Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Antioxidant and antibacterial activities of essential oils and aromatic waters of some plants grown in the highlands

Year 2021, Volume 5, Issue 2, 133 - 139, 28.06.2021
https://doi.org/10.31015/jaefs.2021.2.1

Abstract

The essential oils from twenty-two plants grown in the highlands were isolated by hydrodistillation. The plants with an essential oil yield above one percent, including Achillea millefolium, Asparagus plumosus, Matricaria chamomilla, Mentha piperita, Mentha pulegium, and Thymus vulgaris, were tested for the antibacterial activity and total antioxidant capacity. Their antibacterial activities against three most common foodborne pathogens and an opportunistic pathogen were evaluated. Results indicated that T. vulgaris essential oil had the highest total antioxidant capacity with 11.78 ± 0.01 mmol/L TE. The essential oils of plants inhibited the growth of pathogen bacteria tested, while their aromatic waters showed no inhibition. T. vulgaris oil was most powerful antibacterial essential oil with the inhibition zones of 49.27±7.26 mm against S. aureus, 44.13±4.16 mm against L. monocytogenes, 39.55 ± 0.52 mm against E. coli, and 38.09 ± 4.15 mm against M. luteus. Furthermore, the volatile compounds of T. vulgaris essential oil were detected using GC-MS. Thymol, carvacrol, caryophyllene, 1,8-cineole, 2 acetyl-4,5-dimethylphenol, and γ-terpinene were determined as major compounds in T. vulgaris essential oil. The obtained results suggest that the essential oils of tested plants with high antimicrobial activity and antioxidant capacity might be used as natural antioxidant and antimicrobial agents.

References

  • Abdoul-Latif, F. M., Mohamed, N., Edou, P., Ali, A. A., Djama, S. O., Obame, L. C., Bassolé, I. H. N., and Dicko, M. H. (2011). Antimicrobial and antioxidant activities of essential oil and methanol extract of Matricaria chamomilla L. from Djibouti. Journal of Medicinal Plants Research, 5(9): 1512-1517. Doi: https://doi.org/10.5897/JMPR
  • Archer, G. L. (1998). Staphylococcus aureus: a well-armed pathogen. Reviews of Infectious Diseases 26(5): 1179-1181. Doi: https://doi.org/10.1086/520289
  • Bezić, N., Skočibušić, M., Dunkić, V. and Radonić, A. (2003). Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytotherapy Research, 17(9): 1037-1040. Doi: https://doi.org/10.1002/ptr.1290
  • Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3): 529-563. Doi: https://doi.org/ 10.3934/microbiol.2017.3.529
  • Buchanan, R. L., Gorris, L. G., Hayman, M. M., Jackson, T. C. and Whiting, R. C. (2017). A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75: 1-13. Doi: https://doi.org/10.1016/j.foodcont.2016.12.016
  • Candan, F., Unlu, M., Tepe, B., Daferera, D., Polissiou, M., Sökmen, A. and Akpulat, H. A. (2003). Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan (Asteraceae). Journal of Ethnopharmacology, 87(2-3): 215-220. Doi: https://doi.org/ 10.1016/s0378-8741(03)00149-1
  • Chizzola, R., Michitsch, H. and Franz, C. (2008). Antioxidative properties of Thymus vulgaris leaves: comparison of different extracts and essential oil chemotypes. Journal of Agricultural and Food Chemistry, 56(16): 6897-6904. Doi: https://doi.org/ 10.1021/jf800617g
  • Couladis, M., Tzakou, O., Kujundzic, S., Sokovic, M. and Mimica‐Dukic, N. (2004). Chemical analysis and antifungal activity of Thymus striatus. Phytotherapy Research, 18(1): 40-42. Doi: https://doi.org/ 10.1002/ptr.1353
  • Daferera, D. J., Ziogas, B. N. and Polissiou, M. G. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22(1): 39-44. Doi: https://doi.org/10.1016/S0261-2194(02)00095-9
  • De Oliveira, K. A. R., de Sousa J. P., Medeiros, J. A. D. C., de Figueiredo, R. C. B. Q., Magnani, M., de Siqueira J. P. et al. (2015). Synergistic inhibition of bacteria associated with minimally processed vegetables in mixed culture by carvacrol and 1,8-cineole. Food Control, 47: 334-339. Doi: https://doi.org/10.1016/j.foodcont.2014.07.014
  • El-Kalamouni, C., Venskutonis, P., Zebib, B., Merah, O., Raynaud, C. and Talou, T. (2017). Antioxidant and antimicrobial activities of the essential oil of Achillea millefolium L. grown in France. Medicines, 4(2): 30. Doi: https://doi.org/10.3390/medicines4020030
  • García-García, R., Lòpez-Malo, A. and Palou, E. (2011). Bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua. Journal of Food Science, 76: 95-100. Doi: https://doi.org/10.1111/j.1750-3841.2010.02005.x
  • Kao, C. C., Chiang, C. K. and Huang, J. W. (2014). Micrococcus species-related peritonitis in patients receiving peritoneal dialysis. International Urology and Nephrology, 46(1): 261-264. Doi: https://doi.org/10.1007/s11255-012-0302-1
  • Kulisic, T., Radonic, A. and Milos, M. (2005). Antioxidant properties of thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) essential oils. Italian Journal of Food Science, 17(3): 315-324. https://agris.fao.org/agris-search/search.do?recordID=IT2006600159
  • İşçan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M., Başer, H. C. and Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural and Food Chemistry, 50(14): 3943-3946. Doi: https://doi.org/10.1021/jf011476k
  • Madikizela, B., Ndhlala, A. R., Finnie, J. F. and van Staden, J. (2014). Antimycobacterial, anti-inflammatory and genotoxicity evaluation of plants used for the treatment of tuberculosis and related symptoms in South Africa. Journal of Ethnopharmacology, 153(2): 386-391. Doi: https://doi.org/10.1016/j.jep.2014.02.034
  • Mahboubi, M. and Haghi, G. (2008). Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. Journal of Ethnopharmacology, 119(2): 325-327. Doi: https://doi.org/10.1016/j.jep.2008.07.023
  • Mattazi, N., Farah, A., Fadil, M., Chraibi, M. and Benbrahim, K. F. (2015). Essential oils analysis and antibacterial activity of the leaves of Rosmarinus officinalis, Salvia officinalis and Mentha piperita cultivated in agadir (Morocco). International Journal of Pharmacy and Pharmaceutical Sciences, 7(9): 73-79. https://innovareacademics.in/journals/index.php/ijpps/article/view/6071/pdf_1073
  • Miladi, H., Slama, R. B., Mili, D., Zouari, S., Bakhrouf, A. and Ammar, E. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Natural Science, 5(6): 729-739. Doi: https://doi.org/10.4236/ns.2013.56090
  • Oussalah, M., Caillet, S., Saucier, L. and Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18 (5): 414-420. Doi: https://doi.org/10.1016/j.foodcont.2005.11.009
  • Roby, M. H. H., Sarhan, M. A., Selim, K. A. H. and Khalel, K. I. (2013). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Industrial Crops and Products, 44: 437-445. Doi: https://doi.org/10.1016/j.indcrop.2012.10.012
  • Ruberto, G. and Baratta, M. T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry, 69: 167–174. Doi: https://doi.org/10.1016/S0308-8146(99)00247-2
  • Sahin, S., Eulenburg, V., Heinlein, A., Villmann, C. and Pischetsrieder, M. (2017). Identification of eugenol as the major determinant of GABAA-receptor activation by aqueous Syzygium aromaticum L.(clove buds) extract. Journal of Functional Foods, 37: 641-649. Doi: https://doi.org/10.1016/j.jff.2017.08.033
  • Shahidi, F. A. and Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of Agricultural and Food Chemistry, 55: 1212-1220. Doi: https://doi.org/10.1021/jf062472o
  • Soković, M. and van Griensven, L. J. (2006). Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology, 116 (3): 211-224. Doi: https://doi.org/10.1007/s10658-006-9053-0
  • Soković, M., Glamočlija, J., Marin, P. D., Brkić, D. and van Griensven, L. J. (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15(11): 7532-7546. Doi: https://doi.org/10.3390/molecules15117532
  • Stanojevic, L. P., Marjanovic-Balaban, Z. R., Kalaba, V. D., Stanojevic, J. S. and Cvetkovic, D. J. (2016). Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). Journal of Essential Oil Bearing Plants, 19(8): 2017-2028. Doi: https://doi.org/10.1080/0972060X.2016.1224689
  • Stojanović, G., Asakawa, Y., Palić, R. and Radulović, N. (2005). Composition and antimicrobial activity of Achillea clavennae and Achillea holosericea essential oils. Flavour and Fragrance Journal, 20 (1): 86-88. Doi: https://doi.org/10.1002/ffj.1378
  • WHO, (2018). World Health Organization. Antibiotic resistance [online]. Website https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance [Accessed 16 December 2019].

Year 2021, Volume 5, Issue 2, 133 - 139, 28.06.2021
https://doi.org/10.31015/jaefs.2021.2.1

Abstract

References

  • Abdoul-Latif, F. M., Mohamed, N., Edou, P., Ali, A. A., Djama, S. O., Obame, L. C., Bassolé, I. H. N., and Dicko, M. H. (2011). Antimicrobial and antioxidant activities of essential oil and methanol extract of Matricaria chamomilla L. from Djibouti. Journal of Medicinal Plants Research, 5(9): 1512-1517. Doi: https://doi.org/10.5897/JMPR
  • Archer, G. L. (1998). Staphylococcus aureus: a well-armed pathogen. Reviews of Infectious Diseases 26(5): 1179-1181. Doi: https://doi.org/10.1086/520289
  • Bezić, N., Skočibušić, M., Dunkić, V. and Radonić, A. (2003). Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytotherapy Research, 17(9): 1037-1040. Doi: https://doi.org/10.1002/ptr.1290
  • Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3(3): 529-563. Doi: https://doi.org/ 10.3934/microbiol.2017.3.529
  • Buchanan, R. L., Gorris, L. G., Hayman, M. M., Jackson, T. C. and Whiting, R. C. (2017). A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75: 1-13. Doi: https://doi.org/10.1016/j.foodcont.2016.12.016
  • Candan, F., Unlu, M., Tepe, B., Daferera, D., Polissiou, M., Sökmen, A. and Akpulat, H. A. (2003). Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan (Asteraceae). Journal of Ethnopharmacology, 87(2-3): 215-220. Doi: https://doi.org/ 10.1016/s0378-8741(03)00149-1
  • Chizzola, R., Michitsch, H. and Franz, C. (2008). Antioxidative properties of Thymus vulgaris leaves: comparison of different extracts and essential oil chemotypes. Journal of Agricultural and Food Chemistry, 56(16): 6897-6904. Doi: https://doi.org/ 10.1021/jf800617g
  • Couladis, M., Tzakou, O., Kujundzic, S., Sokovic, M. and Mimica‐Dukic, N. (2004). Chemical analysis and antifungal activity of Thymus striatus. Phytotherapy Research, 18(1): 40-42. Doi: https://doi.org/ 10.1002/ptr.1353
  • Daferera, D. J., Ziogas, B. N. and Polissiou, M. G. (2003). The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22(1): 39-44. Doi: https://doi.org/10.1016/S0261-2194(02)00095-9
  • De Oliveira, K. A. R., de Sousa J. P., Medeiros, J. A. D. C., de Figueiredo, R. C. B. Q., Magnani, M., de Siqueira J. P. et al. (2015). Synergistic inhibition of bacteria associated with minimally processed vegetables in mixed culture by carvacrol and 1,8-cineole. Food Control, 47: 334-339. Doi: https://doi.org/10.1016/j.foodcont.2014.07.014
  • El-Kalamouni, C., Venskutonis, P., Zebib, B., Merah, O., Raynaud, C. and Talou, T. (2017). Antioxidant and antimicrobial activities of the essential oil of Achillea millefolium L. grown in France. Medicines, 4(2): 30. Doi: https://doi.org/10.3390/medicines4020030
  • García-García, R., Lòpez-Malo, A. and Palou, E. (2011). Bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua. Journal of Food Science, 76: 95-100. Doi: https://doi.org/10.1111/j.1750-3841.2010.02005.x
  • Kao, C. C., Chiang, C. K. and Huang, J. W. (2014). Micrococcus species-related peritonitis in patients receiving peritoneal dialysis. International Urology and Nephrology, 46(1): 261-264. Doi: https://doi.org/10.1007/s11255-012-0302-1
  • Kulisic, T., Radonic, A. and Milos, M. (2005). Antioxidant properties of thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) essential oils. Italian Journal of Food Science, 17(3): 315-324. https://agris.fao.org/agris-search/search.do?recordID=IT2006600159
  • İşçan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M., Başer, H. C. and Demirci, F. (2002). Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural and Food Chemistry, 50(14): 3943-3946. Doi: https://doi.org/10.1021/jf011476k
  • Madikizela, B., Ndhlala, A. R., Finnie, J. F. and van Staden, J. (2014). Antimycobacterial, anti-inflammatory and genotoxicity evaluation of plants used for the treatment of tuberculosis and related symptoms in South Africa. Journal of Ethnopharmacology, 153(2): 386-391. Doi: https://doi.org/10.1016/j.jep.2014.02.034
  • Mahboubi, M. and Haghi, G. (2008). Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. Journal of Ethnopharmacology, 119(2): 325-327. Doi: https://doi.org/10.1016/j.jep.2008.07.023
  • Mattazi, N., Farah, A., Fadil, M., Chraibi, M. and Benbrahim, K. F. (2015). Essential oils analysis and antibacterial activity of the leaves of Rosmarinus officinalis, Salvia officinalis and Mentha piperita cultivated in agadir (Morocco). International Journal of Pharmacy and Pharmaceutical Sciences, 7(9): 73-79. https://innovareacademics.in/journals/index.php/ijpps/article/view/6071/pdf_1073
  • Miladi, H., Slama, R. B., Mili, D., Zouari, S., Bakhrouf, A. and Ammar, E. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Natural Science, 5(6): 729-739. Doi: https://doi.org/10.4236/ns.2013.56090
  • Oussalah, M., Caillet, S., Saucier, L. and Lacroix, M. (2007). Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157: H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control, 18 (5): 414-420. Doi: https://doi.org/10.1016/j.foodcont.2005.11.009
  • Roby, M. H. H., Sarhan, M. A., Selim, K. A. H. and Khalel, K. I. (2013). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Industrial Crops and Products, 44: 437-445. Doi: https://doi.org/10.1016/j.indcrop.2012.10.012
  • Ruberto, G. and Baratta, M. T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chemistry, 69: 167–174. Doi: https://doi.org/10.1016/S0308-8146(99)00247-2
  • Sahin, S., Eulenburg, V., Heinlein, A., Villmann, C. and Pischetsrieder, M. (2017). Identification of eugenol as the major determinant of GABAA-receptor activation by aqueous Syzygium aromaticum L.(clove buds) extract. Journal of Functional Foods, 37: 641-649. Doi: https://doi.org/10.1016/j.jff.2017.08.033
  • Shahidi, F. A. and Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of Agricultural and Food Chemistry, 55: 1212-1220. Doi: https://doi.org/10.1021/jf062472o
  • Soković, M. and van Griensven, L. J. (2006). Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. European Journal of Plant Pathology, 116 (3): 211-224. Doi: https://doi.org/10.1007/s10658-006-9053-0
  • Soković, M., Glamočlija, J., Marin, P. D., Brkić, D. and van Griensven, L. J. (2010). Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 15(11): 7532-7546. Doi: https://doi.org/10.3390/molecules15117532
  • Stanojevic, L. P., Marjanovic-Balaban, Z. R., Kalaba, V. D., Stanojevic, J. S. and Cvetkovic, D. J. (2016). Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). Journal of Essential Oil Bearing Plants, 19(8): 2017-2028. Doi: https://doi.org/10.1080/0972060X.2016.1224689
  • Stojanović, G., Asakawa, Y., Palić, R. and Radulović, N. (2005). Composition and antimicrobial activity of Achillea clavennae and Achillea holosericea essential oils. Flavour and Fragrance Journal, 20 (1): 86-88. Doi: https://doi.org/10.1002/ffj.1378
  • WHO, (2018). World Health Organization. Antibiotic resistance [online]. Website https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance [Accessed 16 December 2019].

Details

Primary Language English
Subjects Food Science and Technology
Published Date June 2021
Journal Section Research Articles
Authors

Sümeyye ŞAHİN (Primary Author)
Ordu Üniversitesi
0000-0002-9344-7690
Türkiye


Özlem KILIÇ
ORDU ÜNİVERSİTESİ
0000-0003-4357-7558
Türkiye

Publication Date June 28, 2021
Application Date January 25, 2021
Acceptance Date March 28, 2021
Published in Issue Year 2021, Volume 5, Issue 2

Cite

APA Şahin, S. & Kılıç, Ö. (2021). Antioxidant and antibacterial activities of essential oils and aromatic waters of some plants grown in the highlands . International Journal of Agriculture Environment and Food Sciences , 5 (2) , 133-139 . DOI: 10.31015/jaefs.2021.2.1