Year 2020, Volume 4 , Issue 1, Pages 70 - 89 2020-03-15

Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization

Astrid LEİVA [1] , Fabio GRANADOS-CHİNCHİLLA [2]


Fatty acid determination is used for the characterization of the lipid fraction in foods, providing essential information regarding feed and food quality. Most edible fats and oils are composed primarily of linear saturated fatty acids, branched, mono-unsaturated, di-unsaturated, and higher unsaturated fatty acids. To attain this information we developed a gas chromatography (GC) method that can separate fatty acids from C4 to C24 using mass spectrometry identification. A simplified sample preparation procedure was applied so it is not time-consuming and short enough to avoid fat degradation. Additionally, one-step derivatization was applied to obtained fatty acid methyl esters in situ in the gas chromatograph injection port, using tetramethylammonium hydroxide and a high polarity polyethylene glycol-based cross-linked microbore chromatographic column was coupled to achieve the separation of 60 compounds in under 15 minutes with extreme sensibility. The versatility of the method allows fatty acid profile (including saturated [SFA], monounsaturated [MUFA], and polyunsaturated fatty acids [PUFA]) information to be gathered in different products of primary production i. raw materials commonly used in the production of animal feed, ii. profiles for balanced feed for laying hens, beef cattle and dairy cattle and iii. products of animal origin intended for human consumption, such as meat, eggs, and milk. Our data (performance parameters and fatty acid profiles) support the validity of the results; the method can be used for quality assurance both in productive species feed and feed ingredients, pet food, and related food matrices. The technique presented herein can be used as a high-throughput routine screening tool to assess fat quality as this data is paramount to improve animal nutrition and health and animal-derived products of human consumption.  
Animal feeds, Fat content and quality, Food-producing animals, GC/MS
  • 1. Ahlstrøm, Ø., Krogdahl, Å., Vhile, S.G., Skrede, A. (2004). Fatty Acid Composition in Commercial Dog Foods. J Nutr 134:2145S – 2147S. https://doi.org/10.1093/jn/134.8.2145S.
  • 2. Ajila, C.M., Brar, S.K., Verma, M., Tyagi, R.D., Godbout, S., Valéro, J.R. (2012). Bio-processing of agro-byproducts to animal feed. Crit Rev Biotechnol 32:382-400. https://doi.org/10.3109/07388551.2012.659172
  • 3. Azeman, N.H., Yusof, N.A., Othman, A.I. (2015). Detection of Free Fatty Acid in Crude Palm oil. Asian J Chem 27:1569-1573. https://doi.org/10.14233/ajchem.2015.17810
  • 4. Baião, N.C., Lara, L.J.C. (2005). Oil and Fat in Broiler Nutrition. Braz J Poultry Sci 7:129-141. http://dx.doi.org/10.1590/S1516-635X2005000300001.
  • 5. Baltić, B., Starčević, M., Đorđević, J., Mrdović, B., Marković, R. (2017). Importance of medium chain fatty acids in animal nutrition. IOP Conf. Series: Earth and Environmental Science 85:012048. https://doi.org/10.1088/1755-1315/85/1/012048
  • 6. Baser, Ö., Yalçin, S. (2017). Determination of some quality characteristics in pet foods. Ankara Üniv Vet Fak Derg 64:21-24.
  • 7. Bhardwaj, S.K., Dwivedi, K., Agarwal, D.D. (2016) A review: GC Method Development and validation. International Journal of Analytical and Bioanalytical Chemistry 6:1 – 7.
  • 8. Biagi, G., Mordenti, A.L., Cocchi, M., Mordenti, A. (2004). The role of dietary omega-3 and omega-6 essential fatty acids in the nutrition of dogs and cat: a review. Progr Nutr 6.
  • 9. Borman, P., Elder, D. (2018). Q2 (R1) Validation of Analytical Procedures. In: ICH Quality Guidelines: An Implementation Guide, Chapter 5. John Wiley & Sons, Inc. pp 125-167
  • 10. Cabrera, M.C., Saadoun, A. (2014). An overview of the nutritional value of beef and lamb meat from South America. Meat Science 98:435 – 444. https://doi.org/10.1016/j.meatsci.2014.06.033
  • 11. Castillo, J., Olivera, M., Carulla, J. (2016). Description of the biochemistry mechanism of polyunsaturated fatty acid ruminal biohydrogenation: A review. Rev U.D.CA Act & Div Cient 16:459 – 468.
