A finite cover $\mathcal{C}$ of a group $G$ is a finite collection of proper subgroups of $G$ such that $G$ is equal to the union of all of the members of $\mathcal{C}$. Such a cover is called {\em minimal} if it has the smallest cardinality among all finite covers of $G$. The covering number of $G$, denoted by $\sigma(G)$, is the number of subgroups in a minimal cover of $G$. In this paper the covering number of the Mathieu group $M_{24}$ is shown to be 3336.
Journal Section | Articles |
---|---|
Authors | |
Publication Date | August 9, 2016 |
Published in Issue | Year 2016 Volume: 3 Issue: 3 |