Research Article
BibTex RIS Cite

Korkuteli Çayı’nda Taşınan Eriyik Sediman Konsantrasyonları ve Verimlerinin Tahmin Edilmesi

Year 2021, Issue: 7, 19 - 29, 15.10.2021
https://doi.org/10.46453/jader.893216

Abstract

Akarsular tarafından taşınan sediman miktarları, jeokimyasal döngünün, havzadaki toprak kayıplarının, erozyon oranlarının ve denüdasyon süreçlerinin bir göstergesi olarak kabul edilir ve her yıl dünya genelinde akarsuların yaklaşık 20 milyar ton sedimanı okyanus ve denizlere taşıdığı tahmin edilmektedir. Flüvyal süreçlerle taşınan sediman oran ve miktarları üzerine yapılan birçok çalışma süspanse halinde taşınan katı sedimana odaklanmış, taşınan eriyik madde oran ve miktarları genellikle ihmal edilmiştir. Her ne kadar süspanse sedimanlar akarsulardaki sediman yükünün önemli bir bölümünü oluştursa da özellikle çözünebilen kayaçların yaygın olduğu sahalarda akarsularda eriyik halde taşınan sediman toplam sediman yükünün önemli bir bölümünü oluşturabilir. Bu çalışmada, toplamda 12 aylık bir ölçüm döneminde Korkuteli Çayı’nda taşınan eriyik sediman miktarları ve konsantrasyon değerleri belirlenerek eriyik sediman ile akım ve yağış arasındaki ilişki ortaya konulmuştur. Akarsuyun akım (debi) ve eriyik sediman süreçlerini belirlemek için 10’ar dakikalık sürelerle Mesens (MPS580 Serisi) Marka Daldırma Tipi Seviye Transmitteri kullanılarak otomatik olarak su seviyeleri ölçüldü. Suyun hızı, belirli aralıklarla Universal Muline cihazı ile belirlenmiş ve eriyik sediman örnekleri ise US-DH48 derinlik entegrasyon örnekleyicisi kullanılarak alınmıştır. Alınan su ve sediman numunelerinin laboratuvar ortamında filtrasyon yöntemi ile analiz edilmiştir. Bulgular; eriyik sediman konsantrasyon değerleri ile akım miktarları arasında polinomsal pozitif bir ilişki olduğunu ortaya koymuştur (R2: 0.96). Kış döneminde bölge genelinde daha çok düşük yoğunluklu, uzun süreli yağışların etkisiyle akım değerlerinde ani artma ve azalma yerine daha çok taban akışı veya buna yakın bir akış seyri göstermiştir. Düşük yoğunluklu, uzun süreli yağışların meydana geldiği kış döneminde akım miktarlarının daha düşük olması nedeniyle taşınan eriyik sediman miktarları daha az, ancak su içerisindeki eriyik konsantrasyonunun yaz aylarına oranla daha yüksek olduğu belirlenmiştir. Yaz döneminde özellikle Haziran ayında oluşan yüksek yoğunluklu, kısa süreli sağanak yağışlar akım miktarlarının yıl içerisinde tespit edilen en yüksek değerlere erişmesi sonucunu doğurmuş ve böylece, düşük eriyik madde konsantrasyonuna rağmen, miktar olarak daha fazla eriyik sediman taşınımı gerçekleşmiştir.

Supporting Institution

AKDENİZ ÜNİVERSİTESİ

Project Number

SYL-2016-1938

Thanks

Bu çalışma Akdeniz Üniversitesi Bilimsel Araştırmalar Koordinasyon Birimi tarafından desteklenmiştir (Proje no: SYL-2016-1938). Çalışmamıza değerli katkılarından dolayı Dr. Türkay ONACAK ve Dr. Soner ÇAKMAK’a teşekkür ederiz. Arazi çalışmalarında bizlere yardımcı olan Antalya D.S.İ. 13. Bölge Müdürlüğü Havza Yönetimi biriminde çalışan değerli personellere derin şükranlarımızı sunarız.

