Research Article
BibTex RIS Cite

YEREL METEOROLOJİK VERİ KAYITLARI İLE SEKBANDEMİRLİ KIRSAL BÖLGESİNDE GÜNLÜK VE MEVSİMSEL FOTOVOLTAİK ISI ADASININ İNCELENMESİ VE DEĞERLENDİRİLMESİ

Year 2022, Volume: 42 Issue: 2, 157 - 168, 31.10.2022
https://doi.org/10.47480/isibted.1194969

Abstract

Fotovoltaik enerji santralleri, çevresel açıdan sürdürülebilir ve ekonomik olarak uygulanabilir elektrik üretimine yönelik güneş enerjisi dönüşüm teknolojileri arasında önemli bir paya sahiptir. Ancak, kırsal bir bölgenin doğal toprak türlerinin oluşturduğu arazi yüzeyi, bir fotovoltaik enerji santralinin büyük sayılardaki koyu renkli güneş modülleri ile kaplandığında, bu yüzeyde yapay bir albedo (yansıtma) değişimi beklenir. Albedo değişimi nedeniyle bu modüller ve onları çevreleyen hava arasındaki ısı alışverişine ve ısınma-soğuma döngülerine bağlı olarak oluşan harici ve zamana bağlı hava sıcaklığı salınımları sonucunda, bölgenin doğal hava koşulları “Fotovoltaik Isı Adası Etkisi”ne maruz kalabilir. Olası bir fotovoltaik ısı adası etkisi eğilimini gözlemlemek ve analiz etmek için, Türkiye'nin Kütahya ilinin Sekbandemirli kırsal bölgesi yakınındaki bir fotovoltaik enerji santrali için Ekim 2017'den itibaren bir saha çalışması projesi yürütülmektedir. Her 10 dakikalık ve saatlik aralıklarla hava sıcaklığı ve rüzgar (yön ve hız) dahil olmak üzere hava durumu verileri, santral alanının içindeki ve dışındaki belirli konumlara kurulu üç meteorolojik izleme istasyonu tarafından toplanmaktadır. Santralin saatlik ortalama güç çıkışı ve modül sıcaklık verileri de izlenebilmektedir. İstatistiksel, korelasyonel ve grafiksel analizler yapıldıktan sonra sonuçlar, fotovoltaik enerji santrali sahasının merkezinde günlük ve mevsimsel olarak bazı geçici fotovoltaik ısı
adası oluşumlarını göstermektedir. Santral merkezinin hava sıcaklığı, gündüzleri daha sıcak (6°C farka kadar) ve geceleri daha soğuk ((-3)°C farka kadar) olma eğilimindedir.

