Research Article
BibTex RIS Cite

FARKLI ŞEKİLSEL ÖZELLİKLERE SAHİP KIRINTILI SEDİMANLARIN HİDRODİNAMİK ÖZELLİKLERİNİN GÖRÜNTÜLENMESİ: KABA ÇAKIL AĞIRLIKLI NEHİRLERDE YATAK YÜKÜ TAŞINMA MEKANİZMALARI BAKIMINDAN YORUMLANMASI

Year 2018, Issue: 1, 26 - 49, 15.10.2018

Abstract

Akarsu yataklarında taşınan yatak yükünün şekil, boyut ve yoğunluk özellikleri onların hidrodinamik davranışını kontrol eden temel özelliklerdir. Yatakta taşınan tanelerin şekil özellikleri, onların su içerisindeki çökelme ve yatak üzerinde hareket mekanizmasını kontrol etmeleri bakımından oldukça önemli rol oynamaktadır. Bu çalışmanın amacı akarsu yataklarında bulunan çakılların şekil özelliklerinin onların harekete geçmesi ve yatak içerisindeki taşınması üzerine olan etkilerinin araştırılmasına dayanmaktadır.  
Çalışma kapsamında tane hareketini fotoğraflama deneyleri yoluyla farklı şekil, boyut ve ağırlıklara sahip doğal ve yapay olarak üretilmiş çakılların hareket mekanizmaları tespit edilmeye çalışılmıştır. Bu amaçla, etrafı saydam camla kaplı dolayısı ile içerisi kolaylıkla görülebilen ve 10 litre su ile doldurulmuş dikdörtgen şeklindeki bir tank ile bu tankın tam karşısına sabit bir konumda durabilecek bir fotoğraf makinesi monte edilmiştir.  İlk olarak değişik boyut ve şekle sahip taneler su ile dolu tankın içerisine yukarıdan bırakılmış ve onların su içerisinde batma hareketi, batma hızı ile eğimli cam yüzey üzerindeki hareketleri sürekli fotoğraflama metodu ile tespit edildi. Aynı deney düzeneği kullanılarak bu sefer değişik yüzey pürüzlülüklerine (7 ve 14 mm) sahip cam levhalar üzerinde farklı şekil, boyut ve ağırlıklara sahip taneler yerleştirilmiş ve bunların ilk hareket açıları tespit edilmiştir. Bu amaçla üzerine değişik boyut ve şekle sahip taneler yerleştirilen levhaların yatak eğimleri, üzerine konulan tane hareket edinceye kadar, sürekli olarak artırılmış ve bu tanelerin ilk harekete geçtiği yatak eğimi açısı ile söz konusu pürüzlü yüzey üzerinde tanenin hareket mekanizması tespit edilmiştir. 
Bulgular, tane şekli özelliklerinin onların su içerisindeki çökelme oranı ile yatak üzerindeki hidrodinamik hareketleri üzerine önemli etkileri olduğunu ortaya koymuştur. Bu etkiler tane boyunun artması oranında daha da belirgin olarak ortaya çıkmaktadır. Tane şeklinin küresellikten uzaklaşma oranı onun su içerisindeki batma hızının da azalmasına sebep olmaktadır. Yapılan bütün deneyler göstermiştir ki, test edilen bütün tane boyutlarında, aynı boyut ve ağırlıktaki taneler içerisinde kübik/küresel ve silindirmsi/kalemsi şekilde olanlar su içerisinde daha yüksek batma oranına sahipler ve yatak üzerinde yuvarlanarak hareket etme eğilimi gösterirler. Buna karşılık disk ve bıçağımsı şekilde olan tanelerin su içerisindeki batma oranları daha yavaş  ve büyük bir çoğunlukla yatak üzerinde kayma şeklinde hareket etme eğilimi gösterirler. Düzensiz şekle sahip doğal çakıllarla yapılan deneyler oldukça değişebilir çökelme oranları ile yatak üzerinde düzensiz hareket örnekleri göstermişlerdir. Hemen her tane boyutu sınıfında, küresel/kübik ve silindirimsi taneler disk ve bıçağımsı şekle sahip tanelere göre hareket etmeleri için daha düşük kritik yatak eğimine ihtiyaç duyarlar. Hemen her şekil gurubu için tanenin üzerinde bulunduğu yatağın pürüzlülük oranı arttıkça onların harekete geçmeleri için daha yüksek kritik yatak eğimi açısı gerektirir. Tanenin hareketi bakımından, genellikle tane boyutu ile tanenin üzerinde bulunduğu yatağın pürüzlülük oranı arasında ters bir ilişkinin olduğu ortaya çıkmıştır. Yüksek pürüzlülük oranına sahip yüzeyler üzerinde küçük boyuttaki tanelerin hareket etmeleri için daha yüksek yatak eğimine ihtiyaç duyarlar. Bu deneyler sonucunda tespit edilen bulgular akarsu yataklarındaki yatak yükü taşınma süreçlerinin yorumlanması bakımından önemi tartışılmıştır. 