  • 12. Celi, P., Cowieson, A.J., Fru-Nji, F., Steinert, R.E., Kluenter, A-M., Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New Opportunities for sustainable animal production. Anim Feed Sci Tech 234:88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012
  • 13. Çentiül, I.S., Yardimci, M. (2008). The importance of fat in farm animal nutrition. Kocatepe Vet J 1:77-81.
  • 14. Chatgilialoglu, C., Ferreri, C., Melchiorre, M., Sansone, A., Torreggiani, A. (2013). Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 114:255 – 284. https://doi.org/10.1021/cr4002287
  • 15. Cherian, G. (2017). Supplemental Flax and Impact on n3 and n6 Polyunsatured Fatty Acids in Eggs. In: Eggs Innovation and Strategies for Improvements, Chapter 34. Elsevier Inc. pp 365-372. https://doi.org/10.1016/B978-0-12-800879-9.00034-2
  • 16. Chilliard, Y., Ferlay, A., Doreau, M. (2001). Effect of types of forages, animal fat or marine oils in cow´s diet on milk secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livestock Production Science 70:31 – 48.
  • 17. Choe, E., Oh, S. (2013). Effects of water activity on the lipid oxidation and antioxidants of Dried Laver (Porphyra) during storage in the dark. J Food Sci 78:1144 – 1151. https://doi.org/10.1111/1750-3841.12197
  • 18. Christie, W.W. (1993). Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. In: Christie WW (ed). Advances in Lipid Methodology, Scotland: Oily Press pp 69 – 111.
  • 19. Daley, C.A., Abbot, A., Doyle, P.S., Nader, G.A., Larson, S. (2010). A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutrition Journal 9:1–12. https://doi.org/10.1186/1475-2891-9-10.
  • 20. de Blass, C., Mateos, G.G., García-Rebollar, P. (2010). Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos. Fundación Española para el Desarrollo de la Nutrición Animal. Madrid pp 502.
  • 21. Di Cerbo, A., Morales-Medina, J.C., Palmieri, B., Pezzuto, F., Cocco, R., Flores, G., Iannitti, T. (2017). Functional foods in pet nutrition: Focus on dogs and cats. Res Vet Sci 112:161-166. https://doi.org/10.1016/j.rvsc.2017.03.020
  • 22. Duarte, A.C., Holman, D.B., Alexander, T.W., Durmic, Z., Vercoe, P.E., Chaves, A.V. (2017). The Type of Forage Substrate Preparation Included as Substrate in a RUSITEC System Affects the Ruminal Microbiota and Fermetation Characteristics. Frontiers in Microbiology 8:1-11. https://doi.org/10.3389/fmicb.2017.00704
  • 23. Dworzanski, J.P., Berwald, L., Meuzelaar, H.L.C. (1990). Pyrolytic methylation-gas chromatography of whole bacterial cells for rapid profiling of cellular fatty acids. Appl Environ Microbiol 55:1717 – 1720.
  • 24. FDA. (1984). Inspection Technical Guides: Water Activity (aw) in Foods. https://www.fda.gov/ICECI/Inspections/InspectionGuides/InspectionTechnicalGuides/ucm072916.htm [Access date: 01.08.2018]
  • 25. FEDIAF. (2016). Nutritional guidelines for complete and complementary pet food for cats and dogs. www.fediaf.org/component/attachments/attachments.html?task=download&id=48. [Access date: 01.08.2018].
  • 26. FEDNA. (2008). Necesidades nutricionales para avicultura: pollos de carne y aves de puesta. http://www.vet.unicen.edu.ar/ActividadesCurriculares/AlimentosAlimentacion/images/NORMAS_AVES_2008.pdf [Access date: 01.08.2018].
  • 27. FEDNA. (2009). Necesidades nutricionales para: rumiantes de leche. http://www.vet.unicen.edu.ar/ActividadesCurriculares/ProduccionBovinosCarneLeche/images/Documentos/Alimentaci%C3%B3n%20Rumiantes/Alvarado/Sistema%20de%20Alimentacion/NORMAS_LECHE_2009.pdf. [Access date: 01.11.2018].
