Research Article
BibTex RIS Cite

HİMMETOĞLU VE SEYİTÖMER BİTÜMLÜ ŞEYLLERİ İLE PLASTİK ŞEHİR ATIKLARININ KABARCIKLI AKIŞKAN YATAKLI REAKTÖRDE GAZLAŞTIRILMASI

Year 2022, Volume: 42 Issue: 2, 257 - 268, 31.10.2022
https://doi.org/10.47480/isibted.1195027

Abstract

Artan plastik kullanımı ve kullanılan plastiklerin bir süre sonra atık olarak birikmesi günümüzün başlıca sorunlarındandır. Atık plastiklerin yeniden değerlendirilmesi için termokimyasal dönüşüm prosesleri oldukça verimlidir. Atık plastiklerin tek başına ve çeşitli yerli kömürler ile birlikte gazlaştırılması sayesinde yakıt olarak kullanıma uygun CO, CH4 ve bir enerji taşıyıcısı olan H2 içeren sentez gazı üretimi mümkündür. Bu amaçla yapılan çalışmada, Himmetoğlu ve Seyitömer bitümlü şeylleri ile plastik atık karışımı (%56 polietilen, %28 polipropilen ve %16 polistiren) gazlaştırılmıştır. Deneysel çalışmalar, 4 cm iç çapında ve 110 cm boyundaki kuvars camdan imal edilen laboratuvar ölçekli akışkan yataklı sistemde gerçekleştirilmiş olup akışkanlaştırıcı gaz olarak hava ve gazlaştırıcı akışkan olarak da su buharı kullanılmıştır. Sıcaklığın (750◦C, 800◦C, 850◦C), su buharı akış hızının (5-10-15 g/dak) ve beslemedeki plastik oranının (%40 ve %70) sentez gazındaki H2 ve CH4 konsantrasyonuna etkileri incelenmiştir. 5-10 g/dak akış hızındaki su buharı kullanımı Himmetoğlu bitümlü şeylinin ve karışımlarının gazlaştırılması için uygundur. Seyitömer bitümlü şeyli ve karışımlarının gazlaştırılmasında ise 10-15 g/dak olacak şekilde daha yüksek akış hızlarının uygun olduğu görülmüştür. Himmetoğlu ve Seyitömer bitümlü şeyllerine %40 ve %70 oranında plastik atık karıştırıldığında üretilen sentez gazındaki H2 konsantrasyonu azalırken CH4 konsantrasyonu artmıştır. Çalışma sonucunda, en yüksek H2 konsantrasyonu %21,33 (750◦C - 10 g/dak- %60 Himmetoğlu bitümlü şeyli ve %40 plastik beslemesi) ve en yüksek CH4 konsantrasyonu ise %74,71 (850◦C - 10 g/dak- %30 Himmetoğlu bitümlü şeyli-%70 plastik atık) olarak elde edilmiştir. Üretilmesi planlanan sentez gazının kullanım alanına göre sıcaklık, su buharı akış hızı ve besleme karışım oranı değiştirilerek uygun çalışma koşulları belirlenebilir.

