in chemistry: Current trends and future directions. Journal of Chemical Information and Modeling, 61(7), 3197–3212. https://doi.org/10.1021/acs.jcim.1c00619
  • Bayashot, Z. (2024). The contribution of AI-powered mobile apps to smart city ecosystems. Journal of Software Engineering and Applications, 17(03), 143-154. https://doi.org/10.4236/jsea.2024.173008
  • Belhadi, A., Mani, V., Kamble, S., Khan, S., and Verma, S. (2021). Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: An empirical investigation. Annals of Operations Research, 333(2-3), 627-652. https://doi.org/10.1007/s10479-021-03956-x
  • Blösser, M., and Weihrauch, A. (2024). A consumer perspective of AI certification – the current certification landscape, consumer approval and directions for future research. European Journal of Marketing, 58(2), 441–470. https://doi.org/10.1108/EJM-01-2023-0009
  • Bossert, L., and Hagendorff, T. (2023). The ethics of sustainable AI: why animals (should) matter for a sustainable use of ai. Sustainable Development, 31(5), 3459-3467. https://doi.org/10.1002/sd.2596
  • Bosworth, G., Price, L., Collison, M., and Fox, C. (2020). Unequal futures of rural mobility: Challenges for a “Smart Countryside.” Local Economy: The Journal of the Local Economy Policy Unit, 35(6), 586–608. https://doi.org/10.1177/0269094220968231
  • Bowen, G., Jahankhani, H., and Nawaz, I. Y. (2024). Black swan events: Mitigating disruption to a supply chain using blockchain and artificial intelligence. Preprints. https://doi.org/10.20944/preprints202403.1119.v1
  • Buolamwini, J., and Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on Fairness, Accountability and Transparency (pp. 77-91). PMLR.
  • Camaréna, S. (2021). Engaging with artificial intelligence (AI) with a bottom-up approach for the purpose of sustainability: Victorian farmers market association, Melbourne Australia. Sustainability, 13(16), 9314. https://doi.org/10.3390/su13169314
  • Chandratreya, A. (2024). AI-powered innovations in electrical engineering: Enhancing efficiency, reliability, and sustainability. Journal of Electrical Systems, 20(2), 1580-1587. https://doi.org/10.52783/jes.1463
  • Chen, R. (2024). Sustainable supply chain management as a strategic enterprise innovation. Advances in Economics Management and Political Sciences, 85(1), 24-29. https://doi.org/10.54254/2754-1169/85/20240831
  • Cowie, P., Townsend, L., and Salemink, K. (2020). Smart rural futures: Will rural areas be left behind in the 4th industrial revolution? Journal of Rural Studies, 79, 169–176. https://doi.org/10.1016/j.jrurstud.2020.08.042
  • Diachkova, A., Tikhonov, S., Tomyuk, O., and Tikhonova, N. (2022). Criteria for assessing food consumption patterns in the Brics countries in accordance with sustainable development goals. Bio Web of Conferences, 42, 04005. https://doi.org/10.1051/bioconf/20224204005
  • Dijmărescu, E. (2023, 8-10 June). AI trends: Salient aspects for the manufacturing sector and its global supply chain. R. Pamfilie, V. Dinu, C. Vasiliu, D. Pleșea, L. Tăchiciu (Eds). In 9th BASIQ International Conference on New Trends in Sustainable Business and Consumption, (pp. 168-175). Constanța, Romania. https://doi.org/10.24818/basiq/2023/09/053
  • Dikshit, S., Atiq, A., Shahid, M., Dwivedi, V., and Thusu, A. (2023). The use of artificial intelligence to optimize the routing of vehicles and reduce traffic congestion in urban areas. EAI Endorsed Transactions on Energy Web, 10, 1-13. https://doi.org/10.4108/ew.4613
  • Donati, F., Dente, S. M. R., Li, C., Vilaysouk, X., Froemelt, A., Nishant, R., Liu, G., Tukker, A., and Hashimoto, S. (2022). The future of artificial intelligence in the context of industrial ecology. Journal of Industrial Ecology, 26(4), 1175–1181. https://doi.org/10.1111/jiec.13313
  • Eyo-Udo, N. (2024). Leveraging artificial intelligence for enhanced supply chain optimization. Open Access Research Journal of Multidisciplinary Studies, 7(2), 001-015. https://doi.org/10.53022/oarjms.2024.7.2.0044
  • Hao, X. and Demir, E. (2023). Artificial intelligence in supply chain decision-making: An environmental, social, and governance triggering and technological inhibiting protocol. Journal of Modelling in Management, 19(2), 605-629. https://doi.org/10.1108/jm2-01-2023-0009
  • Hasan, R. and Ojala, A. (2024). Managing artificial intelligence in international business: Toward a research agenda on sustainable production and consumption. Thunderbird International Business Review, 66(2), 151-170. https://doi.org/10.1002/tie.22369
  • He, Q. (2024). Popularization of AI for psychological as well as educational applications. Lecture Notes in Education Psychology and Public Media, 42(1), 112-117. https://doi.org/10.54254/2753-7048/42/20240815
  • Hermann, E. (2023). Artificial intelligence in marketing: friend or foe of sustainable consumption? AI & Society, 38, 1975-1976. https://doi.org/10.1007/s00146-021-01227-8