References

  • Ambrosini, D., Galli, G., Mancini, B., Nardi, I., Sfarra, S. (2014). Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met® Climate Model. Sustainability, 6(10), 7013-7029. doi: 10.3390/su6107013
  • Aris, A., Syaf, H., Yusuf, D. N., Nurgiantoro. Analysis of urban heat island intensity using multi temporal landsat data; case study of Kendari City, Indonesia Paper presented at Geomatics International Conference 2019, Surabaya, Indonesia.
  • Armstrong, A., Waldron, S., Whitaker, J., Ostle, N. (2014).Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Global Change Biology, 20(6), 1699-1706. doi: 10.1111/gcb.12437
  • Barron-Gafford, G. A., Minor, R. L., Allen, N. A., Cronin, A. D., Brooks, A. E., Pavao-Zuckerman, M. A. (2016). The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures. Scientific Reports, 6(1). doi: 10.1038/srep35070 Barron-Gafford, G. A., Pavao-Zuckerman, M.A., Minor, R.L. et al. (2019). Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat Sustain 2, 2, 848–855. doi: 10.1038/s41893-019-0364-5
  • Canan, F. (2017). Kent Geometrisine Bağlı Olarak Kentsel Isı Adası Etkisinin Belirlenmesi: Konya Örneği. Journal of the Faculty of Engineering and Architecture (Çukurova University), 32(3), 69-80. doi: 10.21605/cukurovaummfd.357202
  • Chamara, R., Beneragama, C. (2020). Agrivoltaic systems and its potential to optimize agricultural land use for energy production in Sri Lanka: A Review. Journal of Solar Energy Research (JSER), 5(2), 417-431. doi: 10.22059/JSER.2020.302720.1154
  • Coseo, P., Larsen, L. (2014). How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landscape and Urban Planning, 125, 117–129. doi: 10.1016/j.landurbplan.2014.02.019
  • Deilami, K., Kamruzzaman, Md., Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30–42. doi: 10.1016/j.jag.2017.12.009
  • Demirezen, E. (2022). Monitoring, Analysis, and Simulation of Photovoltaic Heat Island Effect in Turkey: Sekbandemirli Solar Power Plant Field Study, (Doctoral dissertation). Turkey: Middle East Technical University
  • Demirezen, E., Ozden, T., Akinoglu, B. G. (2018). Impacts of a Photovoltaic Power Plant for Possible Heat Island Effect Paper presented at the 1st International Conference on Photovoltaic Science and Technologies (PVCon2018), Ankara, Turkey. doi: 10.1109/PVCon.2018.8523937
  • Dorer, V., Allegrini, J., Orehounig, K., Moonen, P., Upadhyay, G., Kämpf, J., Carmeliet, J. (2013). Modelling the Urban Microclimate and Its Impact on the Energy Demand of Buildings and Building Clusters Paper presented at 13th Conference of International Building Performance Simulation Association, Chambéry, France.
  • Duman, U., Yilmaz, O. (2008). Ankara Kentinde Kentsel Isı Adası Etkisinin Yaz Aylarında Uzaktan Algılama ve Meteorolojik Gözlemlere Dayalı Olarak Saptanması ve Değerlendirilmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 23(4), 937-952.
  • Dwivedi, A., Khire, M. V. (2014). Measurement Technologies for Urban Heat Islands. International Journal of Emerging Technology and Advanced Engineering, 4(10), 539-545.
  • Fthenakis, V., Yu, Y. (2013). Analysis of the potential for a heat island effect in large solar farms Paper presented at IEEE 39th Photovoltaic Specialists Conference (PVSC), Florida, US. doi: 10.1109/PVSC.2013.6745171
  • Gokmen, N., Hu, W., Hou, P., Chen, Z., Sera, D., Spataru, S. (2016). Investigation of wind speed cooling effect on PV panels in windy locations. Renewable Energy, 90, 283-290. doi: 10.1016/j.renene.2016.01.017
  • Hadjimitsis, D., Retalis, A., Michaelides, S., Tymvios, F., Paronis, D., Themistocleous, K., Agapiou, A. (2013). Satellite and Ground Measurements for Studying the Urban Heat Island Effect in Cyprus. Remote Sensing of Environment - Integrated Approaches. (pp. 1-24). Cyprus: IntechOpen. doi.org/10.5772/39313
  • Hardin, A.W., Liu, Y., Cao, G., Vanos, J. K. (2018). Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S. Urban Climate, 24, 747–762. doi: 10.1016/j.uclim.2017.09.001
  • Hassanpour Adeh, E., Selker, J., Higgins, C. (2018). Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLOS ONE, 13(11). doi: 10.1371/journal.pone.0203256
  • Hassanpour Adeh, E, Good, S., Calaf, M., Higgins, C. (2019). Solar PV Power Potential is Greatest Over Croplands. Scientific Reports, 9(11442). doi: 10.1038/s41598-019-47803-3
  • Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., Barrows, C. W., Belnap, J., Ochoa-Hueso, R., Ravi, S., Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766-779. doi: 10.1016/j.rser.2013.08.041
  • Homadi, A. (2016). Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency. International Journal of Energy and Power Engineering, 10, 1205-1212.
  • Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met, (Doctoral dissertation). Germany: Johannes Gutenberg University of Mainz.