  • 28. Fraeye, I., Bruneel, C., Lemahieu, C., Buyse, J., Muylaert, K., Foubert, I. (2012). Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Research International 48:961–969. https://doi.org/10.1016/j.foodres.2012.03.014
  • 29. Givens, D.I. (2015). Manipulation of lipids in animal-derived foods: Can it contribute to public health nutrition? Eur J Lipid Sci Technol 117:1306-1316. https://doi.org/10.1002/ejlt.201400427
  • 30. Glasser, F., Doreau, M., Maxin, G., Baumont, R. (2013). Fat and fatty acid content and composition of forages: a meta-analysis. Anim Feed Sci Technol 185:19–34. https://doi.org/10.1016/j.anifeedsci.2013.06.010
  • 31. Haan, G.J., van der Heide, S., Wolthers, B.G. (1979) Analysis of fatty acids from human lipids by gas chromatography. J Chrom B 162:261–271.
  • 32. Harvatine, H.J., Allen, M.S. (2006). Effects of fatty acid supplements on feed intake, and feeding and chewing behavior of lactating dairy cows. J Dairy Sci 89:1104-1112. https://doi.org/10.3168/jds.S0022-0302(06)72178-6
  • 33. Hess, T., Ross-Jones, T. (2014). Omega-3 fatty acid supplementation in horses. R Bras Zootec 43:677-683. http://dx.doi.org/10.1590/S1516-35982014001200008
  • 34. Janovych, V., Lagodyuk, P. (1991). Lipid metabolism in animals in ontogenesis 317.
  • 35. Kerr, B.J., Kellner, T.A., Shurson, G.C. (2015). Characteristics of lipids and their feeding value in swine diets. J Anim Sci Biotechnol 6. http://dx.doi.org/10.1186/s40104-015-0028-x
  • 36. Khan, S.A., Khan, A., Khan, S.A., Beg, M.A., Ali, A., Damanhouri, G. (2015). Comparative study of fatty-acid composition of table eggs from Jeddah food market and effect of value addition in omega-3 bio-fortified eggs. Saudi Journal of Biological Sciences 24: 929 – 935. https://doi.org/10.1016/j.sjbs.2015.11.001
  • 37. Lee, C.H., Parkin, K.L. (2001). Effect of Water Activity and Immobilization of Fatty Acid Selectivity for Esterification Reactions Mediated by Lipases. Biotechnology and Bioengineering 75:219–227.
  • 38. Lenox, C.E., Bauer, J.E. (2013). Potential adverse effects of omega-3 fatty acids in dogs and cats. J Vet Intern Med 27:217-226. https://doi.org/10.1111/jvim.12033
  • 39. Liu, Y., Yong Kil, D., Perez-Mendoza, V.G., Song, M., Pettigrew, J.E. (2018). Supplementation of different dat sources affects growth performance and carcass composition of finishing pigs. J Anim Sci Biotechnol 9. https://doi.org/10.1186/s40104-018-0274-9
  • 40. Mahesar, S.A., Sherazi, S.T.H., Khaskheli, A.R., Kandhro, A.A., Uddin, S. (2014). Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods 6:4956-4963. https://doi.org/10.1039/C4AY00344F
  • 41. Makkar, H.P.S. (2016). Animal nutrition in 360-degree view and a framework for future R&D work: towards sustainable livestock production. Anim Prod Sci 56:1561-1568. https://doi.org/10.1071/AN15265
  • 42. Marín, S., Magan, N., Abellana, M., Canela, R., Ramos, A.J., Sanchis, V. (2000). Selective effect of propionates and water activity on maize mycoflora and impact of fumonisin B1 accumulation. Journal of Stores Products Research. 16:203–214.
  • 43. Markiewicz-Kęszycka, M., Czyżak-Runowska, G., Lipińska, P., Wójtowski, J. (2013). Fatty acid profile of milk – A review. Bull Vet Inst Pulawy 57, 135-139. https://doi.org/10.2478/bvip-2013-0026
  • 44. Moran, Jr ET. (1996). Fat modification of animal products for human consumption. Anim Feed Sci Technol 58:91 – 99.
  • 45. Moreiras, O., Carbajal, A., Cabrera, L., Cuadrado, C. (2013). Tablas de Composición de Alimentos. Ediciones Pirámide, 1st edition, Spain.
  • 46. NRC. (2001). Nutrient Requirements of Dairy Cattle, 7th ed. USA.
  • 47. NRC. (2006). Your cat’s nutritional needs. A science-based guide for pet owners. http://dels.nas.edu/resources/static-assets/materials-based-on-reports/booklets/cat_nutrition_final.pdf [Access date: 01.08.2018].
  • 48. NRC. (2006). Your dog’s nutritional needs. A science-based guide for pet owners. http://dels.nas.edu/resources/static-assets/banr/miscellaneous/dog_nutrition_final_fix.pdf. [Access date: 01.08.2018].