References

  • Adami L. and Schiavon M., 2021, From circular economy to circular ecology: a review on the solution of environmental problems through circular waste management approaches, Sustainability, 13(2), 1-2.
  • Aguilar-Hernandez G.A., Sigüenza-Sanchez,C.P., Donati F., Merciai S., Schmidt J., Rodrigues J., F., D. Tukker A., 2019, The circularity gap of nations: A multiregional analysis of waste generation, recovery, and stock depletion in 2011. Resour. Conserv. Recycl., 151.
  • Arena U. and Gregorio F. D., 2014, Energy Generation by Air Gasification of Two Industrial Plastic Wastes in a Pilot Scale Fluidized Bed Reactor, Energy, 68, 735-743.
  • Basu P., 2006, Combustion and gasification in fluidized bed., Halifax- Nova Scotia: Taylor and Francis Group, (1. Basım), 59-101.
  • Basu P., 2010, Gasification theory and modeling of gasifiers . New York: Elsevier, (1. Basım), 125-191.
  • Benim A., C. ve Kuppa K., 2016, Modeling of Entrained-flow coal gasification by an equilibrium Eulerian-Eulerian two-phase flow formulation, Isı Bilim. Tek. Derg., 36(2), 93-102.
  • Canbaz E., D. ve Gür M. (2020). Prediction of underground coal gasification performance of Turkish lignite reserves using stoichiometric equilibrium model, Isı Bilim. Tek. Derg., 40(2), 195-200.
  • Chaudhari S., T., Bej S., K., Bakhshi N., N., Dalai A., K., 2001, Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas, Energy Fuel, 15, 736-742.
  • Ciferno J., P. and Marano J., J., 2002, Benchmarking biomass gasification Technologies for fuels, chemicals and hydrogen production, U.S. Department of Energy- National Energy Technology Laboratory, 14.
  • Cocco R., Karri S., B., R., and Knowlton T., 2014, Introduction to fluidization. Chem Eng Prog, 110(11), 21-29.
  • Dinçer İ. ve Zamfirescu C., 2014, Advanced Power Generation Systems, Elsevier, (1st ed.), USA, 134-141. Du Z., Liu C., Zhai J., Gou X., Xiong Y., Su W. and He G., 2021, A review of hydrogen purification technologies for fuel cell vehicles, Catalysts, 2-17.
  • Emami Taba L., Irfan M. F., Wan Daud W. A. M., and Chakrabarti M. H., 2012, The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renew. Sust. Energ. Rev., 16(8), 5584–5596.
  • Emami-Taba L., Irfan M. F., Wan Daud W. M. A., and Chakrabarti M. H., 2013, Fuel blending effects on the co-gasification of coal and biomass - A review. Biomass Bioenerg., 57, 249–263.
  • Geldart D., 1986, Gas Fluidization Technology, Great Britain: Wiley-Interscience Publication, (1st ed.), 1-153. Grace J. R., 2020, Introduction, History, and Applications. In Essentials of Fluidization Technology, 1-9.
  • Hamelinck C., N., Faaij A., P., C., den Uil, adnd Boerrigter, H., 2004, Production of FT transportation fuels from biomass; technical options, process analysis and optimization, and development potential, Energy, 29(11), 1743-1771.
  • Hammad A. E. A., Nadirov E., Uysal D., Doğan Ö. M. ve Uysal, B. Z.,2016, Pirinadan Su Buharı Gazlaştırmasıyla Sentez Gazı Üretimi, 12. Ulusal Kimya Mühendisliği Kongresi, İzmir. İnternet, 2021, International Energy Agency (IEA), Total final consumption bu source, https://www.iea.org/data-and-statistics.
  • İnternet, 2019, Türkiye Kömür İşletmeleri (TKİ), Temiz Kömür Teknolojileri, http://www.tki.gov.tr/bilgi/komur/komurteknolojileri/235.
  • İnternet, 2021, Australian Hydrogen Council, About Hydrogen, https://h2council.com.au/about-hydrogen. İnternet, National Energy Tehnology Laboratory (NETL), Fluidized Bed Gasifiers, https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/fluidizedbed.
  • İnternet, National Energy Technology Laboratory (NETL), Syngas conversion to methanol, https://www.netl.doe.gov/research/coal/energynsystems/gasification/gasifipedia/methanol.
  • Jambeck J. R., Geyer R., Wilco, C., Siegler T.R., Perryman M., Andrady A., Narayan R., and Law, K.L., 2015, Plastic waste inputs from land into the ocean, Science, 347, 768-71.
  • Khzouz M. and Gkanas E. I., 2018, Experimental and Numerical Stufy of Low Temperature Methane Steam Reforming for Hydrogen Production, Catalysts,8, 1-20.
  • Kovac A., Paranos M. and Marcius D., 2021, Hydrogen in energy transition: A review, Int. J. Hydrog. Energy, 46, 10016- 10035.
  • Kryca J., Priscak J., Lojewka J., Kuba M. and Hofbauer H., 2018, Apparent Kinetics of The Water-gas-shift Reaction in Biomass Gasification Using Ash-layered Olivine as Catalyst, Chem. Eng. J., 346, 113-119.
