Research Article
BibTex RIS Cite

DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ

Year 2024, Volume: 44 Issue: 1, 33 - 45, 03.06.2024
https://doi.org/10.47480/isibted.1494022

Abstract

Bu çalışmada dönen patlama motorundaki patlama dalgası yapısı ve itki performansı sayısal olarak incelenmiştir. Sayısal çalışmalar iki aşamada gerçekleştirilmiştir. İlk olarak deneysel ve sayısal verilerin yer aldığı referans çalışmaya yönelik doğrulama çalışmaları tamamlanmıştır. Deneysel çalışmalarda hidrojen 0.8 mm çapındaki 90 enjektörden, hava ise 0.4 mm genişliğindeki aralıktan patlama kanalına aktarılmaktadır. Referans sayısal çalışmada yer verildiği üzere tek basamaklı tersinmez hidrojen-hava mekanizması doğrulama çalışmalarında kullanılmıştır. Doğrulama analizleri sonrasında patlama dalgasının detaylı olarak incelenebilmesi için 19 basamaklı tersinmez hidrojen-hava reaksiyon mekanizması sayısal çalışmalara tanımlanmıştır. Sayısal çalışmalarda daimi olmayan yoğunluğa dayalı çözücü kullanılmıştır. İkinci aşamada patlama dalga yapısı ve dönen patlama motorunun itki performansı araştırılmıştır. Sonuç olarak patlama dalgasının 1.1 ms sonrasında kararlı yapıya ulaşabildiği belirlenmiştir. Değişen blokaj oranı nedeniyle t=1.1 ms öncesinde patlama dalgası yüksekliği sabit kalmamıştır. Kararlı patlama dalgası yüksekliğinin tek basamaklı ve 19 basamaklı çalışmalarında sırasıyla 29 mm ve 27 mm olduğu tespit edilmiştir. Patlama kanalı çıkışındaki itki dağılımının kararlı patlama dalgası ile neredeyse sabit olduğu belirlenmiş ve itki değerinde 678.7±2.3 N aralığında salınımların meydana geldiği gözlemlenmiştir.