  • 49. Pavkovych, S., Vovk, S., Kruzhel, B. (2015). Protected lipids and fatty acids in cattle feed rations. Acta Sci Pol Zootechnica 14:3-14.
  • 50. Pereira de Souza, A.H., Gohara, A.K., Cláudia Rodrigues, A., Evelázio de Souza, N., Visentainer, J.V., Matsushita, M. (2013). Sacha inchi as potential source of essential fatty acids and tocopherols: multivariate study of nut and shell. Acta Scientiarum 35:757-763. https://doi.org/10.4025/actascitechnol.v35i4.19193
  • 51. Poorghasemi, M., Seidavi, A., Qotbi, A.A.A., Laudadio, V., Tufarelli, V. (2013). Influence of Dietary Fat Source on Growth Performance Responses and Carcass Traits of Broiler Chicks. Asian Australas J Anim Sci 26:705–710. https://doi.org/10.5713/ajas.2012.12633
  • 52. Rostagno, H.S., Teixeira, L.F., Hannas, M.I., Donzele, J.L., Sakomura, N.K., Perazzo, F.G., Saraiva, A., Teixeira de Abreu, M.L., Rodrigues, P.B., de Oliveira, R.F., de Toledo, S.L., de Oliveira, C. (2017). Tablas Brasileñas para Aves y Cerdos. Composición de Alimentos y Requerimientos Nutricionales, 4th edition. Brazil.
  • 53. Salimon, J., Omar, T.A., Salih, N. (2017). An accurate and reliable method for identification and quantification of fatty acids and trans fatty acids in food fats samples using gas chromatography. Arab J Chem 10:S1875 – S1882. https://doi.org/10.1016/j.arabjc.2013.07.016
  • 54. Sardesai, V.M. (1992). The Essential Fatty Acids. Nutr Clin Pract 7:179-186.
  • 55. Sauvant, D., Perez, J.M., Tran, G. (eds). (2004) Tables of composition and nutritional value of feed materials. The Netherlands and Paris, France.
  • 56. Schmitt, B., Ferry, C., Mairesse, G., Karhoas, N., Chesneau, G., Weill, P., Mourot, J. (2018). The choice of animal feeding system influences fatty acid intakes of the average French diet. OCL 25.
  • 57. Sharma, H., Giriprasad, R., Goswami, M. (2013) Animal fat-processing and its quality control. J Food Process Technol 4. http://dx.doi.org/10.4172/2157-7110.1000252
  • 58. Shepon, A., Eshel, G., Milo, R. (2016). Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. Environ Res Lett 11. http://dx.doi.org/10.1088/1748-9326/11/10/105002
  • 59. Stefanov, I., Vlaeminck, B., Fievez, V. (2010). A novel procedure for routine milk fat extraction based on dichloromethane. J Food Comp Anal 23:852–855. https://doi.org/10.1016/j.jfca.2010.03.016
  • 60. Sykes, M., Knaggs, M., Hunter, S., Leach, E., Eaton, C., Anderson, D. (2014). Some selected discrepancies observed in food chemistry proficiency tests. Quality Assurance and Safety of Crops & Foods 6:291 – 297. https://doi.org/10.3920/QAS2013.0373
  • 61. Thornton, P.K. (2010). Livestock production: recent trends, future prospects. Phil Trans R Soc B 365:2853-2867. https://doi.org/10.1098/rstb.2010.0134
  • 62. Topolewska, A., Czarnowska, K., Haliński, Ł.P., Stepnowski, P. (2014). Comparison of two derivatization methods for the analysis of fatty acids and trans fatty acids in bakery products using gas chromatography. Sci World J 2014:906407. http://dx.doi.org/10.1155/2014/906407
  • 63. Topolewska, A., Czarnowska, K., Haliński, Ł.P., Stepnowski, P. (2015). Evaluation of four derivatization methods for the analysis of fatty acids from green leafy vegetables by gas chromatography. J Chrom B 990:150–157. https://doi.org/10.1016/j.jchromb.2015.03.020
  • 64. US FDA. (2015). Analytical Procedures and Methods Validation for Drugs and Biologics, Guidance for Industry. https://www.fda.gov/downloads/drugs/guidances/ucm386365.pdf. [Access date: 01.08.2018].
