Research Article
BibTex RIS Cite

Metacognitive Self-Regulation Scale: The reliability and validity study of the Turkish Form

Year 2017, Volume: 37 Issue: 1, 53 - 71, 03.12.2017

Abstract








The aim of this study is to test the validity and reliability of the Turkish form of Inventory
of Metacognitive Self Regulation (IMSR), developed by Howard, McGee, Shia and Hong
(2000) for assessing students’ awareness of their metacognitive self regulation abilities
on mathematical and science problem solving process. Confirmatory Factor Analysis was
used to investigate the factor structure of the scale. It is understood that the model fits the
five-factor structure of the original scale. According to
t-test results difference in total scale
scores between the upper 27% and the lower 27% group was significant. For reliability,
test-retest correlation and Cronbach Alpha coefficients were calculated. Results showed
that the Turkish form of IMSR is a reliable and valid tool for 12-14 years old students. 




References

  • Altun, M. (2000). Matematik öğretimi. Bursa: Alfa. (8.Baskı).
  • Altun, S. & Erden, M. (2007). Ögrenmede motive edici stratejiler ölçeğinin geçerlik ve güvenilirlik çalışması. Edu7, 2(3), 1-16.
  • Ay, Z.S. & Bulut, S. (2017). Üst bilişsel sorgulamaya dayalı problem çözme yaklaşımının öz-düzenleme becerilerine etkisinin araştırılması. İlköğretim Online, 16(2), 547-565.
  • Borkowski, J. G. (1992). Metacognitive theory: A framework for teaching literacy, writing, and mathematics. Journal of Learning Disabilities, 25 (4), 253-257.
  • Brunning, R. H., Schraw, G. J., Norby, M. M., & Ronning, R. R. (2003). Cognitive psychology and instruction (4th Edition). USA: Pearson Merrill Prentice Hall.
  • Büyüköztürk, Ş., Akgün, Ö. E., Özkahveci, Ö. & Demirel, F. (2004). Güdülenme ve Öğrenme Stratejileri Ölçeği’nin Türkçe formunun geçerlik ve güvenirlik çalışması. Kuram Ve Uygulamada Eğitim Bilimleri, 4, 207-239.
  • Büyüköztürk, Ş. (2004). Sosyal bilimler için veri analizi el kitabı. Ankara: PegemA. (4.Baskı).
  • Campione, J. C., Brown, A. L. & Connell. M. L. (1989). Metacognition: On the importance of understanding what you are doing. Charles, R. I. & Silver, E. A. (Eds.), The teaching and assesing of mathematical problem solving. NCTM research agenda for mathematics volume 3. (pp.93-114). Virginia: NCTM and LEA.
  • Çelik, E. (2012). Matematik problemi çözme başarısı ile üstbilişsel özdüzenleme, matematik özyeterlik ve özdeğerlendirme kararlarının doğruluğu arasındaki ilişkinin incelenmesi. (Yayınlanmamış doktora tezi). Marmara Üniversitesi, İstanbul.
  • Davidson, J. E., & Sternberg, R. J. (1998). Smart problem solving: How metacognition helps. In Hacker, D. J., Dunlosky, J., & Graesser, A. C. (Eds.), Metacognition in educational theory and practice (pp. 47-68). New Jersey: Lawrance Erlbaum Associates, Publishers.
  • Dennison, R. S., Krawchuk, C. M., Howard, B. C., & Hill, L. (1996). The development of a children's self-report measure of metacognition. Paper presented at the annual meeting of the American Educational Research Association. New York.
  • Desoete, A., Roeyers, H., & Buysee., A. (2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disabilities, 34 (5), 435-449.
  • Erkuş, A. (2005). Bilimsel araştırma sarmalı. Ankara: Seçkin Yayıncılık. (1. Baskı).
  • Erturan-İlker G., Arslan Y. & Demirhan, G. (2014). A validity and reliability study of the Motivated Strategies for Learning Questionnaire. Educational Sciences: Theory & Practice 14(3), 829-833.
  • Fadlelmula, F. K. (2010). Mathematical problem solving and self-regulated learning.The International Journal of Learning, 17 (3), 363-372.
  • Ferrari, M., & Sternberg, R. J. (2000). The development of mental abilities and styles. In Kuhn, D., & Siegler, R. S. (Eds.), Handbook of Child Psychology (pp. 909-915). New York: John Wiley & Sons, Inc.