References

  • Alam, N., Sharma, K. K., Pandey, K. M., 2019, Combustion characteristics of hydrogen-air mixture in pulse detonation engines, Journal of Mechanical Science and Technology, 33(5), 2451-2457, doi:10.1007/s12206-019-0442-7
  • Bach, E., Oliver Paschereit, C., Stathopoulos, P., Bohon, M. D., 2021, An empirical model for stagnation pressure gain in rotating detonation combustors, Proceedings of the Combustion Institute, 38(3), 3807-3814, doi.org/10.1016/j.proci.2020.07.071
  • Bigler, B. R., Paulson, E. J., Hargus, W. A., 2017, Idealized Efficiency Calculations for Rotating Detonation Engine Rocket Applications, AIAA Propulsion and Energy Forum, doi: 10.2514/6.2017-5011
  • Chen, Y., Liu, X., Wang J., 2018, Influences of Separate Injectors on Rotating Detonation Engines, 2018 Joint Propulsion Conference, doi:10.2514/6.2018-4785
  • Choi, J. Y., Jeung, I. S., Yoon, Y., 2000, Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation. AIAA Journal, 38(7), 1179–1187, doi:10.2514/2.1112
  • Driscoll, R., Stoddard, W., George, A. S., Gutmark E., 2015, Shock Transfer and Shock-Initiated Detonation in a Dual Pulse Detonation Engine/Crossover System, AIAA Journal, 53, 132–139, doi:10.2514/1.j053027
  • Escobar, S., Pakalapati, S. R., Celik, I., Ferguson, D. Strakey, P., 2013, Numerical Investigation of Rotating Detonation Combustion in Annular Chambers, Volume 1A: Combustion, Fuels and Emissions, doi:10.1115/gt2013-94918
  • Ettner, F., Vollmer, K. G., Sattelmayer, T., 2014, Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures, Journal of Combustion, 2014, 1–15, doi:10.1155/2014/686347
  • Heidari, A., Ferraris, S., Wen, J. X., Tam, V. H. Y., 2011, Numerical simulation of large scale hydrogen detonation, International Journal of Hydrogen Energy, 36, 2538–2544, doi:10.1016/j.ijhydene.2010.05.09
  • Ladeinde, F., Oh, H., Jacobs, S., 2023, Supersonic combustion heat flux in a rotating detonation engine, Acta Astronautica, 203, 226-245, doi.org/10.1016/j.actaastro.2022.11.044
  • Lee J. H. S., 2010, The detonation Phenomenon, Cambridge University Press.
  • Lei, Z., Yang, X., Ding, J., Weng, P., Wang, X., 2020, Performance of rotating detonation engine with stratified injection, Journal of Zhejiang University-SCIENCE A, 21, 734–744, doi:10.1631/jzus.a1900383
  • Lietz, C., Ross, M., Desai, Y., Hargus, W. A., 2020, Numerical investigation of operational performance in a methane-oxygen rotating detonation rocket engine, AIAA Scitech 2020 Forum, doi:10.2514/6.2020-0687
  • Liu, S.J., Lin, Z. Y., Liu, W. D., Lin, W., Sun, M.B., 2012, Experimental and three-dimensional numerical investigations on H2/air continuous rotating detonation wave, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227, 326–341, doi:10.1177/0954410011433542
  • Lu, F. K., Braun, E. M., 2014, Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts, Journal of Propulsion and Power, 30, 1125–1142, doi:10.2514/1.b34802
  • Ma, F., Choi, J. Y., Yang, V., 2005, Thrust Chamber Dynamics and Propulsive Performance of Single-Tube Pulse Detonation Engines, Journal of Propulsion and Power, 21, 512–526, doi:10.2514/1.7393
  • Ma, J. Z., Luan, M. Y., Xia, Z. J., Wang, J. P., Zhang, S., Yao, S., Wang, B., 2020, Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines, AIAA Journal, 58, 4976–5035, doi:10.2514/1.j058157
  • Ma, Z., Zhang, S., Luan, M., Yao, S., Xia Z., Wang, J., 2018, Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine, International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.2018.08.06
  • Melguizo-Gavilanes, J., Rezaeyan, N., Tian, M., Bauwens, L., 2011, Shock-induced ignition with single step Arrhenius kinetics, International Journal of Hydrogen Energy, 36, 2374–2380, doi:10.1016/j.ijhydene.2010.04.13
  • Ó Conaire, M., Curran, H. J., Simmie, J. M., Pitz ,W. J., Westbrook , C. K., 2004, A comprehensive modeling study of hydrogen oxidation, International Journal of Chemical Kinetics, 36, 603–622, doi:10.1002/kin.20036
  • Prakash, S., Raman, V., Lietz, C., Hargus, W. A., Schumaker, S. A., 2020, High Fidelity Simulations of a Methane-Oxygen Rotating Detonation Rocket Engine, AIAA Scitech 2020 Forum, doi:10.2514/6.2020-0689
  • Sato, T., Raman, V, 2020, Detonation Structure in Ethylene/Air-Based Non-Premixed Rotating Detonation Engine, Journal of Propulsion and Power, 36, 1–11, doi:10.2514/1.b37664
  • Shao, Y-T, Liu, M., Wang, JP., 2010, Numerical investigation of rotating detonation engine propulsive performance, Combustion Science and Technology, 182, 1586–1597, doi:10.1080/00102202.2010.497316
  • Schauer, F., Miser, C., Tucker, C., Bradley, R., Hokell, J., 2005, Detonation Initiation of Hydrocarbon-Air Mixtures in a Pulsed Detonation Engine, 43rd AIAA Aerospace Sciences Meeting and Exhibit, doi:10.2514/6.2005-1343