  • Kunii D. and Levenspiel O., 1991, Fluidization Engineering. Buterworth- Heinemann Series in Chemical Engineering (1st ed.), ABD.
  • Leung D. Y. C. and Wang C. L., 2003, Fluidized-bed Gasification of Waste Tire Powders. Fuel Process. Technol., 84, 175-96.
  • Li B., Wei L., Yang H., Wang X., and Chen H., 2014, The Enhancing Mechanism of Calcium Oxide on Water Gas Shift Reaction for Hydrogen Production, Energy, 68, 248-254.
  • Liu Z., Peng W., Motahari-Nezhad M., Shahraki S. and Beheshti M., 2016, Circulating fluidized bed gasification of biomass for flexible end-use of syngas: a micro and nano scale study for production of bio-methanol, J. Clean. Prod.,129:249-255.
  • Lobachyov K., V., Richter H., J., 1998, An advanced integrated biomass gasification and molten fuel cell power system, Eng. Convers. Manag., 39(16-18), 1931-1943.
  • Lopez G., Artetxe M., Amutio M., Alvarez J. Bilbao J. and Olazar M., 2018, Recent Advances in the Gasification of Waste Plastics- A Critical Overview, Ren. Sust. Energ Rev., 82,576-596.
  • Mastral F. J., Esperanza E., Berrueco C., Juste M., and Ceamanos J., 2003, Fluidized Bed Thermal Degradation Products of HDPE in an Inert Atmosphere and in Air-nitrogen Mixtures. J. Anal. Appl. Pyrolysis, 70, 1-17.
  • Moya D., Aldas C., Jaramillo D., Jativa E. and Kaparaju P., 2017, Waste-to-Energy Technologies: an opportunity of energy recovery from manucipal solid waste using Quito-Ecuador as case study, Procedia Eng., 134, 327-336.
  • Özbayoğlu A. M., Kasnakoğlu C., Güngör A., Bıyıkoğlu A., ve Uysal, B. Z., 2013, Sentez Gazı Elde Etmek için Kontrol Edilebilir Reaktör Parametrelerine Bağlı Geliştirilen İki Aşamalı Bir Su Gazı Yönlendirme Reaktörü Modeli, J. Fac. Eng. Archit. Gaz., 28(2), 339-351. Öztan H., Uysal Zıraman D., Doğan Ö. M. and Uysal B. Z., 2020, Production of Hydrogen-Rich Syngas in a Fluidized Bed, 10th Int. 100% Renewable Energy Conference, İstanbul, 133-142.
  • Öztürk S., 2020, The effects of CO2, H2O, and N2 dilutions on pollutants of shale gas combustion, Isı Bilim. Teknik. Derg., 40(1), 15-25.
  • Pinto F., André R. N., Franco C., Lopes H., Gulyurtlu I., and Cabrita I., 2009, Co-gasification of coal and wastes in a pilot-scale installation 1: Effect of catalysts in syngas treatment to achieve tar abatement. Fuel, 88(12), 2392–2402.
  • Ramos A., Monteiro E., Silva V., and Rouboa A., 2018, Co-gasification and recent developments on waste-to-energy conversion: A review. Ren. Sust. Energ. Rev., 81, 380–398.
  • Straka P. and Bucko Z., 2009, Co-gasification of a Lignite/Waste-Tyre Mixture in a Moving Bed. Fuel Proces. Technol., 90, 1202-6.
  • Toraman Ö., Y. ve Uçurum M., 2009, Alternatif fosil enerji kaynağı: bitümlü şeyl, TÜBAV Bilim Dergisi, 2(1), 37-46. Türkiye Kömür İşletmeleri Kurumu (TKİ), 2010, Kömür sektör raporu (linyit), Türkiye Kömür İşletmeleri Kurumu, Ankara, 1-12.
  • Upadhyay D. S., Panchal K. R., Skhiya A. K. and Patel R. N., 2020, Air-steam Gasification of Lignite in a Fixed Bed Gasifier: Influence of Steam to Lignite Ratio on Performance of Downdraft Gasifier, Energy, 211, 118187.
  • Uysal D., Doğan Ö., M., ve Uysal B., Z., 2013, Soma Linyitinin Su Buharı Gazlaştırmasıyla Sentez Gazı Üretimi, ULIBTK'13 19. Isı Bilimi ve Tekniği Kongresi, Samsun.
  • Vural E. S., Uysal B. Z., ve Doğan Ö. M., 2014, Soma-Eynez Linyitinden Su Buharı Gazlaştırmasıyla Hidrojen İçeriği Yüksek Sentez Gazı Üretimi, 11. Ulusal Kimya Mühendisliği Kongresi, Eskişehir.
  • Wie J., Zhong W., Jin B., Shao Y. and Liu H., 2012, Simulation on Gasification of Forestry Residues in Fluidized Beds by Eulerian- Lagrangian Approach. Bioresour. Technol., 121, 36-46.
  • Win M. M., Asari M., Hayakawa R., Hosada H., Yano J. and Sakai S., 2019, Characteristics of Gas from the Fluidized Bed Gasification of Refuse Paper and Plastic Fuel (RPF) and Wood Biomass, Waste Manage., 87, 178.
  • Wong S.L., Ngadi N., Abdullah TAT and Inuwa I. M., 2015, Current State and Future Prospects of Plastic Wastes as Source of Fuel: a review, Ren. Sust. Energ. Rev., 50, 1167-80.
  • Xiao R., Jin ., Zhou H., Zhong Z. and Zhang M., 2007, Air Gasificaion of Polypropylene Plastic Waste in Fluidized Bed Gasifier. Energ. Convers. Manag., 48,778-86.
  • Zhang Y., Gong X., Zhang B., Liu W. and Xu,M., 2014, Potassium Catalytic Hydrogen Production in Sorption Enhanced Gasification of Biomass With Steam, Int. J. Hydrog. Energ., 39, 4234-42.

