Research Article
BibTex RIS Cite

Oxalic acid: an important organic acid to increase yield and quality in lettuce

Year 2023, Volume: 7 Issue: 2, 428 - 435, 29.06.2023
https://doi.org/10.31015/jaefs.2023.2.21

Abstract

In the present study, the effects of different doses of oxalic acid applications on yield and quality in lettuce cultivation were evaluated. Yedikule 5107 variety was used as plant material and four different doses of oxalic acid (0-2-4-6 mM) were applied to lettuce plants from leaves. Plant weight varied between 343.02-432.57 g/plant, plant height 28.0-30.35 cm, plant diameter 26.67-28.72 cm, leaf length 21.23-22.44 cm, root collar diameter 19.11-21.49 mm and number of leaves 47.57-55.63 per plant depending on oxalic acid doses, and the highest yield was obtained from 2 mM oxalic acid application. Total chlorophyll and total phenolic contents varied between 37.47-39.31 and 67.35-103.98 mg/100g, respectively. While the highest chlorophyll value was obtained from 2 mM oxalic acid; the highest phenolic substance value was obtained from 4 mM oxalic acid application. It was determined that L*, a*, b*, and C* values varied from 47.43 to 48.76, -17.55 to -18.26, 27.89 to 28.68, and 32.95 to 34.00 depending on applications, and the highest L* value was obtained from 2 mM oxalic acid application and the highest a*, b* and C* values were observed in 2 mM and 4 mM oxalic acid applications. The antiradical values in lettuce varied between 42.36-82.64%. At the end of the study, when all these parameters were considered, it was determined that oxalic acid applications significantly and positively affect the yield and quality of lettuce.

Supporting Institution

Isparta University of Applied Sciences Scientific Research Projects Coordination Unit

Project Number

Project No: 2020-YL1-0054

Thanks

The authors are thankful to the Isparta University of Applied Sciences Scientific Research Projects Coordination Unit (Project No: 2020-YL1-0054)