  • Schwer, D., Kailasanath, K., 2011, Effect of Inlet on Fill Region and Performance of Rotating Detonation Engines, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, doi:10.2514/6.2011-6044
  • Strempfl, P., Dounia, O., Laera, D., Poinsot, T., 2024, Effects of mixing assumptions and models for LES of Hydrogen-fueled Rotating Detonation Engines, International Journal of Hydrogen Energy, 62, 1-16, doi.org/10.1016/j.ijhydene.2024.03.033
  • Su, L., Wen, F., Wang, S., Wang, Z., 2022, Analysis of energy saving and thrust characteristics of rotating detonation turbine engine, Aerospace Science and Technology, 124, 107555, doi.org/10.1016/j.ast.2022.107555
  • Sun, J., Zhou, J., Liu, S., Lin, Z., Lin W., 2018, Plume flowfield and propulsive performance analysis of a rotating detonation engine, Aerospace Science and Technology, 81, 383-393, doi:10.1016/j.ast.2018.08.024
  • Sun, J., Zhou, J., Liu, S., Lin, Z., Lin, W., 2019a, Effects of air injection throat width on a non-premixed rotating detonation engine, Acta Astronautica, 159, 189–198, doi:10.1016/j.actaastro.2019.03.0
  • Sun, J., Zhou, J., Liu, S., Lin, Z., 2019b, Interaction between Rotating Detonation Wave Propagation and Reactant Mixing, Acta Astronautica, 164, 197-203, doi:10.1016/j.actaastro.2019.08.0
  • Vignat, G., Brouzet, D., Bonanni, M., Ihme, M., 2024, Analysis of weak secondary waves in a rotating detonation engine using large-eddy simulation and wavenumber-domain filtering, Combustion and Flame, 263, 113387, doi.org/10.1016/j.combustflame.2024.113387
  • Wang, C., Liu, W., Liu, S., Jiang, L., Lin, Z., 2015, Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen, International Journal of Hydrogen Energy, 40, 9530–9538, doi:10.1016/j.ijhydene.2015.05.06
  • Wang, F., Weng, C., Wu, Y., Bai, Q., Zheng, Q., Xu H., 2020, Numerical research on kerosene/air rotating detonation engines under different injection total temperatures, Aerospace Science and Technology, 105899, doi:10.1016/j.ast.2020.105899
  • Wang, F., Weng, C., 2022, Numerical research on two-phase kerosene/air rotating detonation engines, Acta Astronautica, 192, 199-209, doi.org/10.1016/j.actaastro.2021.12.026.
  • Wescott, B. L., Stewart, D. S., Bdzil, J. B., 2004, On Self-Similarity of Detonation Diffraction, Physics of Fluids, 16, 373–384, doi:10.1063/1.1633552
  • Wu, D., Liu, Y., Liu, Y., Wang, J., 2014, Numerical investigations of the restabilization of hydrogen–air rotating detonation engines, International Journal of Hydrogen Energy, 39, 15803–15809, doi:10.1016/j.ijhydene.2014.07.15
  • Xia, Z.-J., Sheng, Z. H., Shen, D. W., Wang, J. P., 2021, Numerical investigation of pre-detonator in rotating detonation engine, International Journal of Hydrogen Energy, 46(61), 31428–31438, doi.org/10.1016/j.ijhydene.2021.07.013
  • Yan, C., Teng, H., Ng, H. D., 2021, Effects of slot injection on detonation wavelet characteristics in a rotating detonation engine, Acta Astronautica, 182, 274–285, doi.org/10.1016/j.actaastro.2021.02.010
  • Yi, T. H., Turangan, C., Lou, J., Wolanski, P., Kindracki, J., 2009, A Three-Dimensional Numerical Study of Rotational Detonation in an Annular Chamber, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, doi:10.2514/6.2009-634
  • Yi, T. H., Lou, J., Turangan, C., Choi, J.Y., Wolanski P, 2011, Propulsive Performance of a Continuously Rotating Detonation Engine, Journal of Propulsion and Power, 27, 171–181, doi:10.2514/1.46686
  • Yu, J., Yao, S., Li, J., Li, J., Guo, C., Zhang, W., 2023, Numerical investigation of the rotating detonation engine with cat-ear-shaped film cooling holes under varying operating modes, Aerospace Science and Technology, 142, 108462, doi.org/10.1016/j.ast.2023.108642
  • Zhang, L. F., Zhang, S. J., Ma, Z., Luan, M. Y., Wang, J.P., 2019, Three-dimensional numerical study on rotating detonation engines using reactive Navier-Stokes equations, Aerospace Science and Technology, 93, 1-10, doi:10.1016/j.ast.2019.07.004
  • Zhao, M., Zhang, H., 2020, Large eddy simulation of non-reacting flow and mixing fields in a rotating detonation engine, Fuel, 280, 1-16, doi:10.1016/j.fuel.2020.118534
  • Zhang, S., Ma, J. Z., Wang, J., 2020, Theoretical and Numerical Investigation on Total Pressure Gain in Rotating Detonation Engine, AIAA Journal, 58, 1–12, doi:10.2514/1.j059259
  • Zhang, S., Yao, S., Luan, M., Zhang, L., Wang, J., 2018, Effects of injection conditions on the stability of rotating detonation waves, Shock Waves, 28, 1079-1087, doi:10.1007/s00193-018-0854-9
  • Zheng, H., Meng, Q., Zhao, N., Li, Z., Deng, F., 2020, Numerical investigation on H2/Air non-premixed rotating detonation engine under different equivalence ratios, International Journal of Hydrogen Energy, 45, 2289–2307, doi:10.1016/j.ijhydene.2019.11.01
Year 2024, Volume: 44 Issue: 1, 33 - 45, 03.06.2024
https://doi.org/10.47480/isibted.1494022