  • Kiris, B., Bingol, O., Senol, R., Altintas, A. (2016). Solar Array System Layout Optimization for Reducing Partial Shading Effect. Special Issue of the 2nd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2015), Acta Physica Polonica A, 130. doi: 10.12693/APhysPolA.130.55
  • Kotharkar, R., Surawar, M. (2016). Land Use, Land Cover, and Population Density Impact on the Formation of Canopy Urban Heat Islands through Traverse Survey in the Nagpur Urban Area. Journal of Urban Planning and Development, 142(1), 1-13. doi: 10.1061/(ASCE)UP.1943-5444.0000277
  • Lobera, D. T., Valkealahti, S. (2013). Dynamic thermal model of solar PV systems under varying climatic conditions. Solar Energy, 93, 183-194. doi: 10.1016/j.solener.2013.03.028
  • Masson, V., Bonhomme, M., Salagnac, J. L., Briottet, X., Lemonsu, A. (2014). Solar panels reduce both global warming and urban heat island. Frontiers in Environmental Science, 2(14). doi: 10.3389/fenvs.2014.00014
  • Millstein, V., Menon, S. (2011). Regional climate consequences of large-scale cool roof and photovoltaic array deployment. Environmental Research Letters, 6. doi: 10.1088/1748-9326/6/3/034001
  • Mirzaei, P.A. (2015). Recent challenges in modeling of urban heat island. Sustainable Cities and Society, 19, 200–206. doi: 10.1016/j.scs.2015.04.001
  • Mokarram, M., Mokarram, M., Khosravi, M., Saber, A., Rahideh, A. (2020). Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory. Scientific Reports, 10(8200). doi: 10.1038/s41598-020-65165-z
  • Nemet, G. F. (2009). Net Radiative Forcing from Widespread Deployment of Photovoltaics. Environmental Science & Technology, 43(6), 2173–2178. doi:10.1021/es801747c
  • Ozden, T., Akinoglu, B. G. (2018). Preliminary investigations on two different procedures to calculate the efficiency and performance ratio of PV modules. International Journal of Environmental Science and Technology, 16(9), 5171–5176. doi: 10.1007/s13762-018-2003-5
  • Saadsaoud, M., Ahmed, A. H., Er, Z., Rouabah, Z. (2017). Experimental Study of Degradation Modes and Their Effects on Reliability of Photovoltaic Modules after 12 Years of Field Operation in the Steppe Region. Special Issue of the 3rd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2016), Acta Physica Polonica A, 132. doi: 10.12693/APhysPolA.132.930
  • Siddiqui, M. U., Arif, A. F. M. (2013). Electrical, thermal and structural performance of a cooled PV module: Transient analysis using a multiphysics model. Applied Energy, 112, 300-312. doi: 10.1016/j.apenergy.2013.06.030
  • Simsek Kuscu, C., Sengezer, B. (2012). İstanbul Metropoliten Alanında Kentsel Isınmanın Azaltılmasında Yeşil Alanların Önemi. Megaron, 7(2), 116-128.
  • Smets, A., Narayan, N. (2013). PV Systems: PV Modules II – Temperature dependency of PV output. DelftX: ET3034TUx Solar Energy. Delft University of Technology. https://www.youtube.com/watch?v=v8nbwvC8aBg&t=2s&ab_channel=3rabGeeks
  • Sodoudi, S., Shahmohamadi, P., Vollack, K., Cubasch, U., Che-Ani, A. (2014). Mitigating the Urban Heat Island Effect in Megacity Tehran. Advances in Meteorology, 1-19. doi: 10.1155/2014/547974
  • Tuncel, B., Ozden, T., Akinoglu, B. G., Balog, R. S. (2018). Thermal Modeling and Verification of PV Module Temperature and Energy Yield Using Outdoor Measurements for Ankara, Turkey Paper presented at the 1st International Conference on Photovoltaic Science and Technologies (PVCon2018), Ankara, Turkey. doi: 10.1109/PVCon.2018.8523953
  • Turney, D., Fthenakis, V. (2011). Environmental impacts from the installation and operation of large-scale solar power plants. Renewable and Sustainable Energy Reviews, 15(6), 3261–3270. doi: 10.1016/j.rser.2011.04.023
  • Voogt, J. (2008). How Researchers Measure Urban Heat Islands. US Environmental Protection Agency. https://19january2017snapshot.epa.gov/sites/production/files/2014-07/documents/epa_how_to_measure_a_uhi.pdf
  • Wu, W., Yue, S., Zhou, X., Guo, M., Wang, J., Ren, L., Yuan, B. (2020). Observational Study on the Impact of Large-Scale Photovoltaic Development in Deserts on Local Air Temperature and Humidity. Sustainability, 12(3403). doi: 10.3390/su12083403
  • Xu, M., Bruelisauer, M., Berger, M. (2017). Development of a new urban heat island modeling tool: Kent Vale case study Paper presented at International Conference on Computational Science (ICCS 2017), Zurich, Switzerland. doi: 10.1016/j.procs.2017.05.282
  • Yilmaz, E. (2015). Landsat Görüntüleri ile Adana Yüzey Isı Adası. Coğrafi Bilimler Dergisi (Ankara University), 13(2), 115-138. doi: 10.1501/Cogbil_0000000167
  • (2014). Reducing Urban Heat Islands: Compendium of Strategies. US Environmental Protection Agency (US EPA). https://www.epa.gov/sites/production/files/2014-06/documents/basicscompendium.pdf

ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS

Year 2022, Volume: 42 Issue: 2, 157 - 168, 31.10.2022
https://doi.org/10.47480/isibted.1194969

Abstract

Photovoltaic Power Plants have a considerable share among solar energy conversion technologies toward environmentally sustainable and economically feasible electricity production. However, when a rural region's land surface formed by natural soil types is covered by a Photovoltaic Power Plant (PVPP)'s dark-colored solar modules in large numbers, an artificial albedo (reflectivity) change is expected on that surface. Because of the heat exchange between these modules and the air surrounding them due to albedo alteration, the region's natural weather conditions may experience Photovoltaic Heat Island Effect (PVHIE) as a result of external and time-dependent air temperature oscillations caused by the warming-cooling cycles of solar modules. To observe and analyze a possible PVHIE trend, it has been conducting a field study project since October 2017 for a PVPP near the Sekbandemirli rural region in the Kutahya city of Turkey. The weather data, including air temperature and wind (direction and speed) at every 10-minute and hourly intervals, are collected by the three weather monitoring stations installed at the specific locations inside and outside the PVPP field. The plant's hourly average power output and module temperature data can also be monitored. After conducting statistical, correlational, and graphical analyses, the results show some temporal PVHI formations at the PVPP field center daily and on a seasonal basis. The plant center's air temperature tends to be warmer (up to the 6°C difference) during daytimes and colder (up to the (-3)°C difference) during nighttimes.

