Research Article
BibTex RIS Cite

Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size

Year 2017, Volume: 4 Issue: 1, 75 - 91, 11.01.2017
https://doi.org/10.13069/jacodesmath.37019

Abstract

Using the Saddle point method and multiseries expansions, we obtain from the exponential formula and Cauchy's integral formula,
asymptotic results for the number $T(n,m,k)$ of partitions of $n$ labeled objects with $m$ blocks of fixed size $k$. We analyze the central and non-central region. In the region $m=n/k-n^\al,\quad 1>\al>1/2$, we analyze the dependence of $T(n,m,k)$ on $\al$. This paper fits within the framework of Analytic Combinatorics.

References

  • [1] B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Closed expressions for set partition statistics, Res. Math. Sci. 1(2) (2014) 1–32.
  • [2] B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Central limit theorems for some set partitions, Adv. Appl. Math. 70 (2015) 92–105.
  • [3] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the LambertW function, Adv. Comput. Math. 5 (1996) 329–359.
  • [4] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
  • [5] B. Fristedt, The structure of random partitions of large sets, Technical report, University of Minnesota, 1987.
  • [6] I. J. Good, Saddle–point methods for the multinomial distribution, Ann. Math. Statist. 28(4) (1957) 861–881.
  • [7] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Second Edition, Addison Wesley, 1994.
  • [8] H. K. Hwang, On convergence rates in the central limit theorems for combinatorial structures, European J. Combin. 19(3) (1998) 329–343.
  • [9] D. E. Knuth, The Art of Computer Programming, vol. 4a: Combinatorial Algorithms. Part I, Addison–Wesley, Upper Saddle River, New Jersey, 2011.
  • [10] G. Louchard, Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach, Discrete Math. Theor. Comput. Sci. 12(2) (2010) 167–184.
  • [11] G. Louchard, Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach, Appl. Anal. Discrete Math. 7(2) (2013) 193–210.
  • [12] G. Louchard, Asymptotics of the Eulerian numbers revisited: A large deviation analysis, Online J. Anal. Comb. 10 (2015) 1–11.
  • [13] T. Mansour, Combinatorics of Set Partitions, Discrete Mathematics and Its Applications Series, CRC Press, Boca Raton, FL, 2013.
  • [14] B. Salvy, J. Shackell, Symbolic asymptotics: Multiseries of inverse functions, J. Symbolic Comput. 20(6) (1999) 543–563.
  • [15] R. P. Stanley, Enumerative Combinatorics, Volume 1, 2nd edn, Cambridge Studies in Advanced Mathematics, Vol. 49. Cambridge University Press, Cambridge, 2012.
Year 2017, Volume: 4 Issue: 1, 75 - 91, 11.01.2017
https://doi.org/10.13069/jacodesmath.37019

Abstract

References

  • [1] B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Closed expressions for set partition statistics, Res. Math. Sci. 1(2) (2014) 1–32.
  • [2] B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Central limit theorems for some set partitions, Adv. Appl. Math. 70 (2015) 92–105.
  • [3] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, D. E. Knuth, On the LambertW function, Adv. Comput. Math. 5 (1996) 329–359.
  • [4] P. Flajolet, R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009.
  • [5] B. Fristedt, The structure of random partitions of large sets, Technical report, University of Minnesota, 1987.
  • [6] I. J. Good, Saddle–point methods for the multinomial distribution, Ann. Math. Statist. 28(4) (1957) 861–881.
  • [7] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Second Edition, Addison Wesley, 1994.
  • [8] H. K. Hwang, On convergence rates in the central limit theorems for combinatorial structures, European J. Combin. 19(3) (1998) 329–343.
  • [9] D. E. Knuth, The Art of Computer Programming, vol. 4a: Combinatorial Algorithms. Part I, Addison–Wesley, Upper Saddle River, New Jersey, 2011.
  • [10] G. Louchard, Asymptotics of the Stirling numbers of the first kind revisited: A saddle point approach, Discrete Math. Theor. Comput. Sci. 12(2) (2010) 167–184.
  • [11] G. Louchard, Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach, Appl. Anal. Discrete Math. 7(2) (2013) 193–210.
  • [12] G. Louchard, Asymptotics of the Eulerian numbers revisited: A large deviation analysis, Online J. Anal. Comb. 10 (2015) 1–11.
  • [13] T. Mansour, Combinatorics of Set Partitions, Discrete Mathematics and Its Applications Series, CRC Press, Boca Raton, FL, 2013.
  • [14] B. Salvy, J. Shackell, Symbolic asymptotics: Multiseries of inverse functions, J. Symbolic Comput. 20(6) (1999) 543–563.
  • [15] R. P. Stanley, Enumerative Combinatorics, Volume 1, 2nd edn, Cambridge Studies in Advanced Mathematics, Vol. 49. Cambridge University Press, Cambridge, 2012.
There are 15 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Guy Louchard This is me

Publication Date January 11, 2017
Published in Issue Year 2017 Volume: 4 Issue: 1

Cite

APA Louchard, G. (2017). Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size. Journal of Algebra Combinatorics Discrete Structures and Applications, 4(1), 75-91. https://doi.org/10.13069/jacodesmath.37019
AMA Louchard G. Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size. Journal of Algebra Combinatorics Discrete Structures and Applications. January 2017;4(1):75-91. doi:10.13069/jacodesmath.37019
Chicago Louchard, Guy. “Multivariate Asymptotic Analysis of Set Partitions: Focus on Blocks of Fixed Size”. Journal of Algebra Combinatorics Discrete Structures and Applications 4, no. 1 (January 2017): 75-91. https://doi.org/10.13069/jacodesmath.37019.
EndNote Louchard G (January 1, 2017) Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size. Journal of Algebra Combinatorics Discrete Structures and Applications 4 1 75–91.
IEEE G. Louchard, “Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size”, Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 1, pp. 75–91, 2017, doi: 10.13069/jacodesmath.37019.
ISNAD Louchard, Guy. “Multivariate Asymptotic Analysis of Set Partitions: Focus on Blocks of Fixed Size”. Journal of Algebra Combinatorics Discrete Structures and Applications 4/1 (January 2017), 75-91. https://doi.org/10.13069/jacodesmath.37019.
JAMA Louchard G. Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4:75–91.
MLA Louchard, Guy. “Multivariate Asymptotic Analysis of Set Partitions: Focus on Blocks of Fixed Size”. Journal of Algebra Combinatorics Discrete Structures and Applications, vol. 4, no. 1, 2017, pp. 75-91, doi:10.13069/jacodesmath.37019.
Vancouver Louchard G. Multivariate asymptotic analysis of set partitions: Focus on blocks of fixed size. Journal of Algebra Combinatorics Discrete Structures and Applications. 2017;4(1):75-91.