Abstract

References

  • Alam, N., Sharma, K. K., Pandey, K. M., 2019, Combustion characteristics of hydrogen-air mixture in pulse detonation engines, Journal of Mechanical Science and Technology, 33(5), 2451-2457, doi:10.1007/s12206-019-0442-7
  • Bach, E., Oliver Paschereit, C., Stathopoulos, P., Bohon, M. D., 2021, An empirical model for stagnation pressure gain in rotating detonation combustors, Proceedings of the Combustion Institute, 38(3), 3807-3814, doi.org/10.1016/j.proci.2020.07.071
  • Bigler, B. R., Paulson, E. J., Hargus, W. A., 2017, Idealized Efficiency Calculations for Rotating Detonation Engine Rocket Applications, AIAA Propulsion and Energy Forum, doi: 10.2514/6.2017-5011
  • Chen, Y., Liu, X., Wang J., 2018, Influences of Separate Injectors on Rotating Detonation Engines, 2018 Joint Propulsion Conference, doi:10.2514/6.2018-4785
  • Choi, J. Y., Jeung, I. S., Yoon, Y., 2000, Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation. AIAA Journal, 38(7), 1179–1187, doi:10.2514/2.1112
  • Driscoll, R., Stoddard, W., George, A. S., Gutmark E., 2015, Shock Transfer and Shock-Initiated Detonation in a Dual Pulse Detonation Engine/Crossover System, AIAA Journal, 53, 132–139, doi:10.2514/1.j053027
  • Escobar, S., Pakalapati, S. R., Celik, I., Ferguson, D. Strakey, P., 2013, Numerical Investigation of Rotating Detonation Combustion in Annular Chambers, Volume 1A: Combustion, Fuels and Emissions, doi:10.1115/gt2013-94918
  • Ettner, F., Vollmer, K. G., Sattelmayer, T., 2014, Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures, Journal of Combustion, 2014, 1–15, doi:10.1155/2014/686347
  • Heidari, A., Ferraris, S., Wen, J. X., Tam, V. H. Y., 2011, Numerical simulation of large scale hydrogen detonation, International Journal of Hydrogen Energy, 36, 2538–2544, doi:10.1016/j.ijhydene.2010.05.09
  • Ladeinde, F., Oh, H., Jacobs, S., 2023, Supersonic combustion heat flux in a rotating detonation engine, Acta Astronautica, 203, 226-245, doi.org/10.1016/j.actaastro.2022.11.044
  • Lee J. H. S., 2010, The detonation Phenomenon, Cambridge University Press.
  • Lei, Z., Yang, X., Ding, J., Weng, P., Wang, X., 2020, Performance of rotating detonation engine with stratified injection, Journal of Zhejiang University-SCIENCE A, 21, 734–744, doi:10.1631/jzus.a1900383
  • Lietz, C., Ross, M., Desai, Y., Hargus, W. A., 2020, Numerical investigation of operational performance in a methane-oxygen rotating detonation rocket engine, AIAA Scitech 2020 Forum, doi:10.2514/6.2020-0687
  • Liu, S.J., Lin, Z. Y., Liu, W. D., Lin, W., Sun, M.B., 2012, Experimental and three-dimensional numerical investigations on H2/air continuous rotating detonation wave, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227, 326–341, doi:10.1177/0954410011433542
  • Lu, F. K., Braun, E. M., 2014, Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts, Journal of Propulsion and Power, 30, 1125–1142, doi:10.2514/1.b34802
  • Ma, F., Choi, J. Y., Yang, V., 2005, Thrust Chamber Dynamics and Propulsive Performance of Single-Tube Pulse Detonation Engines, Journal of Propulsion and Power, 21, 512–526, doi:10.2514/1.7393
  • Ma, J. Z., Luan, M. Y., Xia, Z. J., Wang, J. P., Zhang, S., Yao, S., Wang, B., 2020, Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines, AIAA Journal, 58, 4976–5035, doi:10.2514/1.j058157
