Research Article
BibTex RIS Cite

TÜRK LİNYİTLERİNİN YERALTINDA KÖMÜR GAZLAŞTIRMA PERFORMANSLARININ STOKİOMETRİK DENGE MODELİ İLE BELİRLENMESİ

Year 2020, Volume: 40 Issue: 2, 195 - 205, 31.10.2020
https://doi.org/10.47480/isibted.816964

Abstract

Yeraltında kömür gazlaştırma (YKG) işlemi, kömürlerin yeraltındayken işlenmesine olanak sağlayan ve bu yönüyle, geleneksel madencilik yöntemlerine alternatif oluşturan bir kömür işleme prosesidir. Son deneysel çalışmalar ile YKG işleminin, ülkemizde de yüksek miktarda bulunan, düşük kaliteli kömürlere uygulanması durumunda da etkili olduğu ortaya konmuştur. Bu çalışma kapsamında ise, YKG işlemi sonucu üretilen sentez gazın içeriğini tahmin edebilecek bir termodinamik denge modeli oluşturulmuş ve oluşturulan model düşük kalitedeki kömür rezervlerinden üretebilecek sentez gazının özelliklerinin tahmini için kullanılmıştır. Denge modeli, gazlaştırma reaksiyonlarının ve su-gazı dönüşümü reaksiyonunun etkisini dikkate almakta ve kömür kuruması sonucu ortaya çıkan su buharının yapay gaz üzerindeki etkisini belirleyebilmektedir. Oluşturulan denge modeli, literatürde yer alan laboratuvar ölçekli deneysel YKG çalışmasının sonuçları ile doğrulanmıştır. Daha sonrasında ülkemizdeki linyit rezervlerinden YKG işlemi için uygun olduğu belirlenen rezervler, modelde girdi olarak kullanılmış ve rezervler için elde edilen YKG performans çıktıları birbirleriyle karşılaştırılmıştır. Performans analizi için her rezervin oksijen ve buhar ile gazlaştırma çıktıları incelenmiştir. Değerlendirme sonucu yüksek nem ve düşük karbon içeriğine sahip linyitlerin yüksek hidrojen yüzdeli sentez gaz üretimine elverişli olduğu, gazlaştırma ajanı olarak buhar beslemesi yapılması halinde ise tüm rezervlerin hidrojen üretim kapasitelerinin arttırılabileceği belirlenmiştir.