References

  • Alexandrov, Y., Laronne, J. B., & Reid, I. (2003). Suspended sediment concentration and its variation with water discharge in a dryland ephemeral channel, Northern Negev, Israel. Journal of Arid Environments, 53(1): 73-84. https://doi.org/10.1006/jare.2002.1020
  • Allan, D. J. (1995). Stream ecology-structure and function of running water. Chapman and Hall.
  • Anning D. W. & Flynn, M. E. (2014). Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States. U.S. Geological Survey Scientific Investigations Report, 2014-5012: 101. https://doi.org/10.3133/sir20145012
  • Asselman, N. E. M. (2000). Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234: 228-48. https://doi.org/10.1016/S0022-1694(00)00253-5
  • Atalay, İ. (2015). Ekosistem ekolojisi ve coğrafyası, Bornova, Turkey: Meta Basım ve Matbaacılık Hizmetleri.
  • Çakmak, S. (2019). Korkuteli Çayı'nda sediman taşınım süreçleri, Akdeniz Üniversitesi, Sosyal Bilimler Enstitüsü, Basılmamış Y.L. Tezi, Antalya
  • De Girolamo, A. M., Pappagallo, G. & Lo Porto, A. (2015). Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy). Catena, 128: 135-143. https://doi.org/10.1016/j.catena.2014.09.020
  • Duvert, C., Nord, G., Gratiot, N., Navratil, O., Nadal-Romero, E., Mathys, N. … Esteves, M. (2012). Towards prediction of suspended sediment yield from peak discharge in small erodible mountainous catchments (0.45-22 km2) of France, Mexico and Spain. Journal of Hydrology, 454-455: 42-55. https://doi.org/10.1016/j.jhydrol.2012.05.048
  • Farley, D. A. & Werritty, A. (1989). Hydrochemical budgets for the loch dee experimental catchments, southwest Scotland (1981- 985). Journal of Hydrology, 109: 351-368. https://doi.org/10.1016/0022-1694(89)90024-3
  • Francke, T., Lopez-Tarazon, J. A., Vericat, D., Bronstert, A. & Batalla, R. J. (2008). Flood-based analysis of high-magnitude sediment transport using a non-parametric method. Earth Surface Processes and Landforms, 33: 2064-2077. https://doi.org/10.1002/esp.1654
  • Goodwin, T. H., Young, A. R., Holmes, M. G. R., Old, G. H., Hewitt, N., Leeks, G. J. L., Packman, J. C. & Smith, B. P. G. (2003) The temporal and spatial variability of sediment transport and yields within the Bradford Beck catchment, West Yorkshire. Science of The Total Environment, 314-316: 475–494. https://doi.org/10.1016/S0048-9697(03)00069-X
  • Grosbois, C., Negrel, P., Fouillac, C. & Grimaud, D. (2000). Dissolved load of the Loire River: chemical and isotopic characterization. Chemical Geology, 170: 179–201. https://doi.org/10.1016/S0009-2541(99)00247-8
  • Herschy, R. W. (2009). Streamflow measurement. 3st ed. New York, The USA; Taylor and Francis Group.
  • Horowitz, A. J. (1995). The Use of Suspended sediment and associated trace elements in water quality studies. International Association of Hydrological Sciences (Special Publication), 4: 58.
  • Horowitz, A. J., Elrick, K. A. & Smith, J. J. (2001). Estimating suspended sediment and trace element fluxes in large river basins: methodological considerations as applied to the Nasqan programme. Hydrological Processes 15: 1107-1132. https://doi.org/10.1002/hyp.206
  • Knighton, D. (1998). Fluvial form and processes. U. K., London: Wiley.
  • Leopold, L. B., Wolman, M. G. & Miller, J. P. (1992). Fluvial processes in geomorphology. USA, New York: Dover Publications, Inc.
  • Letcher, R. A., Jakeman, A. J., Calfas, M., Linforth, S., Baginska, B., & Lawrance, I. (2002). A comparison of catchment water quality models and direct estimation techniques. Environmental Modelling and Software, 17(1): 77-85. https://doi.org/10.1016/S1364-8152(01)00054-8
  • Liu, C., Sui, J. & Wang, Z. Y. (2008). Sediment load reduction in Chinese rivers. International Journal of Sediment Research, 23: 44-55. https://doi.org/10.1016/S1001-6279(08)60004-9
  • López-Tarazón, J. A., Batalla, R. J., Vericat, D. & Balasch, J. C. (2010). Rainfall, runoff and sediment transport relations in a mesoscale mountainous catchment: the river Isábena (Ebro basin). Catena, 82: 23-34. https://doi.org/10.1016/j.catena.2010.04.005
  • López-Tarazón, J. A., Batalla, R. J., Vericat, D. & Francke, T. (2009). Suspended sediment transport in a highly erodible catchment: the river Isábena (southern Pyrenees). Geomorphology, 109(3-4): 210–221. https://doi.org/10.1016/j.geomorph.2009.03.003
  • Meade, R. H. & Stevens, H. H. (1990). Strategies and equipment for sampling suspended sediment and associated toxic chemicals in large rivers- with emphasis on the Mississippi river. Science of the Total Environment, 97–98: 125–35. https://doi.org/10.1016/0048-9697(90)90235-M
  • Miliman, J.D. & Meade R.H. (1983). World-Wide Delivery of River Sediment to the Oceans. The Journal of Geology, 91 (1): 1-21.