References

  • Abbott, J.E. & Francis, J.R.D. (1977) Saltation and suspension trajectories of solid grains in water streams. Phil. Transaction Royal Society, A284, 225-254.
  • Alger, G. (1964) Terminal fall velocity of particles of irregular shapes as affected by surface area. Unpublished PhD thesis, Colorado State University, Fort Collins, Colorado, 99p.
  • Allen, J.R.L. (1969) The maximum slope angle attainably surfaces underlain by bulked equal spheroids with variable dimensional ordering. Bulletin Geological Society of America, 80, 1923-1930.
  • Allen, J.R.L. (1985) Principles of physical sedimentology. Allen and Unwin, London.
  • Baba, J. & Komar, P.D. (1981a), Measurements and analysis of settling velocities of natural quartz sand grains. Journal of Sedimentary Petrology. 51, 631-640.
  • Baba, J. & Komar, P.D. (1981b) Settling velocities of irregular grains at low Reynolds numbers. Journal of Sedimentary Petrology, 51, 121-128.
  • Buffington, J.M., Dietrich, W.E. & Kirchner, J.W., (1992) Friction angle measurements on a naturally formed gravel streambed: implications for critical boundary shear stress. Water Resources Research, 28,411-425.
  • Carrigy, M.A. (1970) Experiments on the angles of repose of granular materials. Sedimentology, 14, 147-158.
  • Corey, A.T. (1949) Influence of shape on the fall velocity of sand grains. Unpublished MS Thesis, A&M College, Colorado.
  • Cui, B., Komar, P.D. & Baba, J. (1983) Settling velocities of natural sand grains in air. Journal of Sedimentary Petrology, 53, 1205-1211.
  • Dietrich, W.E. (1982) Settling velocity of natural particles. Water Resources Research, 18, 1615-1626.
  • Drake, L.D. (1972) Mechanisms of clast attrition in basal till. Geological Society of America Bulletin, 83, 2159-2165.
  • Garnett, P.W. (1966) Particle roundness and surface texture effects on fall velocity. Journal of Sedimentology Petrology, 36, 255-259.
  • Goossens, D. (1987) Interference phenomena between particle flattening and particle rounding in free vertical sedimentation processes. Sedimentology, 34, 155-167.
  • Goldbery, R. & Richardson, D. (1989) The influence of bulk shape factors on settling velocities of natural sand-sized sedimentary suites. Sedimentology, 36, 125-136.
  • Graft, W.H. (1971) Hydraulics of sediment transport. Mc Graw-Hill, New York 513pp.
  • Hallermieier, R.J. (1981) Terminal settling velocity of commonly occuring sand grains. Sedimentology, 28, 859-865.
  • Hassan, M. & Church, M. (1992) The movement of individual grains on the streambed. in, Dynamics of Gravel-bed Rivers. Dynamics of Gravel-bed Rivers, Billi, P., Hey, R.D., Thorne, C.R. & Tacconi, P. (eds), Wiley, Chicester, pp. 159-173.
  • Hottovy, J.D. & Sylvester, N.D. (1979) Drag coefficient for irregularly shaped particles. Ind. Engng Chem. Processes Des. Dev. 18, 433-436.
  • Komar, P.D. & Reimers, C.E. (1978) Grain shape effects on settling rates. Journal of Geology, 86, 193-205.
  • Komar, P.D. & Li, Z. (1988) Applications of grain pivoting and sliding analysis to selective entrainment of gravel and to flow-competence evaluations. Sedimentology, 35, 681-695.
  • Lane, E.W. (1938) Notes on the formation of sand. Transaction American Geophysics Union. 18, 505-508.
  • Li, M.Z. & Komar, P.D. (1986) Laboratory measurements of pivoting angles for applications to selective entrainment of gravel in a current. Sedimentology, 33, 413-423.
  • Li, M.Z. & Komar, P.D. (1992a) Longshore grain sorting and beach placer formation adjacent to the Colombia River. Journal of Sedimentary Petrology, 62, 429-441.
  • Li, M.Z. & Komar, P.D. (1992b) Selective entrainment and transport of mixed size and density sands: flume experiments simulating the formation of the black sand placers. Journal of Sedimentary Petrology, 62, 584-590.
  • McNown, J.S. & Malaika, J. (1950) Effect of particle shape on settling velocity at low Reynolds numbers. Transaction American Geophysics Union. 31, 74-82.
  • Middleton, G.V. & Southard, J.B. (1978) Mechanics of sediment transport. Lecture notes for short course No. 3. McMaster University, Binghampton, New York, 120pp.
  • Pye, K. (1994a) Properties of sediment particles in: Sediment transport and depositional processes. Blackwell Scientific Publications. Oxford, pp.1-24.
  • Pye, K. (1994b) Shape sorting during wind transport of quartz silt grains-discussion. Journal of Sedimentary Research, A64, 704-705.
  • Romanovskij, V.V. (1966) A study of the fall velocity of coarse sediment. Soviet Hydrology 5, 47-62.
  • Stringham, G.E. & Guy, H.P. (1969) The behaviour of large particles falling in quiescent liquids. U.S. Geological Survey Professional Paper, 562-C, 36.
  • Schmeeckle, M.W. (1998) Mechanics of bedload sediment transport. PhD thesis, University of Colorado, 181pp
  • Schmeeckle, M.W., Nelson, J.M., Pitlick, J., Bennett J.P. (2001) Interparticle collision of natural sediment grains in water. Water Resources Research, 37, No. 9, 2377-2391.
  • Wadell, H. (1934) Some new sedimentation formulas. Physics, 5, 281-291.
  • Warburton, J. & T. Demir. (2000) Influence of bed material shape on sediment transport in gravel-bed rivers: A field experiment”, Tracers in Geomorphology, ed. I.D.L. Foster, Vol. 21, 401-410, Wiley, London.
  • Wilde, R.H. (1952) Effect of shape on the fall velocity of grain-sized particles. MSc thesis, Colorado, 86pp.
  • Willmarth, W.W., Hawk, N.E., & Harvey, R.L. (1964) Steady and unsteady motions and wakes of freely falling discs. Physical Fluids, 7, 197-208.
  • Wilson, L. & Huang, T.C. (1979) The influence of shape on the atmosferic settling velocity of olcanic ash particles. Earth and Planetary Science Letters, 44, 311-324.
  • Willetts, B.B. & Rice, A. (1983) Practical representation of characteristic grain shape of sand: a comparison of methods. Sedimentology, 30, 557-565.