References

  • Ali, M., Liu, M.M., Wang, Z.E., Li, S.E., Jiang, T.J., & Zheng, X.L. (2019). Pre-harvest spraying of oxalic acid improves postharvest quality associated with increase in ascorbic acid and regulation of ethanol fermentation in kiwifruit cv. Bruno during storage. Journal of Integrative Agriculture, 18(11), 2514-2520. https://doi.org/10.1016/S2095-3119(19)62791-7
  • Altunişik, R., Saydan, R., & Özmetin, S. (2003). Gıda tüketim alışkanlıklarındaki değişim üzerine bir araştırma: Van ve batı illeri karşılaştırması. Yüzüncü Yıl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 4, 1-20.
  • Anwar, R., Gull, S., Nafees, M., Amin, M., Hussain, Z., Khan, A.S., & Malik, A.U. (2018). Pre-harvest foliar application of oxalic acid improves strawberry plant growth and fruit quality. Journal of Horticultural Science and Technology, 1(1), 35-41.
  • Baslam, M., Morales, F., Garmendia, I., & Goicoechea, N. (2013). Nutritional quality of outer and inner leaves of green and red pigmented lettuces (Lactuca sativa L.) consumed as salads. Scientia Horticulturae, 151, 103-111. https://doi.org/10.1016/j.scienta.2012.12.023
  • Beacham, A.M., Vickers, L.H., & Monaghan, J.M. (2019). Vertical farming: a summary of approaches to growing skywards. The Journal of Horticultural Science and Biotechnology, 94(3), 277-283. https://doi.org/10.1080/14620316.2019.1574214
  • Budak, M.M., & Şan, B. (2017). Effects of pre-harvest applications of gibberellic acid and oxalic acid on fruit quality in Asian pear (Pyrus pyrifolia) cultivars ‘Kosiu’ and ‘Hakko’. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 12(2), 73-80.
  • Cemeroğlu, B. (2013). Meyve ve Sebze İşleme Endüstrisinde Temel Analiz Metotları. Biltav Yayınları. Ankara.
  • Coseteng, M.Y, & Lee., C.Y. (1987). Changes in apple polyphenoloxidase and polyphenol concentrations in relation to degree of browning. Journal of Food Science, 52(4), 985-989. https://doi.org/10.1111/j.1365-2621.1987.tb14257.x
  • Costa, A.I., Queiroz, M.E., Neves, A.A., de Sousa, F.A., & Zambolim, L. (2015). Determination of pesticides in lettuce using solid-liquid extraction with low temperature partitioning. Food Chemistry, 181, 64-71. doi:10.1016/j. foodchem.2015.02.070
  • Demirel, Ö., Akveç, O., & Canan, C.A.N. (2022). A current overview of plant biotechnology. Eurasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(20), 110-149.
  • Dinçay, A.A. (2021). Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh-cut rocket salad (Eruca sativa Mill.). Hacettepe Journal of Biology and Chemistry, 49(4), 345-354. https://doi.org/10.15671/hjbc.649050
  • Dorman, H.J.D., Peltoketo, A., Hiltunen, R., & Tikkanen, M.J. (2003). Characterization of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chemistry, 83(2), 255-62. https://doi.org/10.1016/S0308-8146(03)00088-8
  • El-Zaeddi, H., Calín-Sánchez, Á., Nowicka, P., Martínez-Tomé, J., Noguera-Artiaga, L., Burló, F., Wojdylo, A., & Carbonell-Barrachina, Á.A. (2017). Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 226, 179-186. https://doi.org/10.1016/j.foodchem.2017.01.067
  • FAO (2023). Crops and livestock products. Retrieved 2023 May 22 from http://www.fao.org/faostat/en/#data/QC
  • García-Pastor, M.E., Giménez, M.J., Valverde, J.M., Guillén, F., Castillo, S., Martínez Romero, D., Serrano, M., Valero, D., & Zapata, P.J. (2020). Preharvest application of oxalic acid improved pomegranate fruit yield, quality, and bioactive compounds at harvest in a concentration dependent manner. Agronomy, 10(10), 1-17. https://doi.org/10.3390/agronomy10101522
  • Huang, H., Jing, G., Guo, L., Zhang, D., Yang, B., Duan, X., Ashraf, M., & Jiang, Y. (2013a). Effect of oxalic acid on ripening attributes of banana fruit during storage. Postharvest Biology and Technology, 84, 22-27. https://doi.org/10.1016/j.postharvbio.2013.04.002
  • Huang, H., Zhu, Q., Zhang, Z., Yang, B., Duan, X., & Jiang, Y. (2013b). Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv. ’Brazil’) fruit during storage. Scientia Horticulturae, 160, 208-212. https://doi.org/10.1016/j.scienta.2013.05.041
  • Hung, H.C., Joshipura, K.J., Jiang, R., Hu, F.B., Hunter, D., Smith-Warner, S.A., & Willett, W.C. (2004). Fruit and vegetable intake and risk of major chronic disease. Journal of the National Cancer Institute, 96(21), 1577-1584. https://doi.org/10.1093/jnci/djh296
  • Jiang, Y., Ai, C., Liao, X., Liu, D., & Ding, T. (2020). Effect of slightly acidic electrolyzed water (SAEW) and ultraviolet light illumination pretreatment on microflora inactivation of coriander. LWT-Food Science and Technology, 132, 1-8. https://doi.org/10.1016/j.lwt.2020.109898
