Research Article
BibTex RIS Cite

Unveiling the phytochemical variability of fatty acids in world marigold (Calendula officinalis L.) germplasm affected by genotype

Year 2023, Volume: 7 Issue: 3, 639 - 649, 30.09.2023
https://doi.org/10.31015/jaefs.2023.3.18

Abstract

Marigold is an annual herbaceous medicinal and aromatic plant, native to the Mediterranean region. Although marigold flowers have attracted considerable attention, the noteworthy characteristics of marigold seeds have often been overlooked. The industrial sector holds keen interest in marigold due to the presence of calendic acid in its seeds. Moreover, calendic acid exhibits promising anti-cancer properties, adding to the growing interest in the medicinal potential of this plant. In this study, a total of 31 marigold genotype seeds from fifteen different countries were used as experimental material. The observed seed oil content exhibited a range of values spanning from 6.00% to 20.33%, with a mean value of 11.59%. GC/MS analysis was conducted to evaluate the chemical variability associated with genotypic changes. Notably, the main fatty acids observed in the oil of these genotypes were α-calendic acid (ranging from 6.91% to 51.42%), linoleic acid (ranging from 30.50% to 48.25%), oleic acid (ranging from 8.26% to 22.50%), and palmitic acid (ranging from 3.86% to 9.28%). Particularly noteworthy is the emergence of genotypes PI 420376, PI 545694, PI 545701, PI 578109, PI 597588, PI 597591, and PI 597594, boasting calendic acid content exceeding 50%. Furthermore, the values of calendic acid exhibit significant variation across countries. The range extends from the United Kingdom, displaying one of the lower values, to Ontario, Canada, which represents countries with notably higher values. Consequently, there exists a necessity to enhance the proportion of calendic acid within marigold through strategic plant breeding techniques. This can be achieved through the selection and development of marigold cultivars with higher calendic acid contents.