Visualisation of the solitary grain sediment dynamics of paerticles of varying shape: Implications for sediment transport over coarse-gravel bed rivers

Year 2018, Issue: 1, 26 - 49, 15.10.2018

Abstract

Shape, size, and density are fundamental properties controlling the hydrodynamic behaviour of sediment particles. Particle shape can play a significant role in bedload transport processes by controlling the nature of particle settling and near-bed motion. The aim of the experiments reported here is to investigate the influence of shape on the settling initial motion and transport of gravel-size particles.

Experiments, using strobe-light photography, were carried out with natural and artificial gravel-size particles of differing shape (sphere, rod, disc and blade), size and weight. Two types of experiment were undertaken in a 10 litre, water-filled rectangular tank. Firstly, particles were dropped, through water, onto a 30 inclined, smooth glass plate. A camera mounted outside the tanlq normal to the sloping glass, recorded the fall and movement of each particle. Particle velocities and trajectory paths were measured from the photographs by plotting successive centres of mass of the particle. A second set of experiments, using the same set-up as the first, but this time investigating the initial motion of particles of varying shape and size was also tested on two beds of differing roughness (7 and 14 mm). The bed was tilted until the test particle moved from its pocket of origin and strobe-light photographs were taken at the initiation of motion.

Results indicate that shape is an important particle characteristic that has a significant effect on settling rates and also the mode of transport. These effects increase with larger particle sizes. Departure from a spherical form leads to a decrease in its settling velocity. Experiments show, across the range of sizes tested that, when compared to a sphere of approximate equivalent weight and density, sphere and rod shaped particles tend to settle the fastest and move by rolling. Discs and blades showed slower settling rates and, in most instances, moved by sliding. Experiments carried out with irregularly shaped, natural particles show greater variability in settling behaviour and irregular patterns of motion. For every size group, sphere and rod shaped particles have lower critical angles of initial motion than blade and discshapes. Regardless of shape, greater bed roughness, or decreasing particle size results in an increase in the critical angle for motion. The implications of these results for bedload transport in river channels is briefly discussed.