  • Honarmand Ebrahimi, S., Ossewaarde, M. and Need, A. (2021). Smart fishery: A systematic review and research agenda for sustainable fisheries in the age of AI. Sustainability, 13(11), 6037, 1-20. https://doi.org/10.3390/su13116037
  • Joel, O. S., Oyewole, A. T., Odunaiya, O. G., and Soyombo, O. T. (2024). Leveraging artificial intelligence for enhanced supply chain optimization: A comprehensive review of current practices and future potentials. International Journal of Management & Entrepreneurship Research, 6(3), 707-721. https://doi.org/10.51594/ijmer.v6i3.882
  • Kamkar, M., Leonard, K. C., Ferrer, I., Loo, S. C. J., Biddinger, E. J., Brady, D., Carrier, D. J., Gathergood, N., Han, H., Hermans, I., Hii, K. K. M., Hwang, B. J., Loh, W., Meier, M. A. R., Marr, A. C., Newton, G. N., Srubar, W. V., Yan, N., Tam, M. K., Chen, J., Moores, A. H., Subramaniam, B., Licence, P. and Serrano, J. F. (2024). Artificial intelligence (AI) for sustainable resource management and chemical processes. ACS Sustainable Chemistry and Engineering, 12(8), 2924–2926. https://doi.org/10.1021/acssuschemeng.4c01004
  • Kar, A. K., Ilavarasan, V., Gupta, M. P., Janssen, M. and Kothari, R. (2019). Moving beyond smart cities: Digital nations for social innovation and sustainability. Information Systems Frontiers, 21(3), 495–501. https://doi.org/10.1007/s10796-019-09930-0
  • Kindylidi, I. and Cabral, T. S. (2021). Sustainability of AI: The case of provision of information to consumers. Sustainability, 13(21), 1-14. https://doi.org/10.3390/su132112064
  • Le, T. (2020). Strength from the past: How nostalgia and self-construal affect consumers’ willingness to continue participating in sustainable behavior. American Journal of Industrial and Business Management, 10(02), 432–450. https://doi.org/10.4236/ajibm.2020.102029
  • Lee, K. (2021). A systematic review on social sustainability of artificial intelligence in product design. Sustainability, 13(5), 1-29. https://doi.org/10.3390/su13052668
  • Liao, H. T., Pan, C.-L. and Zhang, Y. (2023). Smart digital platforms for carbon neutral management and services: Business models based on ITU standards for green digital transformation. Frontiers in Ecology and Evolution, 11, 1-10. https://doi.org/10.3389/fevo.2023.1134381
  • Liu, L., Liu, R., Lee, M. and Chen, J. (2019). When will consumers be ready? A psychological perspective on consumer engagement in social media brand communities. Internet Research, 29(4), 704–724. https://doi.org/10.1108/IntR-05-2017-0177
  • Mhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies?. Sustainability, 13(11), 5788. https://doi.org/10.3390/su13115788
  • Mhlanga, D. (2022). The role of artificial intelligence and machine learning amid the COVID-19 Pandemic: What lessons are we learning on 4IR and the sustainable development goals. International Journal of Environmental Research and Public Health, 19(3), 1-22. https://doi.org/10.3390/ijerph19031879
  • Michels, L., Ochmann, J., Günther, S. A., Laumer, S. and Tiefenbeck, V. (2022). Empowering consumers to make environmentally sustainable online shopping decisions: A digital nudging approach, Proceedings of the 55th Hawaii International Conference on System Sciences, 4707-4716. https://doi.org/10.24251/HICSS.2022.574
  • Moktadir, M. A., Rahman, T., Rahman, M. H., Ali, S. M. and Paul, S. K. (2018). Drivers to sustainable manufacturing practices and circular economy: A perspective of leather industries in Bangladesh. Journal of Cleaner Production, 174, 1366–1380. https://doi.org/10.1016/j.jclepro.2017.11.063
  • Muniandi, B., Maurya, P. K., Bhavani, C. H., Kulkarni, S., Yellu, R. R., and Chauhan, N. (2024). AI-driven energy management systems for smart buildings. Power System Technology, 48(1), 322-337. https://doi.org/10.52783/pst.280
  • Naeeni, S. K., and Nouhi, N. (2023). The environmental impacts of AI and digital technologies. AI and Tech in Behavioral and Social Sciences, 1(4), 11-18. https://doi.org/10.61838/kman.aitech.1.4.3
  • Olan, F., Arakpogun, E., Jayawickrama, U., Suklan, J., and Liu, S. (2024). Sustainable supply chain finance and supply networks: the role of artificial intelligence. IEEE Transactions on Engineering Management, 71, 13296-13311. https://doi.org/10.1109/tem.2021.3133104
  • Olan, F., Liu, S., Suklan, J., Jayawickrama, U., and Arakpogun, E. (2021). The role of artificial intelligence networks in sustainable supply chain finance for food and drink industry. International Journal of Production Research, 60(14), 4418-4433. https://doi.org/10.1080/00207543.2021.1915510
  • Olatunde, T. M., Okwandu, A. C., Akande, D. O., and Sikhakhane, Z. Q. (2024). Reviewing the role of artificial intelligence in energy efficiency optimization. Engineering Science & Technology Journal, 5(4), 1243-1256. https://doi.org/10.51594/estj.v5i4.1015
  • Padmanaban, H. (2024). Privacy-preserving architectures for AI/ML applications: Methods, balances, and illustrations. JAIGS, 3(1), 66-85. https://doi.org/10.60087/jaigs.vol03.issue01.p85
  • Paiva, S., Ahad, M., Tripathi, G., Feroz, N. and Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors, 21(6), 1-41. https://doi.org/10.3390/s21062143