GASIFICATION OF HIMMETOĞLU AND SEYITOMER OIL SHALES WITH PLASTIC CITY WASTES IN A BUBBLING FLUIDIZED BED REACTOR

Year 2022, Volume: 42 Issue: 2, 257 - 268, 31.10.2022
https://doi.org/10.47480/isibted.1195027

Abstract

Increasing use of plastics and accumulation of used plastics as waste after a while are the main problems of today. Thermochemical conversion processes are highly efficient for recycling waste plastics. With the gasification of waste plastics alone and with various local coals, it is possible to produce syngas containing H2, as an energy carrier, with CO and CH4 suitable for use as fuel. In this study, Himmetoğlu and Seyitömer bituminous shales and plastic waste mixture (56% polyethylene, 28% polypropylene, and 16% polystyrene) were gasified. Experimental studies were carried out in a laboratory-scale fluidized bed system made of quartz glass with an inner diameter of 4 cm and a length of 110 cm, and the air was used as a fluidizing gas and water vapor was used as a gasifier agent. The effects of temperature (750 ℃, 800 ℃, 850 ℃), water vapor flow rate (5-10-15 g / min), and plastic in the feed (40% and 70%) on the concentration of H2 and CH4 in the syngas were investigated. When the gasification results were examined, the use of steam with a flow rate of 5-10 g/min is suitable for the gasification of Himmetoğlu bituminous shale and its mixtures. In the gasification of Seyitömer bituminous shale and mixtures, it was determined that higher flow rates of 10-15 g min should be preferred.When 40% and 70% plastic waste was mixed into Himmetoğlu and Seyitömer bituminous shales, the concentration of H2 in the syngas decreased while the concentration of CH4 increased. As a result of the study, the highest H2 concentration was obtained as 21.33% (750 ℃ - 10 g / min- 60% Himmetoğlu bituminous shale - 40% plastic waste) and the highest CH4 concentration was obtained as 74.71% (850℃- 10 g / min- 30% Himmetoğlu bituminous shale- 70% plastic waste). Suitable operating conditions can be determined by changing temperature, steam flow rate, and feed mixture ratio according to the usage area of the syngas planned to be produced.