  • Kant, K, Arora, A, Singh, V.P., & Kumar, R (2013). Effect of exogenous application of salicylic acid and oxalic acid on post harvest shelf-life of tomato (Solanum lycopersicon L.). Indian Journal of Plant Physiology, 18(1), 15-21. https://doi.org/10.1007/s40502-013-0004-4
  • Konatu, R.B.F., Breitkreitz, M.C., & Jardim, S.F.I.C. (2017). Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1482, 11-22. https://doi.org/10.1016/j.chroma.2016.12.061
  • Koyuncu, M.A., Erbas, D., Onursal, C.E., Secmen, T., Guneyli, A., & Sevinc Uzumcu, S. (2019). Postharvest treatments of salicylic acid, oxalic acid and putrescine influences bioactive compounds and quality of pomegranate during controlled atmosphere storage. Journal of Food Science and Technology, 56(1), 350-359. https://doi.org/10.1007/s13197-018-3495-1
  • Kök, D., & Bal, E. (2019). Changes on bioactive compounds and electrochemical characteristics of cv. Horoz Karası table grape (V. vinifera L.) ınduced by various doses of preharvest applications of benzoic acid, citric acid and oxalic acid at berry setting and verasion periods. Erwerbs-Obstbau, 61, 17-24. https://doi.org/10.1007/s10341-019-00443-3
  • Kris-Etherton P.M., Hecker K.D., Bonanome, A., Coval, S.M., Binkoski, A.E., Hilpert, K.F., & Etherton, T.D. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American journal of medicine, 113(9), 71-88. https://doi.org/10.1016/S0002-9343(99)00018-2
  • Kurucu, Ş.N. (2019). The effects of pre-harvest oxalic acid applications on fruit quality of Aprikoz and Roxana apricots. MSc Thesis, Isparta University of Applied Sciences, Isparta, 65p.
  • Lara, F.J., Chan, D., Dickinson, M., Lloyd, A.S., & Adams, S.J. (2017). Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified quick polar pesticides extraction method. Journal of Chromatography A, 1496, 37-44. https://doi.org/10.1016/j.chroma.2017.03.020
  • Liang, Y., Strelkov, S.E., & Kav, N.N.V. (2009). Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 9, 3156-3173. https://doi.org/10.1002/pmic.200800966
  • Martínez-Esplá, A., Zapata, P.J., Valero, D., García-Viguera, C., Castillo, S., & Serrano, M. (2014). Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.). Journal of Agricultural and Food Chemistry, 62(15), 3432-3437. https://doi.org/10.1021/jf500224g
  • Martínez-Esplá, A., García-Pastor, M.E., Zapata, P.J., Guillén, F., Serrano, M., Valero, D., & Gironés-Vilaplana, A. (2017). Preharvest application of oxalic acid improves quality and phytochemical content of artichoke (Cynara scolymus L.) at harvest and during storage. Food Chemistry, 230, 343-349. https://doi.org/10.1016/j.foodchem.2017.03.051
  • Morris, M.C., Evans, D.A., Tangney, C.C., Bienias, J.L., & Wilson, R.S. (2006). Associations of vegetable and fruit consumption with age-related cognitive change. Neurology, 67(8), 1370-1376. https://doi.org/10.1212/01.wnl.0000240224.38978.d8
  • Mou, B. (2009). Nutrient content of lettuce and its improvement. Current Nutrition and Food Science, 5(4), 242-248. https://doi.org/10.2174/157340109790218030
  • Nicolle, C., Carnat, A., Fraisse, D., Lamaison, J.L., Rock, E., Michel, H., Amouroux, P., & Remesy, C. (2004). Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). Journal of the Science of Food and Agriculture, 84(15), 2061-2069. https://doi.org/10.1002/jsfa.1916
  • Pavia, M., Pileggi, C., Nobile, C.G., & Angelillo, I.F. (2006). Association between fruit and vegetable consumption and oral cancer: a meta-analysis of observational studies. The American journal of clinical nutrition, 83(5), 1126-1134. https://doi.org/10.1093/ajcn/83.5.1126
  • Pérez-Labrada, F., Benavides-Mendoza, A., Juárez-Maldonado, A., Solís-Gaona, S., & González-Morales, S. (2019). Organic acids combined with Fe-chelate improves ferric nutrition in tomato grown in calcisol soil. Journal of Soil Science and Plant Nutrition, 20(2), 673-683. https://doi.org/10.1007/s42729-019-00155-3
  • Pink, D.A.C., & Keane, E.M. (1993). Lettuce: Lactuca sativa L. In: Genetic Improvement of Vegetable Crops (pp 543-571). Pergamon Press.
  • Razzaq, K., Khan, A.S., Malik, A.U., Shahid, M., & Ullah, S. (2015). Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. Food Science and Technology, 63(1), 152-160. https://doi.org/10.1016/j.lwt.2015.03.069
  • Sayyari, M., Valero, D., Babalar, M., Kalantari, S., Zapata, P.J., & Serrano, M. (2010). Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after long-term storage at 2°C. Journal of Agricultural and Food Chemistry, 58(11), 6804-6808. https://doi.org/10.1021/jf100196h