  • Radanliev, P., Santos, O., Brandon-Jones, A., and Joinson, A. (2024). Ethics and responsible AI deployment. Frontiers in Artificial Intelligence, 7, 1-17. https://doi.org/10.3389/frai.2024.1377011
  • Reynolds, S. (2024). Exploring the influence of corporate social responsibility on supply chain sustainability in renewable energy. Preprints. https://doi.org/10.20944/preprints202405.1888.v1
  • Singh, R., Modgil, S., and Shore, A. (2023). Building artificial intelligence enabled resilient supply chain: a multi-method approach. Journal of Enterprise Information Management, 37(2), 414-436. https://doi.org/10.1108/jeim-09-2022-0326
  • Sova, O., Bieliaieva, N., Antypenko, N., and Drozd, N. (2023). Impact of artificial intelligence and digital HRM on the resource consumption within sustainable development perspective. E3s Web of Conferences, 408, 01006. https://doi.org/10.1051/e3sconf/202340801006
  • Strother, J. B., and Fazal, Z. (2011). Can green fatigue hamper sustainability communication efforts?. In 2011 IEEE International Professional Communication Conference (pp. 1-6). IEEE. https://doi.org/10.1109/IPCC.2011.6087206
  • Tomar, P., and Grover, V. (2023). Transforming the energy sector: Addressing key challenges through generative AI, digital twins, AI, data science and analysis. EAI Endorsed Transactions on Energy Web, 10. https://doi.org/10.4108/ew.4825
  • Tran, L. T. T. (2021). Managing the effectiveness of e-commerce platforms in a pandemic. Journal of Retailing and Consumer Services, 58, 1-9. https://doi.org/10.1016/j.jretconser.2020.102287
  • Tsolakis, N., Schumacher, R., Dora, M., and Kumar, M. (2023). Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation? Annals of Operations Research, 327(1), 157–210. https://doi.org/10.1007/s10479-022-04785-2
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., and Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 1-10. https://doi.org/10.1038/s41467-019-14108-y
  • Visvizi, A., and Lytras, M. (2018). It’s not a fad: smart cities and smart villages research in European and global contexts. Sustainability, 10(8), 1-10. https://doi.org/10.3390/su10082727
  • Visvizi, A., and Lytras, M. D. (2019). Sustainable smart cities and smart villages research: Rethinking security, safety, well-being, and happiness. Sustainability, 12(1), 1-4. https://doi.org/10.3390/su12010215
  • Wang, C., Zhang, J., Lassi, N., and Zhang, X. (2022). Privacy protection in using artificial intelligence for healthcare: Chinese regulation in comparative perspective. Healthcare, 10(10), 1878. https://doi.org/10.3390/healthcare10101878
  • Wehlmann, C. Z. (2024). Resilient and Sustainable AI. Positioning paper on the relation of AI, resilience and sustainability. In: Zinke-Wehlmann, C., Friedrich, J. (Eds), First Working Conference on Artificial Intelligence Development for a Resilient and Sustainable Tomorrow (pp. 5-19). Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-43705-3_2
  • White, K., Habib, R., and Hardisty, D. J. (2019). How to shift consumer behaviors to be more sustainable: A literature review and guiding framework. Journal of Marketing, 83(3), 22–49. https://doi.org/10.1177/0022242919825649
  • Wilfred, P., Milner-Gulland, E. J., and Travers, H. (2019). Attitudes to illegal behaviour and conservation in western Tanzania. Oryx, 53(3), 513-522. https://doi.org/10.1017/S0030605317000862
  • Williamson, S. M., and Prybutok, V. (2024). Balancing privacy and progress: A review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences, 14(2), 675. https://doi.org/10.3390/app14020675
  • Xiao, D. (2023). Neuroscience-inspired continuous learning: A sustainable approach to AI energy challenge. Preprints. https://doi.org/10.31219/osf.io/twn9q
  • Yan, K., Wang, X., Du, Y., Jin, N., Huang, H., and Zhou, H. (2018). Multi-step short-term power consumption forecasting with a hybrid deep learning strategy. Energies, 11(11), 1-15. https://doi.org/10.3390/en11113089
  • Yigitcanlar, T. (2021). Greening the artificial intelligence for a sustainable planet: An editorial commentary. Sustainability, 13(24), 1-9. https://doi.org/10.3390/su132413508
  • Yigitcanlar, T. and Cugurullo, F. (2020). The sustainability of artificial intelligence: An urbanistic viewpoint from the lens of smart and sustainable cities. Sustainability, 12(20), 1-24. https://doi.org/10.3390/su12208548
  • Yigitcanlar, T., Desouza, K., Butler, L., and Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: İnsights from a systematic review of the literature. Energies, 13(6), 1-38. https://doi.org/10.3390/en13061473
  • Yu, S., Carroll, F., and Bentley, B. L. (2024). Insights into privacy protection research in AI. IEEE Access, 12, 41704-41726. https://doi.org/10.1109/access.2024.3378126
  • Zavratnik, V., Kos, A., and Stojmenova Duh, E. (2018). Smart villages: Comprehensive review of initiatives and practices. Sustainability, 10(7), 1-14. https://doi.org/10.3390/su10072559
There are 73 citations in total.