  • Ma, Z., Zhang, S., Luan, M., Yao, S., Xia Z., Wang, J., 2018, Experimental research on ignition, quenching, reinitiation and the stabilization process in rotating detonation engine, International Journal of Hydrogen Energy, doi:10.1016/j.ijhydene.2018.08.06
  • Melguizo-Gavilanes, J., Rezaeyan, N., Tian, M., Bauwens, L., 2011, Shock-induced ignition with single step Arrhenius kinetics, International Journal of Hydrogen Energy, 36, 2374–2380, doi:10.1016/j.ijhydene.2010.04.13
  • Ó Conaire, M., Curran, H. J., Simmie, J. M., Pitz ,W. J., Westbrook , C. K., 2004, A comprehensive modeling study of hydrogen oxidation, International Journal of Chemical Kinetics, 36, 603–622, doi:10.1002/kin.20036
  • Prakash, S., Raman, V., Lietz, C., Hargus, W. A., Schumaker, S. A., 2020, High Fidelity Simulations of a Methane-Oxygen Rotating Detonation Rocket Engine, AIAA Scitech 2020 Forum, doi:10.2514/6.2020-0689
  • Sato, T., Raman, V, 2020, Detonation Structure in Ethylene/Air-Based Non-Premixed Rotating Detonation Engine, Journal of Propulsion and Power, 36, 1–11, doi:10.2514/1.b37664
  • Shao, Y-T, Liu, M., Wang, JP., 2010, Numerical investigation of rotating detonation engine propulsive performance, Combustion Science and Technology, 182, 1586–1597, doi:10.1080/00102202.2010.497316
  • Schauer, F., Miser, C., Tucker, C., Bradley, R., Hokell, J., 2005, Detonation Initiation of Hydrocarbon-Air Mixtures in a Pulsed Detonation Engine, 43rd AIAA Aerospace Sciences Meeting and Exhibit, doi:10.2514/6.2005-1343
  • Schwer, D., Kailasanath, K., 2011, Effect of Inlet on Fill Region and Performance of Rotating Detonation Engines, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, doi:10.2514/6.2011-6044
  • Strempfl, P., Dounia, O., Laera, D., Poinsot, T., 2024, Effects of mixing assumptions and models for LES of Hydrogen-fueled Rotating Detonation Engines, International Journal of Hydrogen Energy, 62, 1-16, doi.org/10.1016/j.ijhydene.2024.03.033
  • Su, L., Wen, F., Wang, S., Wang, Z., 2022, Analysis of energy saving and thrust characteristics of rotating detonation turbine engine, Aerospace Science and Technology, 124, 107555, doi.org/10.1016/j.ast.2022.107555
  • Sun, J., Zhou, J., Liu, S., Lin, Z., Lin W., 2018, Plume flowfield and propulsive performance analysis of a rotating detonation engine, Aerospace Science and Technology, 81, 383-393, doi:10.1016/j.ast.2018.08.024
  • Sun, J., Zhou, J., Liu, S., Lin, Z., Lin, W., 2019a, Effects of air injection throat width on a non-premixed rotating detonation engine, Acta Astronautica, 159, 189–198, doi:10.1016/j.actaastro.2019.03.0
  • Sun, J., Zhou, J., Liu, S., Lin, Z., 2019b, Interaction between Rotating Detonation Wave Propagation and Reactant Mixing, Acta Astronautica, 164, 197-203, doi:10.1016/j.actaastro.2019.08.0
  • Vignat, G., Brouzet, D., Bonanni, M., Ihme, M., 2024, Analysis of weak secondary waves in a rotating detonation engine using large-eddy simulation and wavenumber-domain filtering, Combustion and Flame, 263, 113387, doi.org/10.1016/j.combustflame.2024.113387