  • Fitzpatrick, C. (1994). Adolescent mathematical problem solving: The role of metacognition, strategies and beliefs. Paper presented at The Annual Meeting of the American Educational Research Association. New Orleans. [ERIC Ed 374969].
  • Fortunato, I., Hecth, D., Tittle, C. K., & Alvarez, L. (1991). Metacognition and problem solving. The Arithmetic Teacher, 39 (4), 38-40.
  • Flavel, J. H. (1987). Speculations about the nature and development of metacognition. In Weinert, F. E., & Kluwe, R. H. (Eds.), Metacognition, motivation, and understanding (pp. 21-29). New Jersey: Lawrance Erlbaum Associates, Publishers.
  • Garofalo, J., & Lester, F. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16 (3), 163-176.
  • Goldman, S., & Hasselbring, T. (1997). Achieving meaningful mathematics literacy for students with learning disabilities. Journal of Learning Disabilities, 30(2), 198–208.
  • Harmon, M. (1993). The role of strategies and knowledge in problem solving: A review of the literature. [ERIC Ed 366640].
  • Harmon, M. G., & Morse, L. W. (1995). Strategies and knowledge in problem solving: Results and implication for education. Problem Solving Education, 115 (4), 580-588.
  • Howard, B., McGee, S., Shia, R., & Hong, N. (2000). Metacognitive self-regulation and problem solving: expanding the theory base through factor analysis. Paper presented at The Annual Meeting of the American Educational Research Association. New Orleans. [ERIC Ed 470973].
  • Howard, B., McGee, S., Shia, R., & Hong, N. (2001). The influence of metacognitive self-regulation and ability levels on problem solving. Paper presented at The Annual Meeting of the American Educational Research Association. Seattle. [ERIC Ed 470974].
  • Lester, F. K. Jr. (1989). Reflections about mathematical problem-solving research. Charles, R. I. & Silver, E. A. (Eds.), The teaching and assesing of mathematical problem solving. NCTM research agenda for mathematics volume 3. (pp. 115-124). Virginia: NCTM and LEA.
  • Lester, F. K. Jr., Garofalo, J., & Kroll, D., L. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes (Final Report for National Science Foundation, Washington, D.C.). Bloomington: Indiana University. [ERIC Ed 314255].
  • Mayer, R. E. (2001). Cognitive, metacognitive, and motivational aspects of problem solving. In Hartman, H. J. (Ed.), Metacognition in learning and instruction: theory, research and practice (pp. 87-101). Netherlands: Kluwer Academic Publishers.
  • Mayer, R. (2003). Memory and information processes [Electronic version]. In Reynolds, W. M., & Miller, G. E. (Eds.), Handbook of Psychology Volume 7 (pp. 47-57). New Jersey: John Wiley & Sons, Inc.
  • Meijer, J., Veenman, M. V. J., & van Hout-Wolters, B. H. M. (2006). Metacognitive activities in text-studying and problem-solving: Development of a taxonomy. Educational Research and Evaluation, 12 (3), 209-237.
  • Montague, M. (2007). Self-regulation and mathematics instruction. Learning Disabilities Research & Practice, 22 (1), 75-83.
  • Montague, M. (2008). Self-regulation strategies to improve mathematical problem solving for students with learning disabilities. Learning Disability Quaterly, 31, 37-44.
  • Pajares, F. (1996). Self-efficacy beliefs and mathematical problem-solving of gifted students. Contemporary Educational Psychology, 21, 325-344.
  • Pajares, F., & Kranzler, J. (1995). Role of self-efficacy and general mental ability in mathematical problem-solving: A path analysis. Paper presented at The Annual Meeting of the American Educational Research. San Francisco. [ERIC Ed 387342].
  • Pape, S. J., & Smith, C. (2002). Self-regulating mathematics skills. Theory into Practice, 41(2), 93-101.
  • Pape, S. J., & Tchoshanov, M, A. (2001). The role of representation(s) in developing mathematical understanding. Theory into Practice, 40 (2), 118-127.
  • Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82 (1), 33-40.
  • Pintrich, P. R. (2002). Teaching role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41 (4), 219-225.
  • Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in collage students. Educational Psychology Review, 16 (4), 385-407.
  • Riley, M. S., Greeno, J. G., & Heller, J. I. (1984). Development of children’s problem solving ability in arithmetic [Electronic version]. In Ginsburg, H. (Ed.), The Development of Mathematical Thinking. Orlando: Academic Press, Inc.
  • Schraw, G. & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7 (4), 351-371.
  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111-139.
  • Schunk, D. H. (1991). Self-efficacy and academic motivation. Educational Psychologist, 26 (3&4), 207-231.
  • Schoenfeld, A. H. (1982). Expert and novice mathematical problem solving: Final project report and Appendices B-H. Washington: National Science Foundation. [ERIC Ed. 218124].
  • Schoenfeld, A. H. (1983). Beyond the purely cognitive: Belief systems, social cognitions, and metacognitions as driving forces in intellectual performance. Cognitive Science, 7, 323-363.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. Grouws, D. (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York: MacMillan.
  • Sipahi, B., Yurtkoru, E. S., & Çinko, M. (2008). Sosyal bilimlerde SPSS’le veri analizi. İstanbul: Beta. (2. Baskı)
  • Stanic, G., & Kilpatrick, J. (1989). Historical perspectives on problem solving in mathematics. In Charles, R. I. & Silver, E. A. (Eds.), The teaching and assesing of mathematical problem solving. NCTM research agenda for mathematics volume 3. (pp. 1-22). Virginia: NCTM and LEA.
  • Sümer, N. (2000) Yapısal eşitlik modelleri: Temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3 (6), 49 -74.
  • Şeker, H. & Gençdoğan, B. (2006). Psikolojide ve eğitimde ölçme aracı geliştirme.Ankara: Nobel.
  • Şen, Ş & Yılmaz, A. (2016). Devising A Structural Equation Model of Relationships between Preservice Teachers' Time and Study Environment Management, Effort Regulation, Self-efficacy, Control of Learning Beliefs, and Metacognitive Self-Regulation. Science Education International Vol. 27, Issue 2, 301-316.
  • Şimşek, Ö. F. (2007). Yapısal eşitlik modellemesine giriş: Temel ilkeler ve LISREL uygulamaları. Ankara: Ekinoks.
  • Temel, S. (2012). Problem çözme sürecinin temel unsurları: üstbilişsel özdüzenleme stratejisi ve özyeterlik algısı. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi Özel Sayı 2, 190-199.
  • Tzohar-Rozen, M. & Karamarski, B. (2014). Metacognition, motivation and emotions: Contribution of self-regulated learning to solving mathematical problems. Global Education Review, 1 (4). 76-95.
  • Üredi, I. & Üredi, L. (2005). İlköğretim sekizinci sınıf öğrencilerinin öz-düzenleme stratejileri ve motivasyonel inançlarının matematik başarısını yordama gücü. Mersin University Journal of the Faculty of Education, 1(2), 250-260.
  • Wilson, J. W., Fernandez, M. L., & Hadaway, N. (1993). Mathematical problem solving [Elektronik versiyon]. Wilson, P. S. (Ed.), Research Ideas for the Classroom: High School Mathematics. New York: MacMillan.
  • Zimmerman, B. J., & Campillo, M. (2003). Motivating self-regulated problem solvers. In Davidson, J. E., & Sternberg, R. J. (Eds.), The psychology of problem solving (pp. 233-262). New York: Cambridge University Press.
  • Zimmerman, B. J. (1989). A social cognitive view of self regulated academic learning.Journal of Educational Psychology, 81(3), 329-339.
  • Zimmerman, B. J. (1995). Self-regulation involves more than metacognition: A social cognitive perspective. Educational Psychologist, 30 (4), 217-221.
  • Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41 (2), 64-70.

Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik ve Güvenirlik Çalışması

Year 2017, Volume: 37 Issue: 1, 53 - 71, 03.12.2017

Abstract









Bu çalışmanın amacı öğrencilerin matematik ve fen problemi çözme sürecindeki üst-
bilişsel özdüzenleme becerilerine dair farkındalıklarına odaklanan bir ölçek oluşturmak
için Howard, McGee, Shia ve Hong (2000) tarafından geliştirilen Üstbilişsel Özdüzenleme
Ölçeği’nin (ÜÖÖ) Türkçe formunun 12-14 yaş grubu için geçerlik güvenirlik yönünden
incelenmesidir. Ölçeğin faktör yapısı Doğrulayıcı Faktör Analizi tekniği ile incelenmiştir.
Modelin, orijinal ölçeğin beş faktörlü yapısına uygun olduğu anlaşılmıştır. Ölçek toplam
puanına göre belirlenen %27’lik alt-üst gruplardaki öğrencilerin toplam puanları arasında
anlamlı fark olup olmadığı
t-testi ile analiz edilmiş, anlamlı fark olduğu görülmüştür. Güve-
nirlik için ise test-tekrar test korelasyon değeri ile Cronbach Alfa katsayısı hesaplanmıştır.
Analiz sonuçları Üstbilişsel Özdüzenleme Ölçeği’nin (ÜÖÖ) Türkçe formunun 12-14 yaş
grubundaki öğrenciler için geçerli ve güvenilir bir ölçme aracı olduğunu göstermiştir. 