References

  • Adami L. and Schiavon M., 2021, From circular economy to circular ecology: a review on the solution of environmental problems through circular waste management approaches, Sustainability, 13(2), 1-2.
  • Aguilar-Hernandez G.A., Sigüenza-Sanchez,C.P., Donati F., Merciai S., Schmidt J., Rodrigues J., F., D. Tukker A., 2019, The circularity gap of nations: A multiregional analysis of waste generation, recovery, and stock depletion in 2011. Resour. Conserv. Recycl., 151.
  • Arena U. and Gregorio F. D., 2014, Energy Generation by Air Gasification of Two Industrial Plastic Wastes in a Pilot Scale Fluidized Bed Reactor, Energy, 68, 735-743.
  • Basu P., 2006, Combustion and gasification in fluidized bed., Halifax- Nova Scotia: Taylor and Francis Group, (1. Basım), 59-101.
  • Basu P., 2010, Gasification theory and modeling of gasifiers . New York: Elsevier, (1. Basım), 125-191.
  • Benim A., C. ve Kuppa K., 2016, Modeling of Entrained-flow coal gasification by an equilibrium Eulerian-Eulerian two-phase flow formulation, Isı Bilim. Tek. Derg., 36(2), 93-102.
  • Canbaz E., D. ve Gür M. (2020). Prediction of underground coal gasification performance of Turkish lignite reserves using stoichiometric equilibrium model, Isı Bilim. Tek. Derg., 40(2), 195-200.
  • Chaudhari S., T., Bej S., K., Bakhshi N., N., Dalai A., K., 2001, Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas, Energy Fuel, 15, 736-742.
  • Ciferno J., P. and Marano J., J., 2002, Benchmarking biomass gasification Technologies for fuels, chemicals and hydrogen production, U.S. Department of Energy- National Energy Technology Laboratory, 14.
  • Cocco R., Karri S., B., R., and Knowlton T., 2014, Introduction to fluidization. Chem Eng Prog, 110(11), 21-29.
  • Dinçer İ. ve Zamfirescu C., 2014, Advanced Power Generation Systems, Elsevier, (1st ed.), USA, 134-141. Du Z., Liu C., Zhai J., Gou X., Xiong Y., Su W. and He G., 2021, A review of hydrogen purification technologies for fuel cell vehicles, Catalysts, 2-17.
  • Emami Taba L., Irfan M. F., Wan Daud W. A. M., and Chakrabarti M. H., 2012, The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renew. Sust. Energ. Rev., 16(8), 5584–5596.
  • Emami-Taba L., Irfan M. F., Wan Daud W. M. A., and Chakrabarti M. H., 2013, Fuel blending effects on the co-gasification of coal and biomass - A review. Biomass Bioenerg., 57, 249–263.
  • Geldart D., 1986, Gas Fluidization Technology, Great Britain: Wiley-Interscience Publication, (1st ed.), 1-153. Grace J. R., 2020, Introduction, History, and Applications. In Essentials of Fluidization Technology, 1-9.
  • Hamelinck C., N., Faaij A., P., C., den Uil, adnd Boerrigter, H., 2004, Production of FT transportation fuels from biomass; technical options, process analysis and optimization, and development potential, Energy, 29(11), 1743-1771.
  • Hammad A. E. A., Nadirov E., Uysal D., Doğan Ö. M. ve Uysal, B. Z.,2016, Pirinadan Su Buharı Gazlaştırmasıyla Sentez Gazı Üretimi, 12. Ulusal Kimya Mühendisliği Kongresi, İzmir. İnternet, 2021, International Energy Agency (IEA), Total final consumption bu source, https://www.iea.org/data-and-statistics.