References

  • Ahmad, A., & Ahsan, H. (2020). Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomedical Dermatology, 4(1), 1-10. https://doi.org/10.1186/s41702-020-00062-9
  • Avato, P., & Tava, A. (2022). Rare fatty acids and lipids in plant oilseeds: Occurrence and bioactivity. Phytochemistry Reviews, 21(2), 401-428. https://doi.org/10.1007/s11101-021-09770-4
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491. https://doi.org/10.3906/tar-2001-10
  • Barut, M., Tansi, L. S., Bicen, G., & Karaman, S. (2022). Deciphering the quality and yield of heteromorphic seeds of marigold (Calendula officinalis L.) under high temperatures in the Eastern Mediterranean region. South African Journal of Botany, 149, 303-314. https://doi.org/10.1016/j.sajb.2022.06.020
  • Cahoon, E. B., Ripp, K. G., Hall, S. E., & Kinney, A. J. (2001). Formation of conjugated Δ8, Δ10-double bonds by Δ12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid. Journal of Biological Chemistry, 276(4), 2637-2643. https://doi.org/10.1074/jbc.M009188200
  • Cao, S., Zhou, X.-R., Wood, C. C., Green, A. G., Singh, S. P., Liu, L., & Liu, Q. (2013). A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biology, 13, 1-18. https://doi.org/10.1186/1471-2229-13-5
  • Çelik, A., Emiralioğlu, O., Yeken, M. Z., Çiftçi, V., Özer, G., Kim, Y., Baloch, F. S., & Chung, Y. S. (2023). A novel study on bean common mosaic virus accumulation shows disease resistance at the initial stage of infection in Phaseolus vulgaris. Frontiers in Genetics, 14. https://doi.org/10.3389/fgene.2023.1136794
  • Cromack, H., & Smith, J. (1998). Calendula officinalis—production potential and crop agronomy in southern England. Industrial Crops and Products, 7(2-3), 223-229. https://doi.org/10.1016/S0926-6690(97)00052-6
  • Crombie, L., & Holloway, S. J. (1985). The biosynthesis of calendic acid, octadeca-(8 E, 10 E, 12 Z)-trienoic, acid, by developing marigold seeds: origins of (E, E, Z) and (Z, E, Z) conjugated triene acids in higher plants. Journal of the Chemical Society, Perkin Transactions 1, 2425-2434. https://doi.org/10.1039/P19850002425
  • Dubey, K. K., Sharma, G., & Kumar, A. (2019). Conjugated linolenic acids: implication in cancer. Journal of agricultural and food chemistry, 67(22), 6091-6101. https://doi.org/10.1021/acs.jafc.9b01379
  • Dulf, F. V., Pamfil, D., Baciu, A. D., & Pintea, A. (2013). Fatty acid composition of lipids in pot marigold (Calendula officinalisL.) seed genotypes. Chemistry Central Journal, 7(1), 1-11. https://doi.org/10.1186/1752-153X-7-8
  • Feder, W. J., Holtgrefe, R., Butte, W., & Biermann, U. (2009). Calendulaöl als Lackrohstoff für Naturfarben. In: Abschlußbericht, Jever und Oldenburg.
  • Garaiova, M., Hua, Q., & Holic, R. (2023). Heterologous production of calendic acid naturally found in Calendula officinalis by Recombinant Fission Yeast. Journal of Agricultural and Food Chemistry, 71(8), 3842-3851. https://doi.org/10.1021/acs.jafc.2c08967
  • Güneş, Z., & Tonçer, Ö. (2023). Evaluation of some black cumin seed (Nigella sativa L.) genotypes in terms of quality parameters at different planting periods under Mardin ecological conditions. Revista de Investigaciones Universidad del Quindío, 35(1), 194-206. https://doi.org/10.33975/riuq.vol35n1.1149
  • Król, B., & Paszko, T. (2017). Harvest date as a factor affecting crop yield, oil content and fatty acid composition of the seeds of calendula (Calendula officinalis L.) cultivars. Industrial Crops and Products, 97, 242-251. https://doi.org/10.1016/j.indcrop.2016.12.029
