Research Article
BibTex RIS Cite

Nörolojik Görüntülemede Derin Öğrenme: Beyin Tümörü Sınıflandırması Için Yeni Bir Cnn Tabanlı Model

Year 2025, Volume: 13 Issue: 2, 457 - 474, 25.06.2025
https://doi.org/10.33715/inonusaglik.1645318

Abstract

Beyin tümörleri, hayati fonksiyonları yöneten kritik beyin bölgelerine baskı yaparak ciddi nörolojik hasara ve ölüme neden olabildikleri için oldukça tehlikelidir. Radyolojik görüntülerin değerlendirilmesinde karşılaşılan insan hatası gibi karmaşık yapılar ve sınırlamalar, bu tümörlerin tespitinde zorluklar yaratmaktadır. Evrişimsel sinir ağları (CNN'ler), derin öğrenme (DL) yöntemlerinden biridir ve özellikle görsel verilerin analizinde yaygın olarak kullanılmaktadır. CNN'lerin beyin tümörlerini tespit etmedeki avantajı, görüntülerden özellikleri otomatik olarak öğrenebilmeleri ve sınıflandırma doğruluğunu artırarak insan hatasını en aza indirebilmeleridir. Bu çalışmada, manyetik rezonans görüntüleme (MRI)’de elde edilen görüntüler kullanılarak beyin tümörü teşhisi için yeni bir CNN tabanlı model önerilmiştir. Glioma, menenjiyom, normal beyin ve hipofiz tümörü olmak üzere dört kategoriye ayrılmış 3.096 MRI görüntüsünden oluşan bir veri seti kullanılarak önemki bir sınıflandırma başarısı elde edilmiştir. Geliştirilen model, tümör tespitinde genel olarak %93 doğruluk oranına ulaşmıştır. Özellikle hipofiz tümörlerinin tespitinde %96 başarı ve %95 F1 skoru ile büyük başarı gösterilmiştir. Bu çalışma, DL'nin tıbbi görüntü analizinde önemli bir potansiyele sahip olduğunu göstermektedir. Geliştirilen model, sağlık hizmetlerindeki teşhis süreçlerinde doğruluğu hızlandırma ve artırma potansiyeline sahiptir.