References

  • Ambrosini, D., Galli, G., Mancini, B., Nardi, I., Sfarra, S. (2014). Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met® Climate Model. Sustainability, 6(10), 7013-7029. doi: 10.3390/su6107013
  • Aris, A., Syaf, H., Yusuf, D. N., Nurgiantoro. Analysis of urban heat island intensity using multi temporal landsat data; case study of Kendari City, Indonesia Paper presented at Geomatics International Conference 2019, Surabaya, Indonesia.
  • Armstrong, A., Waldron, S., Whitaker, J., Ostle, N. (2014).Wind farm and solar park effects on plant-soil carbon cycling: Uncertain impacts of changes in ground-level microclimate. Global Change Biology, 20(6), 1699-1706. doi: 10.1111/gcb.12437
  • Barron-Gafford, G. A., Minor, R. L., Allen, N. A., Cronin, A. D., Brooks, A. E., Pavao-Zuckerman, M. A. (2016). The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures. Scientific Reports, 6(1). doi: 10.1038/srep35070 Barron-Gafford, G. A., Pavao-Zuckerman, M.A., Minor, R.L. et al. (2019). Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat Sustain 2, 2, 848–855. doi: 10.1038/s41893-019-0364-5
  • Canan, F. (2017). Kent Geometrisine Bağlı Olarak Kentsel Isı Adası Etkisinin Belirlenmesi: Konya Örneği. Journal of the Faculty of Engineering and Architecture (Çukurova University), 32(3), 69-80. doi: 10.21605/cukurovaummfd.357202
  • Chamara, R., Beneragama, C. (2020). Agrivoltaic systems and its potential to optimize agricultural land use for energy production in Sri Lanka: A Review. Journal of Solar Energy Research (JSER), 5(2), 417-431. doi: 10.22059/JSER.2020.302720.1154
  • Coseo, P., Larsen, L. (2014). How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landscape and Urban Planning, 125, 117–129. doi: 10.1016/j.landurbplan.2014.02.019
  • Deilami, K., Kamruzzaman, Md., Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30–42. doi: 10.1016/j.jag.2017.12.009
  • Demirezen, E. (2022). Monitoring, Analysis, and Simulation of Photovoltaic Heat Island Effect in Turkey: Sekbandemirli Solar Power Plant Field Study, (Doctoral dissertation). Turkey: Middle East Technical University
  • Demirezen, E., Ozden, T., Akinoglu, B. G. (2018). Impacts of a Photovoltaic Power Plant for Possible Heat Island Effect Paper presented at the 1st International Conference on Photovoltaic Science and Technologies (PVCon2018), Ankara, Turkey. doi: 10.1109/PVCon.2018.8523937
  • Dorer, V., Allegrini, J., Orehounig, K., Moonen, P., Upadhyay, G., Kämpf, J., Carmeliet, J. (2013). Modelling the Urban Microclimate and Its Impact on the Energy Demand of Buildings and Building Clusters Paper presented at 13th Conference of International Building Performance Simulation Association, Chambéry, France.
  • Duman, U., Yilmaz, O. (2008). Ankara Kentinde Kentsel Isı Adası Etkisinin Yaz Aylarında Uzaktan Algılama ve Meteorolojik Gözlemlere Dayalı Olarak Saptanması ve Değerlendirilmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 23(4), 937-952.
  • Dwivedi, A., Khire, M. V. (2014). Measurement Technologies for Urban Heat Islands. International Journal of Emerging Technology and Advanced Engineering, 4(10), 539-545.
  • Fthenakis, V., Yu, Y. (2013). Analysis of the potential for a heat island effect in large solar farms Paper presented at IEEE 39th Photovoltaic Specialists Conference (PVSC), Florida, US. doi: 10.1109/PVSC.2013.6745171
  • Gokmen, N., Hu, W., Hou, P., Chen, Z., Sera, D., Spataru, S. (2016). Investigation of wind speed cooling effect on PV panels in windy locations. Renewable Energy, 90, 283-290. doi: 10.1016/j.renene.2016.01.017
  • Hadjimitsis, D., Retalis, A., Michaelides, S., Tymvios, F., Paronis, D., Themistocleous, K., Agapiou, A. (2013). Satellite and Ground Measurements for Studying the Urban Heat Island Effect in Cyprus. Remote Sensing of Environment - Integrated Approaches. (pp. 1-24). Cyprus: IntechOpen. doi.org/10.5772/39313
  • Hardin, A.W., Liu, Y., Cao, G., Vanos, J. K. (2018). Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S. Urban Climate, 24, 747–762. doi: 10.1016/j.uclim.2017.09.001
  • Hassanpour Adeh, E., Selker, J., Higgins, C. (2018). Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLOS ONE, 13(11). doi: 10.1371/journal.pone.0203256
  • Hassanpour Adeh, E, Good, S., Calaf, M., Higgins, C. (2019). Solar PV Power Potential is Greatest Over Croplands. Scientific Reports, 9(11442). doi: 10.1038/s41598-019-47803-3
  • Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., Barrows, C. W., Belnap, J., Ochoa-Hueso, R., Ravi, S., Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766-779. doi: 10.1016/j.rser.2013.08.041
  • Homadi, A. (2016). Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency. International Journal of Energy and Power Engineering, 10, 1205-1212.
  • Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met, (Doctoral dissertation). Germany: Johannes Gutenberg University of Mainz.