  • İnternet, 2019, Türkiye Kömür İşletmeleri (TKİ), Temiz Kömür Teknolojileri, http://www.tki.gov.tr/bilgi/komur/komurteknolojileri/235.
  • İnternet, 2021, Australian Hydrogen Council, About Hydrogen, https://h2council.com.au/about-hydrogen. İnternet, National Energy Tehnology Laboratory (NETL), Fluidized Bed Gasifiers, https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/fluidizedbed.
  • İnternet, National Energy Technology Laboratory (NETL), Syngas conversion to methanol, https://www.netl.doe.gov/research/coal/energynsystems/gasification/gasifipedia/methanol.
  • Jambeck J. R., Geyer R., Wilco, C., Siegler T.R., Perryman M., Andrady A., Narayan R., and Law, K.L., 2015, Plastic waste inputs from land into the ocean, Science, 347, 768-71.
  • Khzouz M. and Gkanas E. I., 2018, Experimental and Numerical Stufy of Low Temperature Methane Steam Reforming for Hydrogen Production, Catalysts,8, 1-20.
  • Kovac A., Paranos M. and Marcius D., 2021, Hydrogen in energy transition: A review, Int. J. Hydrog. Energy, 46, 10016- 10035.
  • Kryca J., Priscak J., Lojewka J., Kuba M. and Hofbauer H., 2018, Apparent Kinetics of The Water-gas-shift Reaction in Biomass Gasification Using Ash-layered Olivine as Catalyst, Chem. Eng. J., 346, 113-119.
  • Kunii D. and Levenspiel O., 1991, Fluidization Engineering. Buterworth- Heinemann Series in Chemical Engineering (1st ed.), ABD.
  • Leung D. Y. C. and Wang C. L., 2003, Fluidized-bed Gasification of Waste Tire Powders. Fuel Process. Technol., 84, 175-96.
  • Li B., Wei L., Yang H., Wang X., and Chen H., 2014, The Enhancing Mechanism of Calcium Oxide on Water Gas Shift Reaction for Hydrogen Production, Energy, 68, 248-254.
  • Liu Z., Peng W., Motahari-Nezhad M., Shahraki S. and Beheshti M., 2016, Circulating fluidized bed gasification of biomass for flexible end-use of syngas: a micro and nano scale study for production of bio-methanol, J. Clean. Prod.,129:249-255.
  • Lobachyov K., V., Richter H., J., 1998, An advanced integrated biomass gasification and molten fuel cell power system, Eng. Convers. Manag., 39(16-18), 1931-1943.
  • Lopez G., Artetxe M., Amutio M., Alvarez J. Bilbao J. and Olazar M., 2018, Recent Advances in the Gasification of Waste Plastics- A Critical Overview, Ren. Sust. Energ Rev., 82,576-596.
  • Mastral F. J., Esperanza E., Berrueco C., Juste M., and Ceamanos J., 2003, Fluidized Bed Thermal Degradation Products of HDPE in an Inert Atmosphere and in Air-nitrogen Mixtures. J. Anal. Appl. Pyrolysis, 70, 1-17.
  • Moya D., Aldas C., Jaramillo D., Jativa E. and Kaparaju P., 2017, Waste-to-Energy Technologies: an opportunity of energy recovery from manucipal solid waste using Quito-Ecuador as case study, Procedia Eng., 134, 327-336.
  • Özbayoğlu A. M., Kasnakoğlu C., Güngör A., Bıyıkoğlu A., ve Uysal, B. Z., 2013, Sentez Gazı Elde Etmek için Kontrol Edilebilir Reaktör Parametrelerine Bağlı Geliştirilen İki Aşamalı Bir Su Gazı Yönlendirme Reaktörü Modeli, J. Fac. Eng. Archit. Gaz., 28(2), 339-351. Öztan H., Uysal Zıraman D., Doğan Ö. M. and Uysal B. Z., 2020, Production of Hydrogen-Rich Syngas in a Fluidized Bed, 10th Int. 100% Renewable Energy Conference, İstanbul, 133-142.