  • 65. Van der Hoeven-Hangoor, E., Rademaker, C.J., Paton, N.D., Verstegen, M.W.A., Hendriks, W.H. (2014). Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples. Poultry Science 93:1782–1792. https://doi.org/10.3382/ps.2013-03776.
  • 66. Wąsik, M., Mikuała, M., Bartyzel, B.J., Strokowska, N., Sablik., P, Uca., Y.O., Koczoń, P. (2016). Polyunsaturated fatty acids in idiopathic epilepsy treatments in dogs. Acta Sci Pol Zootechnica 15:3-10.
  • 67. West, J.C. (1975). Rapid preparation of methyl esters from lipids, alkyd paint resins, polyester resins, and ester plasticizers. Anal Chem 47:1708 – 1709.
  • 68. Woods, V.B., Fearon, A.M. (2009). Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: A review. Livestocks Science 126:1-20. https://doi.org/10.1016/j.livsci.2009.07.002
Primary Language en
Subjects Food Science and Technology, Agricultural, Engineering
Published Date March 2020
Journal Section Research Articles
Authors

Orcid: 0000-0001-7466-8773
Author: Astrid LEİVA (Primary Author)
Institution: Centro de Investigación en Nutrición Animal, Universidad de Costa Rica
Country: Costa Rica


Orcid: 0000-0003-4828-3727
Author: Fabio GRANADOS-CHİNCHİLLA
Institution: Centro de Investigación en Nutrición Animal, Universidad de Costa Rica
Country: Costa Rica


Dates

Application Date : April 20, 2019
Acceptance Date : February 21, 2020
Publication Date : March 15, 2020

Bibtex @research article { jaefs556445, journal = {International Journal of Agriculture Environment and Food Sciences}, issn = {}, eissn = {2618-5946}, address = {Dicle University Faculty of Agriculture Department of Horticulture, 21280 Diyarbakir / Turkey}, publisher = {Gültekin ÖZDEMİR}, year = {2020}, volume = {4}, pages = {70 - 89}, doi = {10.31015/jaefs.2020.9}, title = {Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization}, key = {cite}, author = {LEİVA, Astrid and GRANADOS-CHİNCHİLLA, Fabio} }
APA LEİVA, A , GRANADOS-CHİNCHİLLA, F . (2020). Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization. International Journal of Agriculture Environment and Food Sciences , 4 (1) , 70-89 . DOI: 10.31015/jaefs.2020.9
MLA LEİVA, A , GRANADOS-CHİNCHİLLA, F . "Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization". International Journal of Agriculture Environment and Food Sciences 4 (2020 ): 70-89 <https://dergipark.org.tr/en/pub/jaefs/issue/52434/556445>
Chicago LEİVA, A , GRANADOS-CHİNCHİLLA, F . "Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization". International Journal of Agriculture Environment and Food Sciences 4 (2020 ): 70-89
RIS TY - JOUR T1 - Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization AU - Astrid LEİVA , Fabio GRANADOS-CHİNCHİLLA Y1 - 2020 PY - 2020 N1 - doi: 10.31015/jaefs.2020.9 DO - 10.31015/jaefs.2020.9 T2 - International Journal of Agriculture Environment and Food Sciences JF - Journal JO - JOR SP - 70 EP - 89 VL - 4 IS - 1 SN - -2618-5946 M3 - doi: 10.31015/jaefs.2020.9 UR - https://doi.org/10.31015/jaefs.2020.9 Y2 - 2020 ER -
EndNote %0 International Journal of Agriculture Environment and Food Sciences Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization %A Astrid LEİVA , Fabio GRANADOS-CHİNCHİLLA %T Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization %D 2020 %J International Journal of Agriculture Environment and Food Sciences %P -2618-5946 %V 4 %N 1 %R doi: 10.31015/jaefs.2020.9 %U 10.31015/jaefs.2020.9
ISNAD LEİVA, Astrid , GRANADOS-CHİNCHİLLA, Fabio . "Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization". International Journal of Agriculture Environment and Food Sciences 4 / 1 (March 2020): 70-89 . https://doi.org/10.31015/jaefs.2020.9
AMA LEİVA A , GRANADOS-CHİNCHİLLA F . Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization. int. j. agric. environ. food sci.. 2020; 4(1): 70-89.
Vancouver LEİVA A , GRANADOS-CHİNCHİLLA F . Fatty acid profiling in animal feeds and related food matrixes using a fast GC/MS method and in situ derivatization. International Journal of Agriculture Environment and Food Sciences. 2020; 4(1): 89-70.