References

  • Altafini, C. R., Wander, P. R., and Barreto, R. M., 2003, Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Conversion and Management, 44(17), 2763–2777
  • Cempa-Balewicz, M., Jacek Łączny, M., Smoliński, A., and Iwaszenko, S., 2013, Equilibrium Model of Steam Gasification of Coal. Journal of Sustainable Mining, 12(2), 21–28
  • Daggupati, S., Mandapati, R. N., Mahajani, S. M., Ganesh, A., Mathur, D. K., Sharma, R. K., and Aghalayam, P., 2010, Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification, Energy, 35(6), 2374–2386
  • Fallahi, Y., Aydın, A. A., Gür, M., and Okutan, H., 2019, Investigation of the pollution risk of residues from a laboratory-scale underground coal gasification of Malkara (Turkey) lignite, International Journal of Environmental Science and Technology, 16(2), 1093–1102
  • Gür, M., Eskin, N., Okutan, H., Arisoy, A., Böke, E., Altintaş, Ü., … Yildirim, O., 2016, Experimental and computational studies on underground gasification of Turkish lignite, In 33rd Annual International Pittsburgh Coal Conference: Coal - Energy, Environment and Sustainable Development, PCC 2016 (Vol. 2016-August).
  • Gür, M., Eskin, N., Okutan, H., Arısoy, A., Böke, E., Altıntaş, Ü., … Yıldırım, O., 2017, Experimental results of underground coal gasification of Turkish lignite in an ex-situ reactor, Fuel, 203, 997–1006
  • Gür, Mesut, and Canbaz, E. D., 2020, Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification, Fuel, 269, 117331
  • Gür, Mesut, Eskin, N., Büyükşirin, O., and Canbaz, E. D., 2018, Kimyasal Denge Modeliyle Yeraltında Kömür Gazlaştırılmasının İncelenmesi, IV. Uluslararası Katılımlı Anadolu Enerji Sempozyumu, Edirne
  • Hongtao, L., Feng, C., Xia, P., Kai, Y., and Shuqin, L., 2011, Method of oxygen-enriched two-stage underground coal gasification, Mining Science and Technology (China), 21(2), 191–196
  • Jarungthammachote, S., and Dutta, A., 2008, Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Conversion and Management, 49(6), 1345–1356
  • Jowkar, A., Sereshki, F., and Najafi, M., 2018, A new model for evaluation of cavity shape and volume during Underground Coal Gasification process, Energy, 148, 756–765
  • Kapusta, K., Wiatowski, M., and Stańczyk, K., 2016, An experimental ex-situ study of the suitability of a high moisture ortho-lignite for underground coal gasification (UCG) process, Fuel, 179, 150–155
  • Klimenko, A., and Y., A., 2009, Early Ideas in Underground Coal Gasification and Their Evolution. Energies, 2(2), 456–476
  • Li, X., Grace, J. R., Watkinson, A. P., Lim, C. J., and Ergüdenler, A., 2001, Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel, 80(2), 195–207
  • Pana, C., 2009, Review of Underground Coal Gasification with Reference to Alberta’s Potential. ERCB/AGS Open File Report 2009-10, Energy Resources Conservation Board Alberta Geological Survey, Canada
  • Pei, P., Korom, S. F., Ling, K., and Nasah, J., 2016, Cost comparison of syngas production from natural gas conversion and underground coal gasification, Mitigation and Adaptation Strategies for Global Change, 21(4), 629–643
  • Perkins, G., and Sahajwalla, V., 2007, Modelling of Heat and Mass Transport Phenomena and Chemical Reaction in Underground Coal Gasification, Chemical Engineering Research and Design, 85(3), 329–343
  • Perkins, G., and Sahajwalla, V., 2008, Steady-State Model for Estimating Gas Production from Underground Coal Gasification. Energy & Fuels, 22(6), 3902–3914
  • Perkins, G., 2018a, Underground coal gasification – Part I: Field demonstrations and process performance, Progress in Energy and Combustion Science, Elsevier Ltd
  • Perkins, Greg., 2018b, Underground coal gasification – Part II: Fundamental phenomena and modeling, Progress in Energy and Combustion Science, 67, 234–274
  • Perkins, G., du Toit, E., Cochrane, G., and Bollaert, G., 2016, Overview of underground coal gasification operations at Chinchilla, Australia. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(24), 3639–3646
  • Samdani, G., Aghalayam, P., Ganesh, A., Sapru, R. K., Lohar, B. L., and Mahajani, S., 2016, A process model for underground coal gasification - Part-I: Cavity growth, Fuel, 181, 690–703
  • Sarhosis, V., Lavis, S., Mostade, M., and Thomas, H. R. ,2017, Towards commercialising underground coal gasification in the EU, Environmental Geotechnics, 4(2), 113–122
  • Sarraf Shirazi, A., Karimipour, S., and Gupta, R., 2013, Numerical simulation and evaluation of cavity growth in in situ coal gasification, Industrial and Engineering Chemistry Research, 52(33), 11712–11722
  • Shafirovich, E., and Varma, A., 2009, Underground coal gasification: A brief review of current status, Industrial and Engineering Chemistry Research, 48(17), 7865–7875
  • Shoko, E., McLellan, B., Dicks, A. L., and da Costa, J. C. D, 2006, Hydrogen from coal: Production and utilisation technologies, International Journal of Coal Geology, 65(3–4), 213–222
  • Stańczyk, K., Howaniec, N., Smoliński, A., Świadrowski, J., Kapusta, K., Wiatowski, M., … Rogut, J., 2011, Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification, Fuel, 90(5), 1953–1962
  • Stańczyk, Krzysztof, Smoliński, A., Kapusta, K., Wiatowski, M., Świdrowski, J., Kotyrba, A., and Rogut, J., 2010, Dynamic experimental simulation of hydrogen oriented underground gasification of lignite, Fuel, 89(11), 3307–3314
  • Swanson, R. M., Platon, A., Satrio, J. A., and Brown, R. C., 2010, Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel, 89(1), 11–19
  • Tuncalı, E., Çiftçi, B., Yavuz, N., Toprak, S., Köker, A., Gencer, Z., … Şahin, N., 2002, Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri, Maden Tetkik ve Arama Genel Müdürlüğü (MTA), Ankara, Turkey
  • Tunç, İ, 2015, Yarı Pilot Ölçek Yer Altı Kömür Gazlaştırma Deney Düzeneğinde Malkara Pirinççeşme Kömür Sahasına Ait Blok Kömür Örneklerinin Gazlaştırılması, M.Sc. Thesis, Istanbul Technical University, Istanbul, Turkey
  • Turkish Coal Enterprises (TKİ), 2014. 2015-2019 Stratejik Plan, Ankara.
  • Watkinson, A. P., Lucas, J. P., and Lim, C. J., 1991, A prediction of performance of commercial coal gasifiers. Fuel, 70(4), 519–527
  • Xuyao, Q., Wang, D., Milke, J. A., and Zhong, X., 2011 Crossing point temperature of coal, Mining Science and Technology, 21(2), 255–260
  • Yang, L. H., Zhang, X., and Liu, S., 2009, Underground coal gasification using oxygen and steam, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 31(20), 1883–1892
  • Żogała, A., 2014a, Critical Analysis of Underground Coal Gasification Models. Part I: Equilibrium Models – Literary Studies. Journal of Sustainable Mining, 13(1), 22–28
  • Żogała, A., 2014b, Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models, Journal of Sustainable Mining, 13(1), 29–37.
  • Żogała, A., and Janoszek, T., 2015, CFD simulations of influence of steam in gasification agent on parameters of UCG process. Journal of Sustainable Mining, 14(1), 2–11
  • Internet, 2020, Genreal Directorate of Mineral Research and Exploration (MTA), Kömür Arama Araştırmlaları, http://www.mta.gov.tr/v3.0/arastirmalar/komur-arama-arastirmalari

PREDICTION OF UNDERGROUND COAL GASIFICATION PERFORMANCE OF TURKISH LIGNITE RESERVES USING STOICHIOMETRIC EQUILIBRIUM MODEL

Year 2020, Volume: 40 Issue: 2, 195 - 205, 31.10.2020
https://doi.org/10.47480/isibted.816964

Abstract

Underground coal gasification (UCG) is a coal conversion process that enables the utilization of coal reserves in-situ, and it is an alternative technique to conventional mining methods. Previous experimental studies showed that UCG is a suitable method for the usage of low-rank coal or lignite reserves, which have the major part in the Turkish coal reserves. In this study, a thermochemical equilibrium model of UCG process is developed to predict syngas composition and to compare UCG-performance of the selected lignite reserves in Turkey. The lignite sites are chosen according to the described UCG site selection criteria. The equilibrium model consists of gasification reactions and water-gas shift reaction and it considers the effect of the drying process. The model is validated using the results of the lab-scale experimental UCG study. The predictions are made for both oxygen and steam-gasification processes. Results show that the lignite reserves which have high moisture content but low carbon content are suitable for hydrogen-rich syngas production and hydrogen production capabilities of all reserves can be enhanced significantly by the additional steam supply as the gasification agent.

References

  • Altafini, C. R., Wander, P. R., and Barreto, R. M., 2003, Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Conversion and Management, 44(17), 2763–2777
  • Cempa-Balewicz, M., Jacek Łączny, M., Smoliński, A., and Iwaszenko, S., 2013, Equilibrium Model of Steam Gasification of Coal. Journal of Sustainable Mining, 12(2), 21–28
  • Daggupati, S., Mandapati, R. N., Mahajani, S. M., Ganesh, A., Mathur, D. K., Sharma, R. K., and Aghalayam, P., 2010, Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification, Energy, 35(6), 2374–2386
  • Fallahi, Y., Aydın, A. A., Gür, M., and Okutan, H., 2019, Investigation of the pollution risk of residues from a laboratory-scale underground coal gasification of Malkara (Turkey) lignite, International Journal of Environmental Science and Technology, 16(2), 1093–1102
  • Gür, M., Eskin, N., Okutan, H., Arisoy, A., Böke, E., Altintaş, Ü., … Yildirim, O., 2016, Experimental and computational studies on underground gasification of Turkish lignite, In 33rd Annual International Pittsburgh Coal Conference: Coal - Energy, Environment and Sustainable Development, PCC 2016 (Vol. 2016-August).
  • Gür, M., Eskin, N., Okutan, H., Arısoy, A., Böke, E., Altıntaş, Ü., … Yıldırım, O., 2017, Experimental results of underground coal gasification of Turkish lignite in an ex-situ reactor, Fuel, 203, 997–1006
  • Gür, Mesut, and Canbaz, E. D., 2020, Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification, Fuel, 269, 117331
  • Gür, Mesut, Eskin, N., Büyükşirin, O., and Canbaz, E. D., 2018, Kimyasal Denge Modeliyle Yeraltında Kömür Gazlaştırılmasının İncelenmesi, IV. Uluslararası Katılımlı Anadolu Enerji Sempozyumu, Edirne
  • Hongtao, L., Feng, C., Xia, P., Kai, Y., and Shuqin, L., 2011, Method of oxygen-enriched two-stage underground coal gasification, Mining Science and Technology (China), 21(2), 191–196
  • Jarungthammachote, S., and Dutta, A., 2008, Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout-fluid bed gasifiers. Energy Conversion and Management, 49(6), 1345–1356
  • Jowkar, A., Sereshki, F., and Najafi, M., 2018, A new model for evaluation of cavity shape and volume during Underground Coal Gasification process, Energy, 148, 756–765
  • Kapusta, K., Wiatowski, M., and Stańczyk, K., 2016, An experimental ex-situ study of the suitability of a high moisture ortho-lignite for underground coal gasification (UCG) process, Fuel, 179, 150–155
  • Klimenko, A., and Y., A., 2009, Early Ideas in Underground Coal Gasification and Their Evolution. Energies, 2(2), 456–476
  • Li, X., Grace, J. R., Watkinson, A. P., Lim, C. J., and Ergüdenler, A., 2001, Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel, 80(2), 195–207
  • Pana, C., 2009, Review of Underground Coal Gasification with Reference to Alberta’s Potential. ERCB/AGS Open File Report 2009-10, Energy Resources Conservation Board Alberta Geological Survey, Canada
  • Pei, P., Korom, S. F., Ling, K., and Nasah, J., 2016, Cost comparison of syngas production from natural gas conversion and underground coal gasification, Mitigation and Adaptation Strategies for Global Change, 21(4), 629–643