References

  • Altun, M. (2000). Matematik öğretimi. Bursa: Alfa. (8.Baskı).
  • Altun, S. & Erden, M. (2007). Ögrenmede motive edici stratejiler ölçeğinin geçerlik ve güvenilirlik çalışması. Edu7, 2(3), 1-16.
  • Ay, Z.S. & Bulut, S. (2017). Üst bilişsel sorgulamaya dayalı problem çözme yaklaşımının öz-düzenleme becerilerine etkisinin araştırılması. İlköğretim Online, 16(2), 547-565.
  • Borkowski, J. G. (1992). Metacognitive theory: A framework for teaching literacy, writing, and mathematics. Journal of Learning Disabilities, 25 (4), 253-257.
  • Brunning, R. H., Schraw, G. J., Norby, M. M., & Ronning, R. R. (2003). Cognitive psychology and instruction (4th Edition). USA: Pearson Merrill Prentice Hall.
  • Büyüköztürk, Ş., Akgün, Ö. E., Özkahveci, Ö. & Demirel, F. (2004). Güdülenme ve Öğrenme Stratejileri Ölçeği’nin Türkçe formunun geçerlik ve güvenirlik çalışması. Kuram Ve Uygulamada Eğitim Bilimleri, 4, 207-239.
  • Büyüköztürk, Ş. (2004). Sosyal bilimler için veri analizi el kitabı. Ankara: PegemA. (4.Baskı).
  • Campione, J. C., Brown, A. L. & Connell. M. L. (1989). Metacognition: On the importance of understanding what you are doing. Charles, R. I. & Silver, E. A. (Eds.), The teaching and assesing of mathematical problem solving. NCTM research agenda for mathematics volume 3. (pp.93-114). Virginia: NCTM and LEA.
  • Çelik, E. (2012). Matematik problemi çözme başarısı ile üstbilişsel özdüzenleme, matematik özyeterlik ve özdeğerlendirme kararlarının doğruluğu arasındaki ilişkinin incelenmesi. (Yayınlanmamış doktora tezi). Marmara Üniversitesi, İstanbul.
  • Davidson, J. E., & Sternberg, R. J. (1998). Smart problem solving: How metacognition helps. In Hacker, D. J., Dunlosky, J., & Graesser, A. C. (Eds.), Metacognition in educational theory and practice (pp. 47-68). New Jersey: Lawrance Erlbaum Associates, Publishers.
  • Dennison, R. S., Krawchuk, C. M., Howard, B. C., & Hill, L. (1996). The development of a children's self-report measure of metacognition. Paper presented at the annual meeting of the American Educational Research Association. New York.
  • Desoete, A., Roeyers, H., & Buysee., A. (2001). Metacognition and mathematical problem solving in grade 3. Journal of Learning Disabilities, 34 (5), 435-449.
  • Erkuş, A. (2005). Bilimsel araştırma sarmalı. Ankara: Seçkin Yayıncılık. (1. Baskı).
  • Erturan-İlker G., Arslan Y. & Demirhan, G. (2014). A validity and reliability study of the Motivated Strategies for Learning Questionnaire. Educational Sciences: Theory & Practice 14(3), 829-833.
  • Fadlelmula, F. K. (2010). Mathematical problem solving and self-regulated learning.The International Journal of Learning, 17 (3), 363-372.
  • Ferrari, M., & Sternberg, R. J. (2000). The development of mental abilities and styles. In Kuhn, D., & Siegler, R. S. (Eds.), Handbook of Child Psychology (pp. 909-915). New York: John Wiley & Sons, Inc.
  • Fitzpatrick, C. (1994). Adolescent mathematical problem solving: The role of metacognition, strategies and beliefs. Paper presented at The Annual Meeting of the American Educational Research Association. New Orleans. [ERIC Ed 374969].
  • Fortunato, I., Hecth, D., Tittle, C. K., & Alvarez, L. (1991). Metacognition and problem solving. The Arithmetic Teacher, 39 (4), 38-40.
  • Flavel, J. H. (1987). Speculations about the nature and development of metacognition. In Weinert, F. E., & Kluwe, R. H. (Eds.), Metacognition, motivation, and understanding (pp. 21-29). New Jersey: Lawrance Erlbaum Associates, Publishers.
  • Garofalo, J., & Lester, F. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16 (3), 163-176.
  • Goldman, S., & Hasselbring, T. (1997). Achieving meaningful mathematics literacy for students with learning disabilities. Journal of Learning Disabilities, 30(2), 198–208.
  • Harmon, M. (1993). The role of strategies and knowledge in problem solving: A review of the literature. [ERIC Ed 366640].
  • Harmon, M. G., & Morse, L. W. (1995). Strategies and knowledge in problem solving: Results and implication for education. Problem Solving Education, 115 (4), 580-588.
  • Howard, B., McGee, S., Shia, R., & Hong, N. (2000). Metacognitive self-regulation and problem solving: expanding the theory base through factor analysis. Paper presented at The Annual Meeting of the American Educational Research Association. New Orleans. [ERIC Ed 470973].
  • Howard, B., McGee, S., Shia, R., & Hong, N. (2001). The influence of metacognitive self-regulation and ability levels on problem solving. Paper presented at The Annual Meeting of the American Educational Research Association. Seattle. [ERIC Ed 470974].
  • Lester, F. K. Jr. (1989). Reflections about mathematical problem-solving research. Charles, R. I. & Silver, E. A. (Eds.), The teaching and assesing of mathematical problem solving. NCTM research agenda for mathematics volume 3. (pp. 115-124). Virginia: NCTM and LEA.
  • Lester, F. K. Jr., Garofalo, J., & Kroll, D., L. (1989). The role of metacognition in mathematical problem solving: A study of two grade seven classes (Final Report for National Science Foundation, Washington, D.C.). Bloomington: Indiana University. [ERIC Ed 314255].
  • Mayer, R. E. (2001). Cognitive, metacognitive, and motivational aspects of problem solving. In Hartman, H. J. (Ed.), Metacognition in learning and instruction: theory, research and practice (pp. 87-101). Netherlands: Kluwer Academic Publishers.