References

  • Abbott, J.E. & Francis, J.R.D. (1977) Saltation and suspension trajectories of solid grains in water streams. Phil. Transaction Royal Society, A284, 225-254.
  • Alger, G. (1964) Terminal fall velocity of particles of irregular shapes as affected by surface area. Unpublished PhD thesis, Colorado State University, Fort Collins, Colorado, 99p.
  • Allen, J.R.L. (1969) The maximum slope angle attainably surfaces underlain by bulked equal spheroids with variable dimensional ordering. Bulletin Geological Society of America, 80, 1923-1930.
  • Allen, J.R.L. (1985) Principles of physical sedimentology. Allen and Unwin, London.
  • Baba, J. & Komar, P.D. (1981a), Measurements and analysis of settling velocities of natural quartz sand grains. Journal of Sedimentary Petrology. 51, 631-640.
  • Baba, J. & Komar, P.D. (1981b) Settling velocities of irregular grains at low Reynolds numbers. Journal of Sedimentary Petrology, 51, 121-128.
  • Buffington, J.M., Dietrich, W.E. & Kirchner, J.W., (1992) Friction angle measurements on a naturally formed gravel streambed: implications for critical boundary shear stress. Water Resources Research, 28,411-425.
  • Carrigy, M.A. (1970) Experiments on the angles of repose of granular materials. Sedimentology, 14, 147-158.
  • Corey, A.T. (1949) Influence of shape on the fall velocity of sand grains. Unpublished MS Thesis, A&M College, Colorado.
  • Cui, B., Komar, P.D. & Baba, J. (1983) Settling velocities of natural sand grains in air. Journal of Sedimentary Petrology, 53, 1205-1211.
  • Dietrich, W.E. (1982) Settling velocity of natural particles. Water Resources Research, 18, 1615-1626.
  • Drake, L.D. (1972) Mechanisms of clast attrition in basal till. Geological Society of America Bulletin, 83, 2159-2165.
  • Garnett, P.W. (1966) Particle roundness and surface texture effects on fall velocity. Journal of Sedimentology Petrology, 36, 255-259.
  • Goossens, D. (1987) Interference phenomena between particle flattening and particle rounding in free vertical sedimentation processes. Sedimentology, 34, 155-167.
  • Goldbery, R. & Richardson, D. (1989) The influence of bulk shape factors on settling velocities of natural sand-sized sedimentary suites. Sedimentology, 36, 125-136.
  • Graft, W.H. (1971) Hydraulics of sediment transport. Mc Graw-Hill, New York 513pp.
  • Hallermieier, R.J. (1981) Terminal settling velocity of commonly occuring sand grains. Sedimentology, 28, 859-865.
  • Hassan, M. & Church, M. (1992) The movement of individual grains on the streambed. in, Dynamics of Gravel-bed Rivers. Dynamics of Gravel-bed Rivers, Billi, P., Hey, R.D., Thorne, C.R. & Tacconi, P. (eds), Wiley, Chicester, pp. 159-173.
  • Hottovy, J.D. & Sylvester, N.D. (1979) Drag coefficient for irregularly shaped particles. Ind. Engng Chem. Processes Des. Dev. 18, 433-436.
  • Komar, P.D. & Reimers, C.E. (1978) Grain shape effects on settling rates. Journal of Geology, 86, 193-205.
  • Komar, P.D. & Li, Z. (1988) Applications of grain pivoting and sliding analysis to selective entrainment of gravel and to flow-competence evaluations. Sedimentology, 35, 681-695.
  • Lane, E.W. (1938) Notes on the formation of sand. Transaction American Geophysics Union. 18, 505-508.