  • Milliman J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the ımportance of small mountainous rivers. The Journal of Geology, 105 (5): 525-544. https://doi.org/10.1086/629606
  • Naiman, R. J., Fetherston, K. L., McKay, S. & Chen, J. (1998). Riparian forests. In River Ecology and Management: Lessons from the Pacific Coastal Ecoregion, ed. RJ Naiman, RE Bilby, pp. 289–323. New York: Springer-Verlag. 705 pp.
  • Padmalal D. & Maya K. (2014). Impacts of River Sand Mining: Environmental Impact and selected Case studies. Springer Science and Business Media Dordrecht (E Book), 23‑80. http://www.springer.com/in/book/9789401791434
  • Padmalal, D., K. Sreelas, K., Raj, V. T. & Sajan, K. (2018). River discharge, major ion chemistry and sediment transport of the Bharathapuzha River, Southwest India: implications on catchment erosion. Journal Geological Society of India, 92: 568-578. https://doi.org/10.1007/s12594-018-1069-5
  • Pavanelli, D. & Cavazza, C. (2010). River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation. Clean (Weinh), 38: 1039–1046. https://doi.org/10.1002/clen.201000016
  • Petts G.E. & Amoros C. (Eds) (1996). Fluvial Hydrosystems. UK, London: Chapman & Hall.
  • Poulos, S. E. & Collins M.B. (2002). Fluviate sediment fluxes to the Mediterranean Sea: a quantitative approach and the influence of dams. S.J. Jones, L.E. Frostick (Eds.), Sediment Flux to Basins: Causes, Controls and Consequences. Special Publications, vol. 191, Geological Society, London (2002), pp. 227-245
  • Richards, K. (1982). Rivers: Form and Process in Alluvial Channels. UK, London: Methuen
  • Rovira, A. & Batalla, R. J. (2006). Temporal distribution of suspended sediment transport in a Mediterranean basin: the lower Tordera (NE Spain). Geomorphology, 79: 58-71. https://doi.org/10.1016/j.geomorph.2005.09.016
  • Rumsey, C. A., Miller, M. P., Schwarz, G. E., Hirsch R. M., & Susong, D. D. (2017). The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin. Hydrological Processes, 31: 4705–4718. https://doi.org/10.1002/hyp.11390
  • Sala, M. & Farguell, J. (2002). Water and sediment yield in two representative Mediterranean catchments under different land uses in the Catalan coastal ranges. Revista C&G, 16: 1-4.
  • Seeger, M., Errea, M. P., Begueria, S., Arnaez, J., Marti, C. & Garcia-Ruiz, J. M. (2004). Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees. Journal of Hydrology, 288: 299–311. https://doi.org/10.1016/j.jhydrol.2003.10.012
  • Swiechowicz, J. (2002). Linkage of slope wash and sediment and solute export from a foothill catchment in the carpathian foothills of South Poland. Earth Surf. Process. Landforms, 27: 1389–1413. https://doi.org/10.1002/esp.437
  • Şenel, M. (1997a). 1/100000 Ölçekli Türkiye Jeoloji Haritası, Denizli Paftası. MTA Genel Müdürlüğü, Ankara.
  • Şenel, M. (1997b). 1/100000 Ölçekli Türkiye Jeoloji Haritası, Isparta Paftası. MTA Genel Müdürlüğü, Ankara.
  • Tena A, Batalla, R.J. & Vericat D. (2012) Reach-scale suspended sediment balance downstream from dams in a large Mediterranean river, Hydrological Sciences Journal, 57 (5): 831-849. https://doi.org/10.1080/02626667.2012.681784
  • Türkeş, M. (2010). Klimatoloji ve meteoroloji. İstanbul, Türkiye: KriterYayınevi.
  • Vanmaercke, M., Poesen, J., Verstraeten, G., De Vente, J. & Ocakoglu, F. (2011). Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology,130:142-161. http://dx.doi.org/10.1016/j.geomorph.2011.03.010
  • Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P. & Syvitski, J. P. M. (2003). Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39: 169–190. https://doi.org/10.1016/S0921-8181(03)00023-7
  • Walling, D. E. (1977). Assessing the accuracy of suspended sediment rating curve for a small basin. Water Resources Research, 13(3): 531–538. https://doi.org/10.1029/WR013i003p00531
  • Walling, D. E. (2006). Human impact on land–ocean sediment transfer by the world's rivers. Geomorphology, 79: 192–216 https://doi.org/10.1016/j.geomorph.2006.06.019
  • Walling, D. E. & Fang, D. (2003). Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 39: 111– 126. https://doi.org/10.1016/S0921-8181(03)00020-1
  • Walling, D.E., Webb, B.W. & Woodward, J.C. (1992). Some sampling considerations in the design of effective strategies for monitoring sediment-associated transport. In: Bogen, J., Walling, D.E., Day, T.J. (Eds.), Erosion and Sediment Transport Monitoring Programmes in River Basins. IAHS Publication No. 210, IAHS Press, Wallingford, UK, pp. 279–288.
  • Zabaleta, A., Martínez, M., Uriarte, J. A. & Antigüedad, I. (2007). Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque country. Catena, 71: 179–190. https://doi.org/10.1016/j.catena.2006.06.007
  • https://svtbilgi.dsi.gov.tr/ Erişim tarihi: 20.01.2017