References

  • Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A. & Mengko, T. R. (2019). Brain tumor classification using convolutional neural network. In World Congress on Medical Physics and Biomedical Engineering 2018 (pp. 183-189). Springer Singapore. https://doi.org/10.1007/978-981-10-9035-6_33
  • Adlung, L., Cohen, Y., Mor, U. & Elinav, E. (2021). Machine learning in clinical decision making. Med, 2(6), 642-665. https://doi.org/10.1016/j.medj.2021.04.006
  • Aslan, A. & Çelebi, S. B. (2022). Real time deep learning based age and gender detection for advertising and marketing. In H. İş & İ. Demir (Eds.), Uluslararası Bilişim Kongresi (IIC 2022): Bildiriler kitabı (pp. 10-16). https://hdl.handle.net/20.500.12402/4205
  • Aslan, A. & Çelebi, S. B. (2024). Improving forecasting performance with random forest regression model in wind power generation. pp. 460–464.
  • Banerjee, S., Mitra, S., Masulli, F. & Rovetta, S. (2019). Deep radiomics for brain tumor detection and classification from multi-sequence MRI. arXiv preprint arXiv:1903.09240. https://arxiv.org/abs/1903.09240
  • Birecikli, B., Karaman, Ö. A., Çelebi, S. B. & Turgut, A. (2020). Failure load prediction of adhesively bonded GFRP composite joints using artificial neural networks. Journal of Mechanical Science and Technology, 34, 4631-4640. https://doi.org/10.1007/s12206-020-1021-7
  • Chicco, D. & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21, 1–13. https://doi.org/10.1186/s12864-019-6413-7
  • Chitnis, S., Hosseini, R. & Xie, P. (2022). Brain tumor classification based on neural architecture search. Scientific Reports, 12(1), Article 19206. https://doi.org/10.1038/s41598-022-22172-6
  • Ozdemir, C. (2023). Classification of brain tumors from MR images using a new CNN architecture. Traitement du Signal, Vol. 40, No. 2, pp. 611-618. https://doi.org/10.18280/ts.400219
  • Ozdemir, C. (2024). Adapting transfer learning models to dataset through pruning and Avg-TopK pooling. Neural Computing and Applications, 36, 6257-6270. https://doi.org/10.1007/s00521-024-09484-6
  • Çelebi, S. B. & Emiroğlu, B. G. (2023). A Novel deep dense block-based model for detecting alzheimer’s disease. Applied Sciences, 13(15), 8686. https://doi.org/10.3390/app13158686
  • Çinar, A. & Yildirim, M. (2020). Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Medical Hypotheses, 139, Article 109684. https://doi.org/10.1016/j.mehy.2020.109684
  • Dutta, K. K., Manohar, P. & Krishnappa, I. (2024). Seizure stage detection of epileptic seizure using convolutional neural networks. International Journal of Electrical and Computer Engineering, 14(2), 2226-2233. https://doi.org/10.11591/ijece.v14i2.pp2226-2233
  • Erenel, Z. & Altınçay, H. (2012). Improving the precision-recall trade-off in undersampling-based binary text categorization using unanimity rule. Neural Computing and Applications, 22, 83–100. https://doi.org/10.1007/s00521-012-1056-5
  • Göçmen, R., Çıbuk, M. & Akin, E. (2024). Comparative Analysis of Deep Learning Algorithms in Fire Detection. Balkan Journal of Electrical and Computer Engineering, 12(3), 255-261. https://doi.org/10.17694/bajece.1533966
  • Hammernik, K., Küstner, T., Yaman, B., Huang, Z., Rueckert, D., Knoll, F. & Akçakaya, M. (2023). Physics-driven deep learning for computational magnetic resonance imaging: Combining physics and machine learning for improved medical imaging. IEEE Signal Processing Magazine, 40(1), 98-114. https://doi.org/10.1109/MSP.2022.3201339
  • Hashemzehi, R., Mahdavi, S. J. S., Kheirabadi, M. & Kamel, S. R. (2020). Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybernetics and Biomedical Engineering, 40(3), 1225-1232. https://doi.org/10.1016/j.bbe.2020.06.001
  • Havishya, G., Lakshmi, S. V. & Aishwarya, B. (2024). An innovative performance analysis for banking transaction using support vector machine algorithm and compare with convolutional neural network. AIP Conference Proceedings, 2853(1), Article 040017. https://doi.org/10.1063/5.0203754
  • Hayıt, T. & Çınarer, G. (2022). X-Ray Görüntülerini Kullanarak Glcm Ve Derin Özniteliklerin Birleşimine Dayalı Covıd-19 Sınıflandırılması. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 10(1), 313-325. https://doi.org/10.33715/inonusaglik.1015407
  • Henderi, H., Wahyuningsih, T. & Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score normalization in the K-nearest neighbor (kNN) algorithm to test the accuracy of types of breast cancer. International Journal of Informatics and Information Systems, 4(1), 13–20. https://doi.org/10.47738/ijiis.v4i1.73
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M. & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005
  • Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K. & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803-820. https://doi.org/10.1007/s00401-016-1545-1
  • Nahm, F. S. (2022). Receiver operating characteristic curve: Overview and practical use for clinicians. Korean Journal of Anesthesiology, 75(1), 25–36. https://doi.org/10.4097/kja.21209
  • Özcan, S. & Acar, E. (2024). Detection of Various Diseases in Fruits and Vegetables with the Help of Different Deep Learning Techniques. Balkan Journal of Electrical and Computer Engineering, 12(1), 62-67. https://doi.org/10.17694/bajece.1335257
  • Pashaei, A., Sajedi, H. & Jazayeri, N. (2018). Brain tumor classification via convolutional neural network and extreme learning machines. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 314-319). IEEE. https://doi.org/10.1109/ICCKE.2018.8566571
  • Pereira, S., Meier, R., Alves, V., Reyes, M. & Silva, C. A. (2018). Automatic brain tumor grading from MRI data using convolutional neural networks and quality assessment. In Understanding and interpreting machine learning in medical image computing applications (pp. 106-114). Springer International Publishing. https://doi.org/10.1007/978-3-030-02628-8_12
  • Powers, D. M. (2020). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061. https://doi.org/10.48550/arXiv.2010.16061
  • Rehman, A., Naz, S., Razzak, M. I., Akram, F. & Imran, M. (2020). A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits, Systems, and Signal Processing, 39(2), 757-775. https://doi.org/10.1007/s00034-019-01246-3
  • Shlezinger, N., Whang, J., Eldar, Y. & Dimakis, A. (2020). Model-based deep learning. Proceedings of the IEEE, 111, 465–499. https://doi.org/10.1109/JPROC.2023.3247480
  • Sidey-Gibbons, J. A. & Sidey-Gibbons, C. J. (2019). Machine learning in medicine: A practical introduction. BMC Medical Research Methodology, 19, 1-18. https://doi.org/10.1186/s12874-019-0681-4
  • Sukhdeve, D. S. R. & Sukhdeve, S. S. (2023). Google Colaboratory. In Google Cloud Platform for Data Science: A Crash Course on Big Data, Machine Learning, and Data Analytics Services (pp. 11–34). Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4842-9688-2_2
  • Tiwari, P., Pant, B., Elarabawy, M., Abd-Elnaby, M., Mohd, N., Dhiman, G. & Sharma, S. (2022). CNN based multiclass brain tumor detection using medical imaging. Computational Intelligence and Neuroscience, 2022, Article 1234567. https://doi.org/10.1155/2022/1234567
  • Yaşar, Ş. (2025). Identification And Global Interpretation of Possible Biomarkers for the Diagnosis of Pancreatic Cancer Using Explainable Artificial Intelligence Methods. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 13(1), 62-73. https://doi.org/10.33715/inonusaglik.1571883
  • Zhang, S., Xu, S., Tan, L., Wang, H. & Meng, J. (2021). Stroke lesion detection and analysis in MRI images based on deep learning. Journal of Healthcare Engineering, 2021(1), Article 5524769. https://doi.org/10.1155/2021/5524769
  • Zhao, Z. Q., Zheng, P., Xu, S. T. & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865