  • Wang, C., Liu, W., Liu, S., Jiang, L., Lin, Z., 2015, Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen, International Journal of Hydrogen Energy, 40, 9530–9538, doi:10.1016/j.ijhydene.2015.05.06
  • Wang, F., Weng, C., Wu, Y., Bai, Q., Zheng, Q., Xu H., 2020, Numerical research on kerosene/air rotating detonation engines under different injection total temperatures, Aerospace Science and Technology, 105899, doi:10.1016/j.ast.2020.105899
  • Wang, F., Weng, C., 2022, Numerical research on two-phase kerosene/air rotating detonation engines, Acta Astronautica, 192, 199-209, doi.org/10.1016/j.actaastro.2021.12.026.
  • Wescott, B. L., Stewart, D. S., Bdzil, J. B., 2004, On Self-Similarity of Detonation Diffraction, Physics of Fluids, 16, 373–384, doi:10.1063/1.1633552
  • Wu, D., Liu, Y., Liu, Y., Wang, J., 2014, Numerical investigations of the restabilization of hydrogen–air rotating detonation engines, International Journal of Hydrogen Energy, 39, 15803–15809, doi:10.1016/j.ijhydene.2014.07.15
  • Xia, Z.-J., Sheng, Z. H., Shen, D. W., Wang, J. P., 2021, Numerical investigation of pre-detonator in rotating detonation engine, International Journal of Hydrogen Energy, 46(61), 31428–31438, doi.org/10.1016/j.ijhydene.2021.07.013
  • Yan, C., Teng, H., Ng, H. D., 2021, Effects of slot injection on detonation wavelet characteristics in a rotating detonation engine, Acta Astronautica, 182, 274–285, doi.org/10.1016/j.actaastro.2021.02.010
  • Yi, T. H., Turangan, C., Lou, J., Wolanski, P., Kindracki, J., 2009, A Three-Dimensional Numerical Study of Rotational Detonation in an Annular Chamber, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, doi:10.2514/6.2009-634
  • Yi, T. H., Lou, J., Turangan, C., Choi, J.Y., Wolanski P, 2011, Propulsive Performance of a Continuously Rotating Detonation Engine, Journal of Propulsion and Power, 27, 171–181, doi:10.2514/1.46686
  • Yu, J., Yao, S., Li, J., Li, J., Guo, C., Zhang, W., 2023, Numerical investigation of the rotating detonation engine with cat-ear-shaped film cooling holes under varying operating modes, Aerospace Science and Technology, 142, 108462, doi.org/10.1016/j.ast.2023.108642
  • Zhang, L. F., Zhang, S. J., Ma, Z., Luan, M. Y., Wang, J.P., 2019, Three-dimensional numerical study on rotating detonation engines using reactive Navier-Stokes equations, Aerospace Science and Technology, 93, 1-10, doi:10.1016/j.ast.2019.07.004
  • Zhao, M., Zhang, H., 2020, Large eddy simulation of non-reacting flow and mixing fields in a rotating detonation engine, Fuel, 280, 1-16, doi:10.1016/j.fuel.2020.118534
  • Zhang, S., Ma, J. Z., Wang, J., 2020, Theoretical and Numerical Investigation on Total Pressure Gain in Rotating Detonation Engine, AIAA Journal, 58, 1–12, doi:10.2514/1.j059259
  • Zhang, S., Yao, S., Luan, M., Zhang, L., Wang, J., 2018, Effects of injection conditions on the stability of rotating detonation waves, Shock Waves, 28, 1079-1087, doi:10.1007/s00193-018-0854-9
  • Zheng, H., Meng, Q., Zhao, N., Li, Z., Deng, F., 2020, Numerical investigation on H2/Air non-premixed rotating detonation engine under different equivalence ratios, International Journal of Hydrogen Energy, 45, 2289–2307, doi:10.1016/j.ijhydene.2019.11.01
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Internal Combustion Engines
Journal Section Research Article
Authors