Estimation of Dissolved Sediment Concentrations and Yields in Korkuteli Stream

Year 2021, Issue: 7, 19 - 29, 15.10.2021
https://doi.org/10.46453/jader.893216

Abstract

The sediment transported by rivers are considered an indicator of the geochemical cycle, soil losses, erosion rates and denudation processes, and it is estimated that rivers transport approximately 20 billion tons of sediment to oceans and seas each year. Many studies on sediment transported by fluvial processes have focused on solid sediment in suspended form, and the dissolved sediment transported has generally been neglected. Although suspended sediments constitute a significant part of the sediment load in rivers, the dissolved sediment, especially in areas where soluble rocks are common, may constitute a large amount of the total sediment load. The aim of this study is to analyze dissolved sediment variability over a period of 12 months in the Korkuteli Stream, and to evaluate the relationship between water discharge, dissolved sediment and precipitation. The water level recorded automatically every 10 minutes using a Mesens (MPS580 Series) Immersion Type Level Transmitter and the water velocity was measured with a Universal Current Meter. The sediment samples were taken using a US-DH48 depth integration sampler and were analyzed by filtration method in laboratory. Results show that a strong relationship exists between flow and dissolved sediment concentration (R2: 0,96). During the winter period, the discharge showed a regular pattern flow characteristics rather than a sudden fluctuation observed in spring and summer months due to low intensity and long-term precipitation in winter months. The results revealed that, unlike the summer months, which are characterized by short-term heavy rainfall events, the amount of dissolved sediment transported during the winter months is less due to low intensity long duration of rainfall events. High intensity, heavy rainfall during the summer period, especially in June, resulted in the amount of discharge reaching the highest values and thus, despite the low dissolved concentration, greater amount of dissolved sediment transport was measured.