  • Kiris, B., Bingol, O., Senol, R., Altintas, A. (2016). Solar Array System Layout Optimization for Reducing Partial Shading Effect. Special Issue of the 2nd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2015), Acta Physica Polonica A, 130. doi: 10.12693/APhysPolA.130.55
  • Kotharkar, R., Surawar, M. (2016). Land Use, Land Cover, and Population Density Impact on the Formation of Canopy Urban Heat Islands through Traverse Survey in the Nagpur Urban Area. Journal of Urban Planning and Development, 142(1), 1-13. doi: 10.1061/(ASCE)UP.1943-5444.0000277
  • Lobera, D. T., Valkealahti, S. (2013). Dynamic thermal model of solar PV systems under varying climatic conditions. Solar Energy, 93, 183-194. doi: 10.1016/j.solener.2013.03.028
  • Masson, V., Bonhomme, M., Salagnac, J. L., Briottet, X., Lemonsu, A. (2014). Solar panels reduce both global warming and urban heat island. Frontiers in Environmental Science, 2(14). doi: 10.3389/fenvs.2014.00014
  • Millstein, V., Menon, S. (2011). Regional climate consequences of large-scale cool roof and photovoltaic array deployment. Environmental Research Letters, 6. doi: 10.1088/1748-9326/6/3/034001
  • Mirzaei, P.A. (2015). Recent challenges in modeling of urban heat island. Sustainable Cities and Society, 19, 200–206. doi: 10.1016/j.scs.2015.04.001
  • Mokarram, M., Mokarram, M., Khosravi, M., Saber, A., Rahideh, A. (2020). Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory. Scientific Reports, 10(8200). doi: 10.1038/s41598-020-65165-z
  • Nemet, G. F. (2009). Net Radiative Forcing from Widespread Deployment of Photovoltaics. Environmental Science & Technology, 43(6), 2173–2178. doi:10.1021/es801747c
  • Ozden, T., Akinoglu, B. G. (2018). Preliminary investigations on two different procedures to calculate the efficiency and performance ratio of PV modules. International Journal of Environmental Science and Technology, 16(9), 5171–5176. doi: 10.1007/s13762-018-2003-5
  • Saadsaoud, M., Ahmed, A. H., Er, Z., Rouabah, Z. (2017). Experimental Study of Degradation Modes and Their Effects on Reliability of Photovoltaic Modules after 12 Years of Field Operation in the Steppe Region. Special Issue of the 3rd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2016), Acta Physica Polonica A, 132. doi: 10.12693/APhysPolA.132.930
  • Siddiqui, M. U., Arif, A. F. M. (2013). Electrical, thermal and structural performance of a cooled PV module: Transient analysis using a multiphysics model. Applied Energy, 112, 300-312. doi: 10.1016/j.apenergy.2013.06.030
  • Simsek Kuscu, C., Sengezer, B. (2012). İstanbul Metropoliten Alanında Kentsel Isınmanın Azaltılmasında Yeşil Alanların Önemi. Megaron, 7(2), 116-128.
  • Smets, A., Narayan, N. (2013). PV Systems: PV Modules II – Temperature dependency of PV output. DelftX: ET3034TUx Solar Energy. Delft University of Technology. https://www.youtube.com/watch?v=v8nbwvC8aBg&t=2s&ab_channel=3rabGeeks
  • Sodoudi, S., Shahmohamadi, P., Vollack, K., Cubasch, U., Che-Ani, A. (2014). Mitigating the Urban Heat Island Effect in Megacity Tehran. Advances in Meteorology, 1-19. doi: 10.1155/2014/547974
  • Tuncel, B., Ozden, T., Akinoglu, B. G., Balog, R. S. (2018). Thermal Modeling and Verification of PV Module Temperature and Energy Yield Using Outdoor Measurements for Ankara, Turkey Paper presented at the 1st International Conference on Photovoltaic Science and Technologies (PVCon2018), Ankara, Turkey. doi: 10.1109/PVCon.2018.8523953
  • Turney, D., Fthenakis, V. (2011). Environmental impacts from the installation and operation of large-scale solar power plants. Renewable and Sustainable Energy Reviews, 15(6), 3261–3270. doi: 10.1016/j.rser.2011.04.023
  • Voogt, J. (2008). How Researchers Measure Urban Heat Islands. US Environmental Protection Agency. https://19january2017snapshot.epa.gov/sites/production/files/2014-07/documents/epa_how_to_measure_a_uhi.pdf
  • Wu, W., Yue, S., Zhou, X., Guo, M., Wang, J., Ren, L., Yuan, B. (2020). Observational Study on the Impact of Large-Scale Photovoltaic Development in Deserts on Local Air Temperature and Humidity. Sustainability, 12(3403). doi: 10.3390/su12083403
  • Xu, M., Bruelisauer, M., Berger, M. (2017). Development of a new urban heat island modeling tool: Kent Vale case study Paper presented at International Conference on Computational Science (ICCS 2017), Zurich, Switzerland. doi: 10.1016/j.procs.2017.05.282
  • Yilmaz, E. (2015). Landsat Görüntüleri ile Adana Yüzey Isı Adası. Coğrafi Bilimler Dergisi (Ankara University), 13(2), 115-138. doi: 10.1501/Cogbil_0000000167
  • (2014). Reducing Urban Heat Islands: Compendium of Strategies. US Environmental Protection Agency (US EPA). https://www.epa.gov/sites/production/files/2014-06/documents/basicscompendium.pdf
There are 43 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Emre Demirezen This is me 0000-0001-8417-104X