  • Krol, B., Paszko, T., & Krol, A. (2016). Conjugated linolenic acid content in seeds of some pot marigold (Calendula officinalis L.) cultivars grown in Poland. Farmacia, 64(6), 881-886.
  • Kurt, C., Demirbas, A., Nawaz, M. A., Chung, G., Baloch, F. S., & Altunay, N. (2020). Determination of Se content of 78 sesame accessions with different geographical origin. Journal of Food Composition and Analysis, 94, 103621. https://doi.org/10.1016/j.jfca.2020.103621
  • Nadeem, M. A., Karaköy, T., Yeken, M. Z., Habyarimana, E., Hatipoğlu, R., Çiftçi, V., Nawaz, M. A., Sönmez, F., Shahid, M. Q., & Yang, S. H. (2020). Phenotypic characterization of 183 Turkish common bean accessions for agronomic, trading, and consumer-preferred plant characteristics for breeding purposes. Agronomy, 10(2), 272. https://doi.org/10.3390/agronomy10020272
  • Nadeem, M. A., Yeken, M. Z., Shahid, M. Q., Habyarimana, E., Yılmaz, H., Alsaleh, A., Hatipoğlu, R., Çilesiz, Y., Khawar, K. M., & Ludidi, N. (2021). Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. Biotechnology & Biotechnological Equipment, 35(1), 759-787. https://doi.org/10.1080/13102818.2021.1920462
  • Olennikov, D. N., & Kashchenko, N. I. (2022). Marigold metabolites: Diversity and separation methods of Calendula genus phytochemicals from 1891 to 2022. Molecules, 27(23), 8626. https://doi.org/10.3390/molecules27238626
  • Orchard, A., & van Vuuren, S. F. (2019). Carrier oils in dermatology. Archives of Dermatological Research, 311(9), 653-672. https://doi.org/10.1007/s00403-019-01951-8
  • Rahimi, S., Pirzad, A., Tajbakhsh, M., & Jalilian, J. (2020). How do biological and chemical phosphorus change the yield (Quantity and Quality) of Calendula officinalis in water-limited condition? Journal of Essential Oil Bearing Plants, 23(1), 105-120. https://doi.org/10.1080/0972060X.2020.1727366
  • Salama, A. B., & Sabry, R. M. (2023). Production potential of pot marigold (Calendula officinalis) as a dual-purpose crop. Sarhad Journal of Agriculture, 39(230). https://dx.doi.org/10.17582/journal.sja/2023/39.2.298.307
  • Stefanoudaki, E., Kotsifaki, F., & Koutsaftakis, A. (1999). Classification of virgin olive oils of the two major Cretan cultivars based on their fatty acid composition. Journal of the American Oil Chemists’ Society, 76(5), 623-626. https://doi.org/10.1007/s11746-999-0013-7
  • Suzuki, R., Noguchi, R., Ota, T., Abe, M., Miyashita, K., & Kawada, T. (2001). Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids, 36(5), 477-482. https://doi.org/10.1007/s11745-001-0746-0
  • Verma, P. K., Raina, R., Agarwal, S., & Kaur, H. (2018). Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn. Pharmaceutical and Biomedical Research, 4(2), 1-17. https://doi.org/10.18502/pbr.v4i2.214
  • Yılmaz, A., Yeken, M. Z., Ali, F., Barut, M., Nadeem, M. A., Yılmaz, H., Naeem, M., Tarıkahya Hacıoğlu, B., Arslan, Y., & Kurt, C. (2021). Genomics, phenomics, and next breeding tools for genetic improvement of safflower (Carthamus tinctorius L.). Oil Crop Genomics, 217-269. https://doi.org/10.1007/978-3-030-70420-9_11
  • Yuan, G. F., Chen, X. E., & Li, D. (2014). Conjugated linolenic acids and their bioactivities: a review. Food & Function, 5(7), 1360-1368. https://doi.org/10.1039/C4FO00037D
  • Zarrinabadi, I. G., Razmjoo, J., Mashhadi, A. A., & Boroomand, A. (2019). Physiological response and productivity of pot marigold (Calendula officinalis) genotypes under water deficit. Industrial Crops and Products, 139, 111488. https://doi.org/10.1016/j.indcrop.2019.111488
Year 2023, Volume: 7 Issue: 3, 639 - 649, 30.09.2023
https://doi.org/10.31015/jaefs.2023.3.18