  • Mayer, R. (2003). Memory and information processes [Electronic version]. In Reynolds, W. M., & Miller, G. E. (Eds.), Handbook of Psychology Volume 7 (pp. 47-57). New Jersey: John Wiley & Sons, Inc.
  • Meijer, J., Veenman, M. V. J., & van Hout-Wolters, B. H. M. (2006). Metacognitive activities in text-studying and problem-solving: Development of a taxonomy. Educational Research and Evaluation, 12 (3), 209-237.
  • Montague, M. (2007). Self-regulation and mathematics instruction. Learning Disabilities Research & Practice, 22 (1), 75-83.
  • Montague, M. (2008). Self-regulation strategies to improve mathematical problem solving for students with learning disabilities. Learning Disability Quaterly, 31, 37-44.
  • Pajares, F. (1996). Self-efficacy beliefs and mathematical problem-solving of gifted students. Contemporary Educational Psychology, 21, 325-344.
  • Pajares, F., & Kranzler, J. (1995). Role of self-efficacy and general mental ability in mathematical problem-solving: A path analysis. Paper presented at The Annual Meeting of the American Educational Research. San Francisco. [ERIC Ed 387342].
  • Pape, S. J., & Smith, C. (2002). Self-regulating mathematics skills. Theory into Practice, 41(2), 93-101.
  • Pape, S. J., & Tchoshanov, M, A. (2001). The role of representation(s) in developing mathematical understanding. Theory into Practice, 40 (2), 118-127.
  • Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82 (1), 33-40.
  • Pintrich, P. R. (2002). Teaching role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41 (4), 219-225.
  • Pintrich, P. R. (2004). A conceptual framework for assessing motivation and self-regulated learning in collage students. Educational Psychology Review, 16 (4), 385-407.
  • Riley, M. S., Greeno, J. G., & Heller, J. I. (1984). Development of children’s problem solving ability in arithmetic [Electronic version]. In Ginsburg, H. (Ed.), The Development of Mathematical Thinking. Orlando: Academic Press, Inc.
  • Schraw, G. & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7 (4), 351-371.
  • Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36, 111-139.
  • Schunk, D. H. (1991). Self-efficacy and academic motivation. Educational Psychologist, 26 (3&4), 207-231.
  • Schoenfeld, A. H. (1982). Expert and novice mathematical problem solving: Final project report and Appendices B-H. Washington: National Science Foundation. [ERIC Ed. 218124].
  • Schoenfeld, A. H. (1983). Beyond the purely cognitive: Belief systems, social cognitions, and metacognitions as driving forces in intellectual performance. Cognitive Science, 7, 323-363.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. Grouws, D. (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). New York: MacMillan.
  • Sipahi, B., Yurtkoru, E. S., & Çinko, M. (2008). Sosyal bilimlerde SPSS’le veri analizi. İstanbul: Beta. (2. Baskı)
  • Stanic, G., & Kilpatrick, J. (1989). Historical perspectives on problem solving in mathematics. In Charles, R. I. & Silver, E. A. (Eds.), The teaching and assesing of mathematical problem solving. NCTM research agenda for mathematics volume 3. (pp. 1-22). Virginia: NCTM and LEA.
  • Sümer, N. (2000) Yapısal eşitlik modelleri: Temel kavramlar ve örnek uygulamalar. Türk Psikoloji Yazıları, 3 (6), 49 -74.
  • Şeker, H. & Gençdoğan, B. (2006). Psikolojide ve eğitimde ölçme aracı geliştirme.Ankara: Nobel.
  • Şen, Ş & Yılmaz, A. (2016). Devising A Structural Equation Model of Relationships between Preservice Teachers' Time and Study Environment Management, Effort Regulation, Self-efficacy, Control of Learning Beliefs, and Metacognitive Self-Regulation. Science Education International Vol. 27, Issue 2, 301-316.
  • Şimşek, Ö. F. (2007). Yapısal eşitlik modellemesine giriş: Temel ilkeler ve LISREL uygulamaları. Ankara: Ekinoks.
  • Temel, S. (2012). Problem çözme sürecinin temel unsurları: üstbilişsel özdüzenleme stratejisi ve özyeterlik algısı. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi Özel Sayı 2, 190-199.
  • Tzohar-Rozen, M. & Karamarski, B. (2014). Metacognition, motivation and emotions: Contribution of self-regulated learning to solving mathematical problems. Global Education Review, 1 (4). 76-95.
  • Üredi, I. & Üredi, L. (2005). İlköğretim sekizinci sınıf öğrencilerinin öz-düzenleme stratejileri ve motivasyonel inançlarının matematik başarısını yordama gücü. Mersin University Journal of the Faculty of Education, 1(2), 250-260.
  • Wilson, J. W., Fernandez, M. L., & Hadaway, N. (1993). Mathematical problem solving [Elektronik versiyon]. Wilson, P. S. (Ed.), Research Ideas for the Classroom: High School Mathematics. New York: MacMillan.
  • Zimmerman, B. J., & Campillo, M. (2003). Motivating self-regulated problem solvers. In Davidson, J. E., & Sternberg, R. J. (Eds.), The psychology of problem solving (pp. 233-262). New York: Cambridge University Press.
  • Zimmerman, B. J. (1989). A social cognitive view of self regulated academic learning.Journal of Educational Psychology, 81(3), 329-339.
  • Zimmerman, B. J. (1995). Self-regulation involves more than metacognition: A social cognitive perspective. Educational Psychologist, 30 (4), 217-221.
  • Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41 (2), 64-70.
There are 60 citations in total.