Talat Ozden This is me 0000-0002-0781-2904

Bulent G. Akınoğlu This is me 0000-0003-1987-6937

Publication Date October 31, 2022
Published in Issue Year 2022 Volume: 42 Issue: 2

Cite

APA Demirezen, E., Ozden, T., & Akınoğlu, B. G. (2022). ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS. Isı Bilimi Ve Tekniği Dergisi, 42(2), 157-168. https://doi.org/10.47480/isibted.1194969
AMA Demirezen E, Ozden T, Akınoğlu BG. ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS. Isı Bilimi ve Tekniği Dergisi. October 2022;42(2):157-168. doi:10.47480/isibted.1194969
Chicago Demirezen, Emre, Talat Ozden, and Bulent G. Akınoğlu. “ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS”. Isı Bilimi Ve Tekniği Dergisi 42, no. 2 (October 2022): 157-68. https://doi.org/10.47480/isibted.1194969.
EndNote Demirezen E, Ozden T, Akınoğlu BG (October 1, 2022) ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS. Isı Bilimi ve Tekniği Dergisi 42 2 157–168.
IEEE E. Demirezen, T. Ozden, and B. G. Akınoğlu, “ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS”, Isı Bilimi ve Tekniği Dergisi, vol. 42, no. 2, pp. 157–168, 2022, doi: 10.47480/isibted.1194969.
ISNAD Demirezen, Emre et al. “ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS”. Isı Bilimi ve Tekniği Dergisi 42/2 (October 2022), 157-168. https://doi.org/10.47480/isibted.1194969.
JAMA Demirezen E, Ozden T, Akınoğlu BG. ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS. Isı Bilimi ve Tekniği Dergisi. 2022;42:157–168.
MLA Demirezen, Emre et al. “ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS”. Isı Bilimi Ve Tekniği Dergisi, vol. 42, no. 2, 2022, pp. 157-68, doi:10.47480/isibted.1194969.
Vancouver Demirezen E, Ozden T, Akınoğlu BG. ANALYSIS AND ASSESSMENT OF DAILY AND SEASONAL PHOTOVOLTAIC HEAT ISLAND EFFECT ON SEKBANDEMIRLI RURAL REGION BY LOCAL WEATHER DATA RECORDS. Isı Bilimi ve Tekniği Dergisi. 2022;42(2):157-68.