  • Öztürk S., 2020, The effects of CO2, H2O, and N2 dilutions on pollutants of shale gas combustion, Isı Bilim. Teknik. Derg., 40(1), 15-25.
  • Pinto F., André R. N., Franco C., Lopes H., Gulyurtlu I., and Cabrita I., 2009, Co-gasification of coal and wastes in a pilot-scale installation 1: Effect of catalysts in syngas treatment to achieve tar abatement. Fuel, 88(12), 2392–2402.
  • Ramos A., Monteiro E., Silva V., and Rouboa A., 2018, Co-gasification and recent developments on waste-to-energy conversion: A review. Ren. Sust. Energ. Rev., 81, 380–398.
  • Straka P. and Bucko Z., 2009, Co-gasification of a Lignite/Waste-Tyre Mixture in a Moving Bed. Fuel Proces. Technol., 90, 1202-6.
  • Toraman Ö., Y. ve Uçurum M., 2009, Alternatif fosil enerji kaynağı: bitümlü şeyl, TÜBAV Bilim Dergisi, 2(1), 37-46. Türkiye Kömür İşletmeleri Kurumu (TKİ), 2010, Kömür sektör raporu (linyit), Türkiye Kömür İşletmeleri Kurumu, Ankara, 1-12.
  • Upadhyay D. S., Panchal K. R., Skhiya A. K. and Patel R. N., 2020, Air-steam Gasification of Lignite in a Fixed Bed Gasifier: Influence of Steam to Lignite Ratio on Performance of Downdraft Gasifier, Energy, 211, 118187.
  • Uysal D., Doğan Ö., M., ve Uysal B., Z., 2013, Soma Linyitinin Su Buharı Gazlaştırmasıyla Sentez Gazı Üretimi, ULIBTK'13 19. Isı Bilimi ve Tekniği Kongresi, Samsun.
  • Vural E. S., Uysal B. Z., ve Doğan Ö. M., 2014, Soma-Eynez Linyitinden Su Buharı Gazlaştırmasıyla Hidrojen İçeriği Yüksek Sentez Gazı Üretimi, 11. Ulusal Kimya Mühendisliği Kongresi, Eskişehir.
  • Wie J., Zhong W., Jin B., Shao Y. and Liu H., 2012, Simulation on Gasification of Forestry Residues in Fluidized Beds by Eulerian- Lagrangian Approach. Bioresour. Technol., 121, 36-46.
  • Win M. M., Asari M., Hayakawa R., Hosada H., Yano J. and Sakai S., 2019, Characteristics of Gas from the Fluidized Bed Gasification of Refuse Paper and Plastic Fuel (RPF) and Wood Biomass, Waste Manage., 87, 178.
  • Wong S.L., Ngadi N., Abdullah TAT and Inuwa I. M., 2015, Current State and Future Prospects of Plastic Wastes as Source of Fuel: a review, Ren. Sust. Energ. Rev., 50, 1167-80.
  • Xiao R., Jin ., Zhou H., Zhong Z. and Zhang M., 2007, Air Gasificaion of Polypropylene Plastic Waste in Fluidized Bed Gasifier. Energ. Convers. Manag., 48,778-86.
  • Zhang Y., Gong X., Zhang B., Liu W. and Xu,M., 2014, Potassium Catalytic Hydrogen Production in Sorption Enhanced Gasification of Biomass With Steam, Int. J. Hydrog. Energ., 39, 4234-42.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Duygu Uysal This is me

Hazal Öztan This is me

Ahmed Abdullah Gafur This is me

Özkan Murat Doğan This is me

Publication Date October 31, 2022
Published in Issue Year 2022 Volume: 42 Issue: 2

Cite

APA Uysal, D., Öztan, H., Gafur, A. A., Doğan, Ö. M. (2022). HİMMETOĞLU VE SEYİTÖMER BİTÜMLÜ ŞEYLLERİ İLE PLASTİK ŞEHİR ATIKLARININ KABARCIKLI AKIŞKAN YATAKLI REAKTÖRDE GAZLAŞTIRILMASI. Isı Bilimi Ve Tekniği Dergisi, 42(2), 257-268. https://doi.org/10.47480/isibted.1195027