Project Number

SYL-2016-1938

References

  • Alexandrov, Y., Laronne, J. B., & Reid, I. (2003). Suspended sediment concentration and its variation with water discharge in a dryland ephemeral channel, Northern Negev, Israel. Journal of Arid Environments, 53(1): 73-84. https://doi.org/10.1006/jare.2002.1020
  • Allan, D. J. (1995). Stream ecology-structure and function of running water. Chapman and Hall.
  • Anning D. W. & Flynn, M. E. (2014). Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States. U.S. Geological Survey Scientific Investigations Report, 2014-5012: 101. https://doi.org/10.3133/sir20145012
  • Asselman, N. E. M. (2000). Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234: 228-48. https://doi.org/10.1016/S0022-1694(00)00253-5
  • Atalay, İ. (2015). Ekosistem ekolojisi ve coğrafyası, Bornova, Turkey: Meta Basım ve Matbaacılık Hizmetleri.
  • Çakmak, S. (2019). Korkuteli Çayı'nda sediman taşınım süreçleri, Akdeniz Üniversitesi, Sosyal Bilimler Enstitüsü, Basılmamış Y.L. Tezi, Antalya
  • De Girolamo, A. M., Pappagallo, G. & Lo Porto, A. (2015). Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy). Catena, 128: 135-143. https://doi.org/10.1016/j.catena.2014.09.020
  • Duvert, C., Nord, G., Gratiot, N., Navratil, O., Nadal-Romero, E., Mathys, N. … Esteves, M. (2012). Towards prediction of suspended sediment yield from peak discharge in small erodible mountainous catchments (0.45-22 km2) of France, Mexico and Spain. Journal of Hydrology, 454-455: 42-55. https://doi.org/10.1016/j.jhydrol.2012.05.048
  • Farley, D. A. & Werritty, A. (1989). Hydrochemical budgets for the loch dee experimental catchments, southwest Scotland (1981- 985). Journal of Hydrology, 109: 351-368. https://doi.org/10.1016/0022-1694(89)90024-3
  • Francke, T., Lopez-Tarazon, J. A., Vericat, D., Bronstert, A. & Batalla, R. J. (2008). Flood-based analysis of high-magnitude sediment transport using a non-parametric method. Earth Surface Processes and Landforms, 33: 2064-2077. https://doi.org/10.1002/esp.1654
  • Goodwin, T. H., Young, A. R., Holmes, M. G. R., Old, G. H., Hewitt, N., Leeks, G. J. L., Packman, J. C. & Smith, B. P. G. (2003) The temporal and spatial variability of sediment transport and yields within the Bradford Beck catchment, West Yorkshire. Science of The Total Environment, 314-316: 475–494. https://doi.org/10.1016/S0048-9697(03)00069-X
  • Grosbois, C., Negrel, P., Fouillac, C. & Grimaud, D. (2000). Dissolved load of the Loire River: chemical and isotopic characterization. Chemical Geology, 170: 179–201. https://doi.org/10.1016/S0009-2541(99)00247-8
  • Herschy, R. W. (2009). Streamflow measurement. 3st ed. New York, The USA; Taylor and Francis Group.
  • Horowitz, A. J. (1995). The Use of Suspended sediment and associated trace elements in water quality studies. International Association of Hydrological Sciences (Special Publication), 4: 58.
  • Horowitz, A. J., Elrick, K. A. & Smith, J. J. (2001). Estimating suspended sediment and trace element fluxes in large river basins: methodological considerations as applied to the Nasqan programme. Hydrological Processes 15: 1107-1132. https://doi.org/10.1002/hyp.206
  • Knighton, D. (1998). Fluvial form and processes. U. K., London: Wiley.
  • Leopold, L. B., Wolman, M. G. & Miller, J. P. (1992). Fluvial processes in geomorphology. USA, New York: Dover Publications, Inc.