Details

Journal Section Research Article
Authors

Esin Çelik

Publication Date December 3, 2017
Submission Date September 12, 2017
Published in Issue Year 2017 Volume: 37 Issue: 1

Cite

APA Çelik, E. (2017). Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik ve Güvenirlik Çalışması. Psikoloji Çalışmaları, 37(1), 53-71.
AMA Çelik E. Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik ve Güvenirlik Çalışması. Psikoloji Çalışmaları. December 2017;37(1):53-71.
Chicago Çelik, Esin. “Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik Ve Güvenirlik Çalışması”. Psikoloji Çalışmaları 37, no. 1 (December 2017): 53-71.
EndNote Çelik E (December 1, 2017) Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik ve Güvenirlik Çalışması. Psikoloji Çalışmaları 37 1 53–71.
IEEE E. Çelik, “Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik ve Güvenirlik Çalışması”, Psikoloji Çalışmaları, vol. 37, no. 1, pp. 53–71, 2017.
ISNAD Çelik, Esin. “Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik Ve Güvenirlik Çalışması”. Psikoloji Çalışmaları 37/1 (December 2017), 53-71.
JAMA Çelik E. Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik ve Güvenirlik Çalışması. Psikoloji Çalışmaları. 2017;37:53–71.
MLA Çelik, Esin. “Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik Ve Güvenirlik Çalışması”. Psikoloji Çalışmaları, vol. 37, no. 1, 2017, pp. 53-71.
Vancouver Çelik E. Problem Çözme Sürecinde Üstbilişsel Özdüzenleme Ölçeği (ÜÖÖ): Türkçe Formu İçin Geçerlik ve Güvenirlik Çalışması. Psikoloji Çalışmaları. 2017;37(1):53-71.

Psikoloji Çalışmaları / Studies In Psychology / ISSN- 1304-4680