DEEP LEARNING IN NEUROLOGICAL IMAGING: A NOVEL CNN-BASED MODEL FOR BRAIN TUMOR CLASSIFICATION TÜRKİYE AND HEALTH RISK ASSESSMENT

Year 2025, Volume: 13 Issue: 2, 457 - 474, 25.06.2025
https://doi.org/10.33715/inonusaglik.1645318

Abstract

Brain tumors can cause serious neurological damage and death by putting pressure on critical brain regions that manage vital functions. Given the complex structures in the brain, human error in the evaluation of radiological images can create difficulties in the detection of these tumors. Convolutional neural networks (CNNs) are type of deep learning (DL) and are widely used, especially for analyzing visual data. The advantage of CNNs in detecting brain tumors is that they can automatically learn features from images and minimize human error by increasing the classification accuracy. In this study, a unique CNN-based model is proposed for brain tumor diagnosis using magnetic resonance imaging (MRI) images. A high classification score was obtained using a dataset consisting of 3096 MRI images divided into four categories: glioma, meningioma, normal brain, and pituitary tumor. The model achieved an overall 93% accuracy rate in tumor detection. In particular, great success was seen for the detection of pituitary tumors with 96% precision and a 95% F1 score. This study demonstrates that DL has significant potential in medical image analysis. The novelty of our approach lies in designing a lightweight CNN architecture from scratch that achieves high accuracy without relying on transfer learning, while requiring significantly fewer computational resources than traditional deep architectures.

References

  • Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A. & Mengko, T. R. (2019). Brain tumor classification using convolutional neural network. In World Congress on Medical Physics and Biomedical Engineering 2018 (pp. 183-189). Springer Singapore. https://doi.org/10.1007/978-981-10-9035-6_33
  • Adlung, L., Cohen, Y., Mor, U. & Elinav, E. (2021). Machine learning in clinical decision making. Med, 2(6), 642-665. https://doi.org/10.1016/j.medj.2021.04.006
  • Aslan, A. & Çelebi, S. B. (2022). Real time deep learning based age and gender detection for advertising and marketing. In H. İş & İ. Demir (Eds.), Uluslararası Bilişim Kongresi (IIC 2022): Bildiriler kitabı (pp. 10-16). https://hdl.handle.net/20.500.12402/4205
  • Aslan, A. & Çelebi, S. B. (2024). Improving forecasting performance with random forest regression model in wind power generation. pp. 460–464.
  • Banerjee, S., Mitra, S., Masulli, F. & Rovetta, S. (2019). Deep radiomics for brain tumor detection and classification from multi-sequence MRI. arXiv preprint arXiv:1903.09240. https://arxiv.org/abs/1903.09240
  • Birecikli, B., Karaman, Ö. A., Çelebi, S. B. & Turgut, A. (2020). Failure load prediction of adhesively bonded GFRP composite joints using artificial neural networks. Journal of Mechanical Science and Technology, 34, 4631-4640. https://doi.org/10.1007/s12206-020-1021-7
  • Chicco, D. & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21, 1–13. https://doi.org/10.1186/s12864-019-6413-7
  • Chitnis, S., Hosseini, R. & Xie, P. (2022). Brain tumor classification based on neural architecture search. Scientific Reports, 12(1), Article 19206. https://doi.org/10.1038/s41598-022-22172-6
  • Ozdemir, C. (2023). Classification of brain tumors from MR images using a new CNN architecture. Traitement du Signal, Vol. 40, No. 2, pp. 611-618. https://doi.org/10.18280/ts.400219
  • Ozdemir, C. (2024). Adapting transfer learning models to dataset through pruning and Avg-TopK pooling. Neural Computing and Applications, 36, 6257-6270. https://doi.org/10.1007/s00521-024-09484-6
  • Çelebi, S. B. & Emiroğlu, B. G. (2023). A Novel deep dense block-based model for detecting alzheimer’s disease. Applied Sciences, 13(15), 8686. https://doi.org/10.3390/app13158686
  • Çinar, A. & Yildirim, M. (2020). Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture. Medical Hypotheses, 139, Article 109684. https://doi.org/10.1016/j.mehy.2020.109684
  • Dutta, K. K., Manohar, P. & Krishnappa, I. (2024). Seizure stage detection of epileptic seizure using convolutional neural networks. International Journal of Electrical and Computer Engineering, 14(2), 2226-2233. https://doi.org/10.11591/ijece.v14i2.pp2226-2233
  • Erenel, Z. & Altınçay, H. (2012). Improving the precision-recall trade-off in undersampling-based binary text categorization using unanimity rule. Neural Computing and Applications, 22, 83–100. https://doi.org/10.1007/s00521-012-1056-5
  • Göçmen, R., Çıbuk, M. & Akin, E. (2024). Comparative Analysis of Deep Learning Algorithms in Fire Detection. Balkan Journal of Electrical and Computer Engineering, 12(3), 255-261. https://doi.org/10.17694/bajece.1533966
  • Hammernik, K., Küstner, T., Yaman, B., Huang, Z., Rueckert, D., Knoll, F. & Akçakaya, M. (2023). Physics-driven deep learning for computational magnetic resonance imaging: Combining physics and machine learning for improved medical imaging. IEEE Signal Processing Magazine, 40(1), 98-114. https://doi.org/10.1109/MSP.2022.3201339
  • Hashemzehi, R., Mahdavi, S. J. S., Kheirabadi, M. & Kamel, S. R. (2020). Detection of brain tumors from MRI images base on deep learning using hybrid model CNN and NADE. Biocybernetics and Biomedical Engineering, 40(3), 1225-1232. https://doi.org/10.1016/j.bbe.2020.06.001
  • Havishya, G., Lakshmi, S. V. & Aishwarya, B. (2024). An innovative performance analysis for banking transaction using support vector machine algorithm and compare with convolutional neural network. AIP Conference Proceedings, 2853(1), Article 040017. https://doi.org/10.1063/5.0203754
  • Hayıt, T. & Çınarer, G. (2022). X-Ray Görüntülerini Kullanarak Glcm Ve Derin Özniteliklerin Birleşimine Dayalı Covıd-19 Sınıflandırılması. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 10(1), 313-325. https://doi.org/10.33715/inonusaglik.1015407