  • Serna-Escolano, V., Giménez, M.J., Castillo, S., Valverde, J.M., Martínez-Romero, D., Guillén, F., & Zapata, P.J. (2021). Preharvest treatment with oxalic acid improves postharvest storage of lemon fruit by stimulation of the antioxidant system and phenolic content. Antioxidants, 10(6), 1-12. https://doi.org/10.3390/antiox10060963
  • Shimada, M., Akamtsu, Y., Tokimatsu, T., Mii, K., & Hattori, T. (1997). Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. Journal of Biotechnology, 53(2-3), 103-113. https://doi.org/10.1016/S0168-1656(97)01679-9
  • Soetan, K.O., Olaiya, C.O., & Oyewole, O.E. (2010). The importance of mineral elements for humans, domestic animals and plants-A review. African Journal of Food Science, 4(5), 200-222.
  • Tang, R., Zhou, Y., Chen, Z., Wang, L., Lai, Y., Chang, S.K., & Huang, H. (2020). Regulation of browning and senescence of litchi fruit mediated by phenolics and energy status: A postharvest comparison on three different cultivars. Postharvest Biology and Technology, 168, 1-9. https://doi.org/10.1016/j.postharvbio.2020.111280
  • Uludağ, M. (2021). The effects of oxalic acid application on yield and quality in rocket plant. MSc Thesis, Isparta University of Applied Sciences, Isparta, 63p.
  • Valero, D., Díaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillén, F., Martínez-Romero, D., & Serrano, M. (2011). Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in Sweet cherry. Journal of Agricultural and Food Chemistry, 59(10), 5483-5489. https://doi.org/10.1021/jf200873j
  • Wang, J., Mao, L.C., Li, X.W., Lv, Z., Liu, C.H., Huang, Y.Y., & Li, D.D. (2018). Oxalic acid pretreatment reduces chilling injury in Hami melons (Cucumis melo var. reticulatus Naud.) by regulating enzymes involved in antioxidative pathways. Scientia Horticulturae, 241, 201- 208. https://doi.org/10.1016/j.scienta.2018.06.084
  • Wang, Q., Lai, T., Qin, G., & Tian, S. (2009). Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis. Plant and Cell Physiology, 50(2), 230-242. https://doi.org/10.1093/pcp/pcn191
  • Whangchai, K., Saengnil, K., & Uthaibutra, J. (2006). Effect of ozone in combination with some organic acids on the control of postharvest decay and pericarp browning of longan fruit. Crop Protection, 25(8), 821-825. https://doi.org/10.1016/j.cropro.2005.11.003
  • Wu, F., Zhang, D., Zhang, H., Jiang, G., Su, X., Qu, H., Jiang, Y., & Duan, X. (2011). Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life. Food Research International, 44(5), 1299-1305. https://doi.org/10.1016/j.foodres.2010.12.027Get
  • Yoruk, R., & Marshall, M.R. (2003). A survey on the potential mode of inhibition for oxalic acid on polyphenol oxidase. Journal of Food Science, 68(8), 2479-2485. https://doi.org/10.1111/j.1365-2621.2003.tb07049.x
  • Yoruk, R., Balaban, M.O., Marshall, M.R., & Yoruk, S. (2002). The inhibitory effect of oxalic acid on browning of banana slices. In: Proceedings of the IFT Annual Meeting on Food Expo (p 74). Anaheim.
  • Yücel, B. (2005). The effects of using different organic acids for against varroa (Varroa jacobsoni Q.) treatment on colony performances of honey bee (Apis mellifera L.). Hayvansal Üretim, 46(2), 33-39.
  • Zheng, X., & Tian, S. (2005). Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chemistry, 96(4), 519-523. https://doi.org/10.1016/j.foodchem.2005.02.049
  • Zheng, X., Tian, S., Meng, X., & Li, B. (2007a). Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature. Food Chemistry, 104(1), 156-162. https://doi.org/10.1016/j.foodchem.2006.11.015
  • Zheng, X., Tian, S., Gidley, M.J., Yue, H., & Li, B. (2007b). Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature. Postharvest Biology and Technology, 45(2), 281-284. https://doi.org/10.1016/j.postharvbio.2007.01.016
  • Zheng, X., Jing, G., Liu, Y., Jiang, T., Jiang, Y., & Li, J. (2012a). Expression of expansin gene, MiExpA1, and activity of galactosidase and polygalacturonase in mango fruit as affected by oxalic acid during storage at room temperature. Food Chemistry, 132(2), 849-854. https://doi.org/10.1016/j.foodchem.2011.11.049
  • Zheng, X., Ye, L., Jiang, T., Jing, G., & Li, J. (2012b). Limiting the deterioration of mango fruit during storage at room temperature by oxalate treatment. Food Chemistry, 130(2), 279-285. https://doi.org/10.1016/j.foodchem.2011.07.035
  • Zhu, Y., Yu, J., Brecht, J.K., Jiang, T., & Zheng, X. (2016). Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chemistry, 190, 537-543. https://doi.org/10.1016/j.foodchem.2015.06.001
Year 2023, Volume: 7 Issue: 2, 428 - 435, 29.06.2023
https://doi.org/10.31015/jaefs.2023.2.21

Abstract

Project Number

Project No: 2020-YL1-0054

References

  • Ali, M., Liu, M.M., Wang, Z.E., Li, S.E., Jiang, T.J., & Zheng, X.L. (2019). Pre-harvest spraying of oxalic acid improves postharvest quality associated with increase in ascorbic acid and regulation of ethanol fermentation in kiwifruit cv. Bruno during storage. Journal of Integrative Agriculture, 18(11), 2514-2520. https://doi.org/10.1016/S2095-3119(19)62791-7
  • Altunişik, R., Saydan, R., & Özmetin, S. (2003). Gıda tüketim alışkanlıklarındaki değişim üzerine bir araştırma: Van ve batı illeri karşılaştırması. Yüzüncü Yıl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 4, 1-20.
  • Anwar, R., Gull, S., Nafees, M., Amin, M., Hussain, Z., Khan, A.S., & Malik, A.U. (2018). Pre-harvest foliar application of oxalic acid improves strawberry plant growth and fruit quality. Journal of Horticultural Science and Technology, 1(1), 35-41.
  • Baslam, M., Morales, F., Garmendia, I., & Goicoechea, N. (2013). Nutritional quality of outer and inner leaves of green and red pigmented lettuces (Lactuca sativa L.) consumed as salads. Scientia Horticulturae, 151, 103-111. https://doi.org/10.1016/j.scienta.2012.12.023
  • Beacham, A.M., Vickers, L.H., & Monaghan, J.M. (2019). Vertical farming: a summary of approaches to growing skywards. The Journal of Horticultural Science and Biotechnology, 94(3), 277-283. https://doi.org/10.1080/14620316.2019.1574214
  • Budak, M.M., & Şan, B. (2017). Effects of pre-harvest applications of gibberellic acid and oxalic acid on fruit quality in Asian pear (Pyrus pyrifolia) cultivars ‘Kosiu’ and ‘Hakko’. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 12(2), 73-80.
  • Cemeroğlu, B. (2013). Meyve ve Sebze İşleme Endüstrisinde Temel Analiz Metotları. Biltav Yayınları. Ankara.
  • Coseteng, M.Y, & Lee., C.Y. (1987). Changes in apple polyphenoloxidase and polyphenol concentrations in relation to degree of browning. Journal of Food Science, 52(4), 985-989. https://doi.org/10.1111/j.1365-2621.1987.tb14257.x
  • Costa, A.I., Queiroz, M.E., Neves, A.A., de Sousa, F.A., & Zambolim, L. (2015). Determination of pesticides in lettuce using solid-liquid extraction with low temperature partitioning. Food Chemistry, 181, 64-71. doi:10.1016/j. foodchem.2015.02.070
  • Demirel, Ö., Akveç, O., & Canan, C.A.N. (2022). A current overview of plant biotechnology. Eurasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(20), 110-149.
  • Dinçay, A.A. (2021). Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh-cut rocket salad (Eruca sativa Mill.). Hacettepe Journal of Biology and Chemistry, 49(4), 345-354. https://doi.org/10.15671/hjbc.649050
  • Dorman, H.J.D., Peltoketo, A., Hiltunen, R., & Tikkanen, M.J. (2003). Characterization of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chemistry, 83(2), 255-62. https://doi.org/10.1016/S0308-8146(03)00088-8
  • El-Zaeddi, H., Calín-Sánchez, Á., Nowicka, P., Martínez-Tomé, J., Noguera-Artiaga, L., Burló, F., Wojdylo, A., & Carbonell-Barrachina, Á.A. (2017). Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 226, 179-186. https://doi.org/10.1016/j.foodchem.2017.01.067
  • FAO (2023). Crops and livestock products. Retrieved 2023 May 22 from http://www.fao.org/faostat/en/#data/QC
  • García-Pastor, M.E., Giménez, M.J., Valverde, J.M., Guillén, F., Castillo, S., Martínez Romero, D., Serrano, M., Valero, D., & Zapata, P.J. (2020). Preharvest application of oxalic acid improved pomegranate fruit yield, quality, and bioactive compounds at harvest in a concentration dependent manner. Agronomy, 10(10), 1-17. https://doi.org/10.3390/agronomy10101522