Abstract

References

  • Ahmad, A., & Ahsan, H. (2020). Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomedical Dermatology, 4(1), 1-10. https://doi.org/10.1186/s41702-020-00062-9
  • Avato, P., & Tava, A. (2022). Rare fatty acids and lipids in plant oilseeds: Occurrence and bioactivity. Phytochemistry Reviews, 21(2), 401-428. https://doi.org/10.1007/s11101-021-09770-4
  • Barut, M., Nadeem, M. A., Karaköy, T., & Baloch, F. S. (2020). DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry, 44(5), 479-491. https://doi.org/10.3906/tar-2001-10
  • Barut, M., Tansi, L. S., Bicen, G., & Karaman, S. (2022). Deciphering the quality and yield of heteromorphic seeds of marigold (Calendula officinalis L.) under high temperatures in the Eastern Mediterranean region. South African Journal of Botany, 149, 303-314. https://doi.org/10.1016/j.sajb.2022.06.020
  • Cahoon, E. B., Ripp, K. G., Hall, S. E., & Kinney, A. J. (2001). Formation of conjugated Δ8, Δ10-double bonds by Δ12-oleic-acid desaturase-related enzymes: biosynthetic origin of calendic acid. Journal of Biological Chemistry, 276(4), 2637-2643. https://doi.org/10.1074/jbc.M009188200
  • Cao, S., Zhou, X.-R., Wood, C. C., Green, A. G., Singh, S. P., Liu, L., & Liu, Q. (2013). A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biology, 13, 1-18. https://doi.org/10.1186/1471-2229-13-5
  • Çelik, A., Emiralioğlu, O., Yeken, M. Z., Çiftçi, V., Özer, G., Kim, Y., Baloch, F. S., & Chung, Y. S. (2023). A novel study on bean common mosaic virus accumulation shows disease resistance at the initial stage of infection in Phaseolus vulgaris. Frontiers in Genetics, 14. https://doi.org/10.3389/fgene.2023.1136794
  • Cromack, H., & Smith, J. (1998). Calendula officinalis—production potential and crop agronomy in southern England. Industrial Crops and Products, 7(2-3), 223-229. https://doi.org/10.1016/S0926-6690(97)00052-6
  • Crombie, L., & Holloway, S. J. (1985). The biosynthesis of calendic acid, octadeca-(8 E, 10 E, 12 Z)-trienoic, acid, by developing marigold seeds: origins of (E, E, Z) and (Z, E, Z) conjugated triene acids in higher plants. Journal of the Chemical Society, Perkin Transactions 1, 2425-2434. https://doi.org/10.1039/P19850002425
  • Dubey, K. K., Sharma, G., & Kumar, A. (2019). Conjugated linolenic acids: implication in cancer. Journal of agricultural and food chemistry, 67(22), 6091-6101. https://doi.org/10.1021/acs.jafc.9b01379
  • Dulf, F. V., Pamfil, D., Baciu, A. D., & Pintea, A. (2013). Fatty acid composition of lipids in pot marigold (Calendula officinalisL.) seed genotypes. Chemistry Central Journal, 7(1), 1-11. https://doi.org/10.1186/1752-153X-7-8
  • Feder, W. J., Holtgrefe, R., Butte, W., & Biermann, U. (2009). Calendulaöl als Lackrohstoff für Naturfarben. In: Abschlußbericht, Jever und Oldenburg.
  • Garaiova, M., Hua, Q., & Holic, R. (2023). Heterologous production of calendic acid naturally found in Calendula officinalis by Recombinant Fission Yeast. Journal of Agricultural and Food Chemistry, 71(8), 3842-3851. https://doi.org/10.1021/acs.jafc.2c08967
  • Güneş, Z., & Tonçer, Ö. (2023). Evaluation of some black cumin seed (Nigella sativa L.) genotypes in terms of quality parameters at different planting periods under Mardin ecological conditions. Revista de Investigaciones Universidad del Quindío, 35(1), 194-206. https://doi.org/10.33975/riuq.vol35n1.1149
  • Król, B., & Paszko, T. (2017). Harvest date as a factor affecting crop yield, oil content and fatty acid composition of the seeds of calendula (Calendula officinalis L.) cultivars. Industrial Crops and Products, 97, 242-251. https://doi.org/10.1016/j.indcrop.2016.12.029
  • Krol, B., Paszko, T., & Krol, A. (2016). Conjugated linolenic acid content in seeds of some pot marigold (Calendula officinalis L.) cultivars grown in Poland. Farmacia, 64(6), 881-886.
  • Kurt, C., Demirbas, A., Nawaz, M. A., Chung, G., Baloch, F. S., & Altunay, N. (2020). Determination of Se content of 78 sesame accessions with different geographical origin. Journal of Food Composition and Analysis, 94, 103621. https://doi.org/10.1016/j.jfca.2020.103621
  • Nadeem, M. A., Karaköy, T., Yeken, M. Z., Habyarimana, E., Hatipoğlu, R., Çiftçi, V., Nawaz, M. A., Sönmez, F., Shahid, M. Q., & Yang, S. H. (2020). Phenotypic characterization of 183 Turkish common bean accessions for agronomic, trading, and consumer-preferred plant characteristics for breeding purposes. Agronomy, 10(2), 272. https://doi.org/10.3390/agronomy10020272
  • Nadeem, M. A., Yeken, M. Z., Shahid, M. Q., Habyarimana, E., Yılmaz, H., Alsaleh, A., Hatipoğlu, R., Çilesiz, Y., Khawar, K. M., & Ludidi, N. (2021). Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics. Biotechnology & Biotechnological Equipment, 35(1), 759-787. https://doi.org/10.1080/13102818.2021.1920462
  • Olennikov, D. N., & Kashchenko, N. I. (2022). Marigold metabolites: Diversity and separation methods of Calendula genus phytochemicals from 1891 to 2022. Molecules, 27(23), 8626. https://doi.org/10.3390/molecules27238626
  • Orchard, A., & van Vuuren, S. F. (2019). Carrier oils in dermatology. Archives of Dermatological Research, 311(9), 653-672. https://doi.org/10.1007/s00403-019-01951-8
  • Rahimi, S., Pirzad, A., Tajbakhsh, M., & Jalilian, J. (2020). How do biological and chemical phosphorus change the yield (Quantity and Quality) of Calendula officinalis in water-limited condition? Journal of Essential Oil Bearing Plants, 23(1), 105-120. https://doi.org/10.1080/0972060X.2020.1727366
  • Salama, A. B., & Sabry, R. M. (2023). Production potential of pot marigold (Calendula officinalis) as a dual-purpose crop. Sarhad Journal of Agriculture, 39(230). https://dx.doi.org/10.17582/journal.sja/2023/39.2.298.307
  • Stefanoudaki, E., Kotsifaki, F., & Koutsaftakis, A. (1999). Classification of virgin olive oils of the two major Cretan cultivars based on their fatty acid composition. Journal of the American Oil Chemists’ Society, 76(5), 623-626. https://doi.org/10.1007/s11746-999-0013-7
  • Suzuki, R., Noguchi, R., Ota, T., Abe, M., Miyashita, K., & Kawada, T. (2001). Cytotoxic effect of conjugated trienoic fatty acids on mouse tumor and human monocytic leukemia cells. Lipids, 36(5), 477-482. https://doi.org/10.1007/s11745-001-0746-0
  • Verma, P. K., Raina, R., Agarwal, S., & Kaur, H. (2018). Phytochemical ingredients and pharmacological potential of Calendula officinalis Linn. Pharmaceutical and Biomedical Research, 4(2), 1-17. https://doi.org/10.18502/pbr.v4i2.214
  • Yılmaz, A., Yeken, M. Z., Ali, F., Barut, M., Nadeem, M. A., Yılmaz, H., Naeem, M., Tarıkahya Hacıoğlu, B., Arslan, Y., & Kurt, C. (2021). Genomics, phenomics, and next breeding tools for genetic improvement of safflower (Carthamus tinctorius L.). Oil Crop Genomics, 217-269. https://doi.org/10.1007/978-3-030-70420-9_11
  • Yuan, G. F., Chen, X. E., & