Abstract
Fatty acid determination is used for the characterization of the lipid fraction in foods, providing essential information regarding feed and food quality. Most edible fats and oils are composed primarily of linear saturated fatty acids, branched, mono-unsaturated, di-unsaturated, and higher unsaturated fatty acids. To attain this information we developed a gas chromatography (GC) method that can separate fatty acids from C4 to C24 using mass spectrometry identification. A simplified sample preparation procedure was applied so it is not time-consuming and short enough to avoid fat degradation. Additionally, one-step derivatization was applied to obtained fatty acid methyl esters in situ in the gas chromatograph injection port, using tetramethylammonium hydroxide and a high polarity polyethylene glycol-based cross-linked microbore chromatographic column was coupled to achieve the separation of 60 compounds in under 15 minutes with extreme sensibility. The versatility of the method allows fatty acid profile (including saturated [SFA], monounsaturated [MUFA], and polyunsaturated fatty acids [PUFA]) information to be gathered in different products of primary production i. raw materials commonly used in the production of animal feed, ii. profiles for balanced feed for laying hens, beef cattle and dairy cattle and iii. products of animal origin intended for human consumption, such as meat, eggs, and milk. Our data (performance parameters and fatty acid profiles) support the validity of the results; the method can be used for quality assurance both in productive species feed and feed ingredients, pet food, and related food matrices. The technique presented herein can be used as a high-throughput routine screening tool to assess fat quality as this data is paramount to improve animal nutrition and health and animal-derived products of human consumption.