  • Li, M.Z. & Komar, P.D. (1986) Laboratory measurements of pivoting angles for applications to selective entrainment of gravel in a current. Sedimentology, 33, 413-423.
  • Li, M.Z. & Komar, P.D. (1992a) Longshore grain sorting and beach placer formation adjacent to the Colombia River. Journal of Sedimentary Petrology, 62, 429-441.
  • Li, M.Z. & Komar, P.D. (1992b) Selective entrainment and transport of mixed size and density sands: flume experiments simulating the formation of the black sand placers. Journal of Sedimentary Petrology, 62, 584-590.
  • McNown, J.S. & Malaika, J. (1950) Effect of particle shape on settling velocity at low Reynolds numbers. Transaction American Geophysics Union. 31, 74-82.
  • Middleton, G.V. & Southard, J.B. (1978) Mechanics of sediment transport. Lecture notes for short course No. 3. McMaster University, Binghampton, New York, 120pp.
  • Pye, K. (1994a) Properties of sediment particles in: Sediment transport and depositional processes. Blackwell Scientific Publications. Oxford, pp.1-24.
  • Pye, K. (1994b) Shape sorting during wind transport of quartz silt grains-discussion. Journal of Sedimentary Research, A64, 704-705.
  • Romanovskij, V.V. (1966) A study of the fall velocity of coarse sediment. Soviet Hydrology 5, 47-62.
  • Stringham, G.E. & Guy, H.P. (1969) The behaviour of large particles falling in quiescent liquids. U.S. Geological Survey Professional Paper, 562-C, 36.
  • Schmeeckle, M.W. (1998) Mechanics of bedload sediment transport. PhD thesis, University of Colorado, 181pp
  • Schmeeckle, M.W., Nelson, J.M., Pitlick, J., Bennett J.P. (2001) Interparticle collision of natural sediment grains in water. Water Resources Research, 37, No. 9, 2377-2391.
  • Wadell, H. (1934) Some new sedimentation formulas. Physics, 5, 281-291.
  • Warburton, J. & T. Demir. (2000) Influence of bed material shape on sediment transport in gravel-bed rivers: A field experiment”, Tracers in Geomorphology, ed. I.D.L. Foster, Vol. 21, 401-410, Wiley, London.
  • Wilde, R.H. (1952) Effect of shape on the fall velocity of grain-sized particles. MSc thesis, Colorado, 86pp.
  • Willmarth, W.W., Hawk, N.E., & Harvey, R.L. (1964) Steady and unsteady motions and wakes of freely falling discs. Physical Fluids, 7, 197-208.
  • Wilson, L. & Huang, T.C. (1979) The influence of shape on the atmosferic settling velocity of olcanic ash particles. Earth and Planetary Science Letters, 44, 311-324.
  • Willetts, B.B. & Rice, A. (1983) Practical representation of characteristic grain shape of sand: a comparison of methods. Sedimentology, 30, 557-565.
There are 39 citations in total.

Details

Primary Language English
Subjects Physical Geography and Environmental Geology
Journal Section Articles
Authors

Tuncer Demir 0000-0003-2740-7268

Publication Date October 15, 2018
Submission Date June 8, 2018
Acceptance Date September 28, 2018
Published in Issue Year 2018 Issue: 1

Cite

APA Demir, T. (2018). Visualisation of the solitary grain sediment dynamics of paerticles of varying shape: Implications for sediment transport over coarse-gravel bed rivers. Jeomorfolojik Araştırmalar Dergisi(1), 26-49.

Journal of Geomorphological Researches  ( JADER )

Turkish Society for Geomorphology ( www.jd.org.tr )