  • Letcher, R. A., Jakeman, A. J., Calfas, M., Linforth, S., Baginska, B., & Lawrance, I. (2002). A comparison of catchment water quality models and direct estimation techniques. Environmental Modelling and Software, 17(1): 77-85. https://doi.org/10.1016/S1364-8152(01)00054-8
  • Liu, C., Sui, J. & Wang, Z. Y. (2008). Sediment load reduction in Chinese rivers. International Journal of Sediment Research, 23: 44-55. https://doi.org/10.1016/S1001-6279(08)60004-9
  • López-Tarazón, J. A., Batalla, R. J., Vericat, D. & Balasch, J. C. (2010). Rainfall, runoff and sediment transport relations in a mesoscale mountainous catchment: the river Isábena (Ebro basin). Catena, 82: 23-34. https://doi.org/10.1016/j.catena.2010.04.005
  • López-Tarazón, J. A., Batalla, R. J., Vericat, D. & Francke, T. (2009). Suspended sediment transport in a highly erodible catchment: the river Isábena (southern Pyrenees). Geomorphology, 109(3-4): 210–221. https://doi.org/10.1016/j.geomorph.2009.03.003
  • Meade, R. H. & Stevens, H. H. (1990). Strategies and equipment for sampling suspended sediment and associated toxic chemicals in large rivers- with emphasis on the Mississippi river. Science of the Total Environment, 97–98: 125–35. https://doi.org/10.1016/0048-9697(90)90235-M
  • Miliman, J.D. & Meade R.H. (1983). World-Wide Delivery of River Sediment to the Oceans. The Journal of Geology, 91 (1): 1-21.
  • Milliman J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the ımportance of small mountainous rivers. The Journal of Geology, 105 (5): 525-544. https://doi.org/10.1086/629606
  • Naiman, R. J., Fetherston, K. L., McKay, S. & Chen, J. (1998). Riparian forests. In River Ecology and Management: Lessons from the Pacific Coastal Ecoregion, ed. RJ Naiman, RE Bilby, pp. 289–323. New York: Springer-Verlag. 705 pp.
  • Padmalal D. & Maya K. (2014). Impacts of River Sand Mining: Environmental Impact and selected Case studies. Springer Science and Business Media Dordrecht (E Book), 23‑80. http://www.springer.com/in/book/9789401791434
  • Padmalal, D., K. Sreelas, K., Raj, V. T. & Sajan, K. (2018). River discharge, major ion chemistry and sediment transport of the Bharathapuzha River, Southwest India: implications on catchment erosion. Journal Geological Society of India, 92: 568-578. https://doi.org/10.1007/s12594-018-1069-5
  • Pavanelli, D. & Cavazza, C. (2010). River suspended sediment control through riparian vegetation: a method to detect the functionality of riparian vegetation. Clean (Weinh), 38: 1039–1046. https://doi.org/10.1002/clen.201000016
  • Petts G.E. & Amoros C. (Eds) (1996). Fluvial Hydrosystems. UK, London: Chapman & Hall.
  • Poulos, S. E. & Collins M.B. (2002). Fluviate sediment fluxes to the Mediterranean Sea: a quantitative approach and the influence of dams. S.J. Jones, L.E. Frostick (Eds.), Sediment Flux to Basins: Causes, Controls and Consequences. Special Publications, vol. 191, Geological Society, London (2002), pp. 227-245
  • Richards, K. (1982). Rivers: Form and Process in Alluvial Channels. UK, London: Methuen
  • Rovira, A. & Batalla, R. J. (2006). Temporal distribution of suspended sediment transport in a Mediterranean basin: the lower Tordera (NE Spain). Geomorphology, 79: 58-71. https://doi.org/10.1016/j.geomorph.2005.09.016
  • Rumsey, C. A., Miller, M. P., Schwarz, G. E., Hirsch R. M., & Susong, D. D. (2017). The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin. Hydrological Processes, 31: 4705–4718. https://doi.org/10.1002/hyp.11390
  • Sala, M. & Farguell, J. (2002). Water and sediment yield in two representative Mediterranean catchments under different land uses in the Catalan coastal ranges. Revista C&G, 16: 1-4.