Details

Primary Language English
Subjects Business Administration
Journal Section Review Papers
Authors

Sinem Sargın 0000-0002-7504-154X

Early Pub Date October 28, 2024
Publication Date October 31, 2024
Submission Date April 1, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024

Cite

APA Sargın, S. (2024). Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview. İktisadi İdari Ve Siyasal Araştırmalar Dergisi, 9(25), 803-820. https://doi.org/10.25204/iktisad.1461652
AMA Sargın S. Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview. İKTİSAD. October 2024;9(25):803-820. doi:10.25204/iktisad.1461652
Chicago Sargın, Sinem. “Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview”. İktisadi İdari Ve Siyasal Araştırmalar Dergisi 9, no. 25 (October 2024): 803-20. https://doi.org/10.25204/iktisad.1461652.
EndNote Sargın S (October 1, 2024) Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview. İktisadi İdari ve Siyasal Araştırmalar Dergisi 9 25 803–820.
IEEE S. Sargın, “Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview”, İKTİSAD, vol. 9, no. 25, pp. 803–820, 2024, doi: 10.25204/iktisad.1461652.
ISNAD Sargın, Sinem. “Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview”. İktisadi İdari ve Siyasal Araştırmalar Dergisi 9/25 (October 2024), 803-820. https://doi.org/10.25204/iktisad.1461652.
JAMA Sargın S. Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview. İKTİSAD. 2024;9:803–820.
MLA Sargın, Sinem. “Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview”. İktisadi İdari Ve Siyasal Araştırmalar Dergisi, vol. 9, no. 25, 2024, pp. 803-20, doi:10.25204/iktisad.1461652.
Vancouver Sargın S. Artificial Intelligence, Smart Applications and Sustainable Consumption: A Theoretical Overview. İKTİSAD. 2024;9(25):803-20.


Creative Commons Lisansı

Bu dergide yayınlanan tüm makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.