Osman Kocaaslan 0000-0002-7848-6974

Kürşad Melih Güleren 0000-0003-3464-7956

Bayındır Hüseyin Saracoğlu This is me 0000-0002-3961-3555

Tolga Yasa 0000-0002-7242-2507

Publication Date June 3, 2024
Published in Issue Year 2024 Volume: 44 Issue: 1

Cite

APA Kocaaslan, O., Güleren, K. M., Saracoğlu, B. H., Yasa, T. (2024). DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ. Isı Bilimi Ve Tekniği Dergisi, 44(1), 33-45. https://doi.org/10.47480/isibted.1494022
AMA Kocaaslan O, Güleren KM, Saracoğlu BH, Yasa T. DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ. Isı Bilimi ve Tekniği Dergisi. June 2024;44(1):33-45. doi:10.47480/isibted.1494022
Chicago Kocaaslan, Osman, Kürşad Melih Güleren, Bayındır Hüseyin Saracoğlu, and Tolga Yasa. “DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ”. Isı Bilimi Ve Tekniği Dergisi 44, no. 1 (June 2024): 33-45. https://doi.org/10.47480/isibted.1494022.
EndNote Kocaaslan O, Güleren KM, Saracoğlu BH, Yasa T (June 1, 2024) DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ. Isı Bilimi ve Tekniği Dergisi 44 1 33–45.
IEEE O. Kocaaslan, K. M. Güleren, B. H. Saracoğlu, and T. Yasa, “DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ”, Isı Bilimi ve Tekniği Dergisi, vol. 44, no. 1, pp. 33–45, 2024, doi: 10.47480/isibted.1494022.
ISNAD Kocaaslan, Osman et al. “DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ”. Isı Bilimi ve Tekniği Dergisi 44/1 (June 2024), 33-45. https://doi.org/10.47480/isibted.1494022.
JAMA Kocaaslan O, Güleren KM, Saracoğlu BH, Yasa T. DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ. Isı Bilimi ve Tekniği Dergisi. 2024;44:33–45.
MLA Kocaaslan, Osman et al. “DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ”. Isı Bilimi Ve Tekniği Dergisi, vol. 44, no. 1, 2024, pp. 33-45, doi:10.47480/isibted.1494022.
Vancouver Kocaaslan O, Güleren KM, Saracoğlu BH, Yasa T. DÖNEN PATLAMA MOTORLARINDAKİ OLUŞAN DALGA YAPISININ SAYISAL OLARAK İNCELENMESİ. Isı Bilimi ve Tekniği Dergisi. 2024;44(1):33-45.