  • Huang, H., Jing, G., Guo, L., Zhang, D., Yang, B., Duan, X., Ashraf, M., & Jiang, Y. (2013a). Effect of oxalic acid on ripening attributes of banana fruit during storage. Postharvest Biology and Technology, 84, 22-27. https://doi.org/10.1016/j.postharvbio.2013.04.002
  • Huang, H., Zhu, Q., Zhang, Z., Yang, B., Duan, X., & Jiang, Y. (2013b). Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv. ’Brazil’) fruit during storage. Scientia Horticulturae, 160, 208-212. https://doi.org/10.1016/j.scienta.2013.05.041
  • Hung, H.C., Joshipura, K.J., Jiang, R., Hu, F.B., Hunter, D., Smith-Warner, S.A., & Willett, W.C. (2004). Fruit and vegetable intake and risk of major chronic disease. Journal of the National Cancer Institute, 96(21), 1577-1584. https://doi.org/10.1093/jnci/djh296
  • Jiang, Y., Ai, C., Liao, X., Liu, D., & Ding, T. (2020). Effect of slightly acidic electrolyzed water (SAEW) and ultraviolet light illumination pretreatment on microflora inactivation of coriander. LWT-Food Science and Technology, 132, 1-8. https://doi.org/10.1016/j.lwt.2020.109898
  • Kant, K, Arora, A, Singh, V.P., & Kumar, R (2013). Effect of exogenous application of salicylic acid and oxalic acid on post harvest shelf-life of tomato (Solanum lycopersicon L.). Indian Journal of Plant Physiology, 18(1), 15-21. https://doi.org/10.1007/s40502-013-0004-4
  • Konatu, R.B.F., Breitkreitz, M.C., & Jardim, S.F.I.C. (2017). Revisiting quick, easy, cheap, effective, rugged, and safe parameters for sample preparation in pesticide residue analysis of lettuce by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1482, 11-22. https://doi.org/10.1016/j.chroma.2016.12.061
  • Koyuncu, M.A., Erbas, D., Onursal, C.E., Secmen, T., Guneyli, A., & Sevinc Uzumcu, S. (2019). Postharvest treatments of salicylic acid, oxalic acid and putrescine influences bioactive compounds and quality of pomegranate during controlled atmosphere storage. Journal of Food Science and Technology, 56(1), 350-359. https://doi.org/10.1007/s13197-018-3495-1
  • Kök, D., & Bal, E. (2019). Changes on bioactive compounds and electrochemical characteristics of cv. Horoz Karası table grape (V. vinifera L.) ınduced by various doses of preharvest applications of benzoic acid, citric acid and oxalic acid at berry setting and verasion periods. Erwerbs-Obstbau, 61, 17-24. https://doi.org/10.1007/s10341-019-00443-3
  • Kris-Etherton P.M., Hecker K.D., Bonanome, A., Coval, S.M., Binkoski, A.E., Hilpert, K.F., & Etherton, T.D. (2002). Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. The American journal of medicine, 113(9), 71-88. https://doi.org/10.1016/S0002-9343(99)00018-2
  • Kurucu, Ş.N. (2019). The effects of pre-harvest oxalic acid applications on fruit quality of Aprikoz and Roxana apricots. MSc Thesis, Isparta University of Applied Sciences, Isparta, 65p.
  • Lara, F.J., Chan, D., Dickinson, M., Lloyd, A.S., & Adams, S.J. (2017). Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified quick polar pesticides extraction method. Journal of Chromatography A, 1496, 37-44. https://doi.org/10.1016/j.chroma.2017.03.020
  • Liang, Y., Strelkov, S.E., & Kav, N.N.V. (2009). Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 9, 3156-3173. https://doi.org/10.1002/pmic.200800966
  • Martínez-Esplá, A., Zapata, P.J., Valero, D., García-Viguera, C., Castillo, S., & Serrano, M. (2014). Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.). Journal of Agricultural and Food Chemistry, 62(15), 3432-3437. https://doi.org/10.1021/jf500224g
  • Martínez-Esplá, A., García-Pastor, M.E., Zapata, P.J., Guillén, F., Serrano, M., Valero, D., & Gironés-Vilaplana, A. (2017). Preharvest application of oxalic acid improves quality and phytochemical content of artichoke (Cynara scolymus L.) at harvest and during storage. Food Chemistry, 230, 343-349. https://doi.org/10.1016/j.foodchem.2017.03.051
  • Morris, M.C., Evans, D.A., Tangney, C.C., Bienias, J.L., & Wilson, R.S. (2006). Associations of vegetable and fruit consumption with age-related cognitive change. Neurology, 67(8), 1370-1376. https://doi.org/10.1212/01.wnl.0000240224.38978.d8
  • Mou, B. (2009). Nutrient content of lettuce and its improvement. Current Nutrition and Food Science, 5(4), 242-248. https://doi.org/10.2174/157340109790218030
  • Nicolle, C., Carnat, A., Fraisse, D., Lamaison, J.L., Rock, E., Michel, H., Amouroux, P., & Remesy, C. (2004). Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). Journal of the Science of Food and Agriculture, 84(15), 2061-2069. https://doi.org/10.1002/jsfa.1916
  • Pavia, M., Pileggi, C., Nobile, C.G., & Angelillo, I.F. (2006). Association between fruit and vegetable consumption and oral cancer: a meta-analysis of observational studies. The American journal of clinical nutrition, 83(5), 1126-1134. https://doi.org/10.1093/ajcn/83.5.1126
  • Pérez-Labrada, F., Benavides-Mendoza, A., Juárez-Maldonado, A., Solís-Gaona, S., & González-Morales, S. (2019). Organic acids combined with Fe-chelate improves ferric nutrition in tomato grown in calcisol soil. Journal of Soil Science and Plant Nutrition, 20(2), 673-683. https://doi.org/10.1007/s42729-019-00155-3
  • Pink, D.A.C., & Keane, E.M. (1993). Lettuce: Lactuca sativa L. In: Genetic Improvement of Vegetable Crops (pp 543-571). Pergamon Press.
  • Razzaq, K., Khan, A.S., Malik, A.U., Shahid, M., & Ullah, S. (2015). Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. Food Science and Technology, 63(1), 152-160. https://doi.org/10.1016/j.lwt.2015.03.069
  • Sayyari, M., Valero, D., Babalar, M., Kalantari, S., Zapata, P.J., & Serrano, M. (2010). Prestorage oxalic acid treatment maintained visual quality, bioactive compounds, and antioxidant potential of pomegranate after long-term storage at 2°C. Journal of Agricultural and Food Chemistry, 58(11), 6804-6808. https://doi.org/10.1021/jf100196h
  • Serna-Escolano, V., Giménez, M.J., Castillo, S., Valverde, J.M., Martínez-Romero, D., Guillén, F., & Zapata, P.J. (2021). Preharvest treatment with oxalic acid improves postharvest storage of lemon fruit by stimulation of the antioxidant system and phenolic content. Antioxidants, 10(6), 1-12. https://doi.org/10.3390/antiox10060963
  • Shimada, M., Akamtsu, Y., Tokimatsu, T., Mii, K., & Hattori, T. (1997). Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. Journal of Biotechnology, 53(2-3), 103-113. https://doi.org/10.1016/S0168-1656(97)01679-9
  • Soetan, K.O., Olaiya, C.O., & Oyewole, O.E. (2010). The importance of mineral elements for humans, domestic animals and plants-A review. African Journal of Food Science, 4(5), 200-222.
  • Tang, R., Zhou, Y., Chen, Z., Wang, L., Lai, Y., Chang, S.K., & Huang, H. (2020). Regulation of browning and senescence of litchi fruit mediated by phenolics and energy status: A postharvest comparison on three different cultivars. Postharvest Biology and Technology, 168, 1-9. https://doi.org/10.1016/j.postharvbio.2020.111280
  • Uludağ, M. (2021). The effects of oxalic acid application on yield and quality in rocket plant. MSc Thesis, Isparta University of Applied Sciences, Isparta, 63p.
  • Valero, D., Díaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillén, F., Martínez-Romero, D., & Serrano, M. (2011). Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in Sweet cherry. Journal of Agricultural and Food Chemistry, 59(10), 5483-5489. https://doi.org/10.1021/jf200873j
  • Wang, J., Mao, L.C., Li, X.W., Lv, Z., Liu, C.H., Huang, Y.Y., & Li, D.D. (2018). Oxalic acid pretreatment reduces chilling injury in Hami melons (Cucumis melo var. reticulatus Naud.) by regulating enzymes involved in antioxidative pathways. Scientia Horticulturae, 241, 201- 208. https://doi.org/10.1016/j.scienta.2018.06.084
  • Wang, Q., Lai, T., Qin, G., & Tian, S. (2009). Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis. Plant and Cell Physiology, 50(2), 230-242. https://doi.org/10.1093/pcp/pcn191
  • Whangchai, K., Saengnil, K., & Uthaibutra, J. (2006). Effect of ozone in combination with some organic acids on the control of postharvest decay and pericarp browning of longan fruit. Crop Protection, 25(8), 821-825. https://doi.org/10.1016/j.cropro.2005.11.003
  • Wu, F., Zhang, D., Zhang, H., Jiang, G., Su, X., Qu, H., Jiang, Y., & Duan, X. (2011). Physiological and biochemical response of harvested plum fruit to oxalic acid during ripening or shelf-life. Food Research International, 44(5), 1299-1305. https://doi.org/10.1016/j.foodres.2010.12.027Get
  • Yoruk, R., & Marshall, M.R. (2003). A survey on the potential mode of inhibition for oxalic acid on polyphenol oxidase. Journal of Food Science, 68(8), 2479-2485. https://doi.org/10.1111/j.1365-2621.2003.tb07049.x
  • Yoruk, R., Balaban, M.O., Marshall, M.R., & Yoruk, S. (2002). The inhibitory effect of oxalic acid on browning of banana slices. In: Proceedings of the IFT Annual Meeting on Food Expo (p 74). Anaheim.
  • Yücel, B. (2005). The effects of using different organic acids for against varroa (Varroa jacobsoni Q.) treatment on colony performances of honey bee (Apis mellifera L.). Hayvansal Üretim, 46(2), 33-39.
  • Zheng, X., & Tian, S. (2005). Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chemistry, 96(4), 519-523. https://doi.org/10.1016/j.foodchem.2005.02.049
  • Zheng, X., Tian, S., Meng, X., & Li, B. (2007a). Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature. Food Chemistry, 104(1), 156-162. https://doi.org/10.1016/j.foodchem.2006.11.015
  • Zheng, X., Tian, S., Gidley, M.J., Yue, H., & Li, B. (2007b). Effects of exogenous oxalic acid on ripening and decay incidence in mango fruit during storage at room temperature. Postharvest Biology and Technology, 45(2), 281-284. https://doi.org/10.1016/j.postharvbio.2007.01.016
  • Zheng, X., Jing, G., Liu, Y., Jiang, T., Jiang, Y., & Li, J. (2012a). Expression of expansin gene, MiExpA1, and activity of galactosidase and polygalacturonase in mango fruit as affected by oxalic acid during storage at room temperature. Food Chemistry, 132(2), 849-854. https://doi.org/10.1016/j.foodchem.2011.11.049
  • Zheng, X., Ye, L., Jiang, T., Jing, G., & Li, J. (2012b). Limiting the deterioration of mango fruit during storage at room temperature by oxalate treatment. Food Chemistry, 130(2), 279-285. https://doi.org/10.1016/j.foodchem.2011.07.035
  • Zhu, Y., Yu, J., Brecht, J.K., Jiang, T., & Zheng, X. (2016). Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chemistry, 190, 537-543. https://doi.org/10.1016/j.foodchem.2015.06.001
There are 56 citations in total.

Details

Primary Language English
Subjects Horticultural Production, Vegetable Growing and Treatment
Journal Section Research Articles
Authors

Büşra Sonkaya 0000-0003-0431-6427

Halime Ünlü 0000-0001-6945-1473

Project Number Project No: 2020-YL1-0054
Publication Date June 29, 2023
Submission Date May 24, 2023
Acceptance Date June 5, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Sonkaya, B., & Ünlü, H. (2023). Oxalic acid: an important organic acid to increase yield and quality in lettuce. International Journal of Agriculture Environment and Food Sciences, 7(2), 428-435. https://doi.org/10.31015/jaefs.2023.2.21


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27