  • Perkins, G., and Sahajwalla, V., 2007, Modelling of Heat and Mass Transport Phenomena and Chemical Reaction in Underground Coal Gasification, Chemical Engineering Research and Design, 85(3), 329–343
  • Perkins, G., and Sahajwalla, V., 2008, Steady-State Model for Estimating Gas Production from Underground Coal Gasification. Energy & Fuels, 22(6), 3902–3914
  • Perkins, G., 2018a, Underground coal gasification – Part I: Field demonstrations and process performance, Progress in Energy and Combustion Science, Elsevier Ltd
  • Perkins, Greg., 2018b, Underground coal gasification – Part II: Fundamental phenomena and modeling, Progress in Energy and Combustion Science, 67, 234–274
  • Perkins, G., du Toit, E., Cochrane, G., and Bollaert, G., 2016, Overview of underground coal gasification operations at Chinchilla, Australia. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(24), 3639–3646
  • Samdani, G., Aghalayam, P., Ganesh, A., Sapru, R. K., Lohar, B. L., and Mahajani, S., 2016, A process model for underground coal gasification - Part-I: Cavity growth, Fuel, 181, 690–703
  • Sarhosis, V., Lavis, S., Mostade, M., and Thomas, H. R. ,2017, Towards commercialising underground coal gasification in the EU, Environmental Geotechnics, 4(2), 113–122
  • Sarraf Shirazi, A., Karimipour, S., and Gupta, R., 2013, Numerical simulation and evaluation of cavity growth in in situ coal gasification, Industrial and Engineering Chemistry Research, 52(33), 11712–11722
  • Shafirovich, E., and Varma, A., 2009, Underground coal gasification: A brief review of current status, Industrial and Engineering Chemistry Research, 48(17), 7865–7875
  • Shoko, E., McLellan, B., Dicks, A. L., and da Costa, J. C. D, 2006, Hydrogen from coal: Production and utilisation technologies, International Journal of Coal Geology, 65(3–4), 213–222
  • Stańczyk, K., Howaniec, N., Smoliński, A., Świadrowski, J., Kapusta, K., Wiatowski, M., … Rogut, J., 2011, Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification, Fuel, 90(5), 1953–1962
  • Stańczyk, Krzysztof, Smoliński, A., Kapusta, K., Wiatowski, M., Świdrowski, J., Kotyrba, A., and Rogut, J., 2010, Dynamic experimental simulation of hydrogen oriented underground gasification of lignite, Fuel, 89(11), 3307–3314
  • Swanson, R. M., Platon, A., Satrio, J. A., and Brown, R. C., 2010, Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel, 89(1), 11–19
  • Tuncalı, E., Çiftçi, B., Yavuz, N., Toprak, S., Köker, A., Gencer, Z., … Şahin, N., 2002, Türkiye Tersiyer Kömürlerinin Kimyasal ve Teknolojik Özellikleri, Maden Tetkik ve Arama Genel Müdürlüğü (MTA), Ankara, Turkey
  • Tunç, İ, 2015, Yarı Pilot Ölçek Yer Altı Kömür Gazlaştırma Deney Düzeneğinde Malkara Pirinççeşme Kömür Sahasına Ait Blok Kömür Örneklerinin Gazlaştırılması, M.Sc. Thesis, Istanbul Technical University, Istanbul, Turkey
  • Turkish Coal Enterprises (TKİ), 2014. 2015-2019 Stratejik Plan, Ankara.
  • Watkinson, A. P., Lucas, J. P., and Lim, C. J., 1991, A prediction of performance of commercial coal gasifiers. Fuel, 70(4), 519–527
  • Xuyao, Q., Wang, D., Milke, J. A., and Zhong, X., 2011 Crossing point temperature of coal, Mining Science and Technology, 21(2), 255–260
  • Yang, L. H., Zhang, X., and Liu, S., 2009, Underground coal gasification using oxygen and steam, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 31(20), 1883–1892
  • Żogała, A., 2014a, Critical Analysis of Underground Coal Gasification Models. Part I: Equilibrium Models – Literary Studies. Journal of Sustainable Mining, 13(1), 22–28
  • Żogała, A., 2014b, Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models, Journal of Sustainable Mining, 13(1), 29–37.
  • Żogała, A., and Janoszek, T., 2015, CFD simulations of influence of steam in gasification agent on parameters of UCG process. Journal of Sustainable Mining, 14(1), 2–11
  • Internet, 2020, Genreal Directorate of Mineral Research and Exploration (MTA), Kömür Arama Araştırmlaları, http://www.mta.gov.tr/v3.0/arastirmalar/komur-arama-arastirmalari
There are 39 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Engin Canbaz 0000-0002-6287-8770

Mesut Gür This is me 0000-0002-0407-0298

Publication Date October 31, 2020
Published in Issue Year 2020 Volume: 40 Issue: 2

Cite

APA Canbaz, E., & Gür, M. (2020). PREDICTION OF UNDERGROUND COAL GASIFICATION PERFORMANCE OF TURKISH LIGNITE RESERVES USING STOICHIOMETRIC EQUILIBRIUM MODEL. Isı Bilimi Ve Tekniği Dergisi, 40(2), 195-205. https://doi.org/10.47480/isibted.816964