  • Henderi, H., Wahyuningsih, T. & Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score normalization in the K-nearest neighbor (kNN) algorithm to test the accuracy of types of breast cancer. International Journal of Informatics and Information Systems, 4(1), 13–20. https://doi.org/10.47738/ijiis.v4i1.73
  • Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M. & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/10.1016/j.media.2017.07.005
  • Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K. & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803-820. https://doi.org/10.1007/s00401-016-1545-1
  • Nahm, F. S. (2022). Receiver operating characteristic curve: Overview and practical use for clinicians. Korean Journal of Anesthesiology, 75(1), 25–36. https://doi.org/10.4097/kja.21209
  • Özcan, S. & Acar, E. (2024). Detection of Various Diseases in Fruits and Vegetables with the Help of Different Deep Learning Techniques. Balkan Journal of Electrical and Computer Engineering, 12(1), 62-67. https://doi.org/10.17694/bajece.1335257
  • Pashaei, A., Sajedi, H. & Jazayeri, N. (2018). Brain tumor classification via convolutional neural network and extreme learning machines. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 314-319). IEEE. https://doi.org/10.1109/ICCKE.2018.8566571
  • Pereira, S., Meier, R., Alves, V., Reyes, M. & Silva, C. A. (2018). Automatic brain tumor grading from MRI data using convolutional neural networks and quality assessment. In Understanding and interpreting machine learning in medical image computing applications (pp. 106-114). Springer International Publishing. https://doi.org/10.1007/978-3-030-02628-8_12
  • Powers, D. M. (2020). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061. https://doi.org/10.48550/arXiv.2010.16061
  • Rehman, A., Naz, S., Razzak, M. I., Akram, F. & Imran, M. (2020). A deep learning-based framework for automatic brain tumors classification using transfer learning. Circuits, Systems, and Signal Processing, 39(2), 757-775. https://doi.org/10.1007/s00034-019-01246-3
  • Shlezinger, N., Whang, J., Eldar, Y. & Dimakis, A. (2020). Model-based deep learning. Proceedings of the IEEE, 111, 465–499. https://doi.org/10.1109/JPROC.2023.3247480
  • Sidey-Gibbons, J. A. & Sidey-Gibbons, C. J. (2019). Machine learning in medicine: A practical introduction. BMC Medical Research Methodology, 19, 1-18. https://doi.org/10.1186/s12874-019-0681-4
  • Sukhdeve, D. S. R. & Sukhdeve, S. S. (2023). Google Colaboratory. In Google Cloud Platform for Data Science: A Crash Course on Big Data, Machine Learning, and Data Analytics Services (pp. 11–34). Berkeley, CA: Apress. https://doi.org/10.1007/978-1-4842-9688-2_2
  • Tiwari, P., Pant, B., Elarabawy, M., Abd-Elnaby, M., Mohd, N., Dhiman, G. & Sharma, S. (2022). CNN based multiclass brain tumor detection using medical imaging. Computational Intelligence and Neuroscience, 2022, Article 1234567. https://doi.org/10.1155/2022/1234567
  • Yaşar, Ş. (2025). Identification And Global Interpretation of Possible Biomarkers for the Diagnosis of Pancreatic Cancer Using Explainable Artificial Intelligence Methods. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 13(1), 62-73. https://doi.org/10.33715/inonusaglik.1571883
  • Zhang, S., Xu, S., Tan, L., Wang, H. & Meng, J. (2021). Stroke lesion detection and analysis in MRI images based on deep learning. Journal of Healthcare Engineering, 2021(1), Article 5524769. https://doi.org/10.1155/2021/5524769
  • Zhao, Z. Q., Zheng, P., Xu, S. T. & Wu, X. (2019). Object detection with deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems, 30(11), 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865
There are 35 citations in total.

Details

Primary Language English
Subjects Information Systems (Other)
Journal Section Araştırma Makalesi
Authors

Ammar Aslan 0000-0001-9662-4368

Early Pub Date June 17, 2025
Publication Date June 25, 2025
Submission Date February 23, 2025
Acceptance Date May 15, 2025
Published in Issue Year 2025 Volume: 13 Issue: 2

Cite

APA Aslan, A. (2025). DEEP LEARNING IN NEUROLOGICAL IMAGING: A NOVEL CNN-BASED MODEL FOR BRAIN TUMOR CLASSIFICATION TÜRKİYE AND HEALTH RISK ASSESSMENT. İnönü Üniversitesi Sağlık Hizmetleri Meslek Yüksek Okulu Dergisi, 13(2), 457-474. https://doi.org/10.33715/inonusaglik.1645318