  • Seeger, M., Errea, M. P., Begueria, S., Arnaez, J., Marti, C. & Garcia-Ruiz, J. M. (2004). Catchment soil moisture and rainfall characteristics as determinant factors for discharge/suspended sediment hysteretic loops in a small headwater catchment in the Spanish Pyrenees. Journal of Hydrology, 288: 299–311. https://doi.org/10.1016/j.jhydrol.2003.10.012
  • Swiechowicz, J. (2002). Linkage of slope wash and sediment and solute export from a foothill catchment in the carpathian foothills of South Poland. Earth Surf. Process. Landforms, 27: 1389–1413. https://doi.org/10.1002/esp.437
  • Şenel, M. (1997a). 1/100000 Ölçekli Türkiye Jeoloji Haritası, Denizli Paftası. MTA Genel Müdürlüğü, Ankara.
  • Şenel, M. (1997b). 1/100000 Ölçekli Türkiye Jeoloji Haritası, Isparta Paftası. MTA Genel Müdürlüğü, Ankara.
  • Tena A, Batalla, R.J. & Vericat D. (2012) Reach-scale suspended sediment balance downstream from dams in a large Mediterranean river, Hydrological Sciences Journal, 57 (5): 831-849. https://doi.org/10.1080/02626667.2012.681784
  • Türkeş, M. (2010). Klimatoloji ve meteoroloji. İstanbul, Türkiye: KriterYayınevi.
  • Vanmaercke, M., Poesen, J., Verstraeten, G., De Vente, J. & Ocakoglu, F. (2011). Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology,130:142-161. http://dx.doi.org/10.1016/j.geomorph.2011.03.010
  • Vörösmarty, C. J., Meybeck, M., Fekete, B., Sharma, K., Green, P. & Syvitski, J. P. M. (2003). Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change, 39: 169–190. https://doi.org/10.1016/S0921-8181(03)00023-7
  • Walling, D. E. (1977). Assessing the accuracy of suspended sediment rating curve for a small basin. Water Resources Research, 13(3): 531–538. https://doi.org/10.1029/WR013i003p00531
  • Walling, D. E. (2006). Human impact on land–ocean sediment transfer by the world's rivers. Geomorphology, 79: 192–216 https://doi.org/10.1016/j.geomorph.2006.06.019
  • Walling, D. E. & Fang, D. (2003). Recent trends in the suspended sediment loads of the world’s rivers. Global and Planetary Change, 39: 111– 126. https://doi.org/10.1016/S0921-8181(03)00020-1
  • Walling, D.E., Webb, B.W. & Woodward, J.C. (1992). Some sampling considerations in the design of effective strategies for monitoring sediment-associated transport. In: Bogen, J., Walling, D.E., Day, T.J. (Eds.), Erosion and Sediment Transport Monitoring Programmes in River Basins. IAHS Publication No. 210, IAHS Press, Wallingford, UK, pp. 279–288.
  • Zabaleta, A., Martínez, M., Uriarte, J. A. & Antigüedad, I. (2007). Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque country. Catena, 71: 179–190. https://doi.org/10.1016/j.catena.2006.06.007
  • https://svtbilgi.dsi.gov.tr/ Erişim tarihi: 20.01.2017
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Physical Geography and Environmental Geology
Journal Section Articles
Authors

Seçkin Çakmak 0000-0001-8546-6608

Tuncer Demir 0000-0001-6808-4974

Ahmet Serdar Aytaç 0000-0001-8638-038X

Project Number SYL-2016-1938
Publication Date October 15, 2021
Submission Date March 8, 2021
Acceptance Date April 23, 2021
Published in Issue Year 2021 Issue: 7

Cite

APA Çakmak, S., Demir, T., & Aytaç, A. S. (2021). Korkuteli Çayı’nda Taşınan Eriyik Sediman Konsantrasyonları ve Verimlerinin Tahmin Edilmesi. Jeomorfolojik Araştırmalar Dergisi(7), 19-29. https://doi.org/10.46453/jader.893216

Journal of Geomorphological Researches  ( JADER )

Turkish Society for Geomorphology ( www.jd.org.tr )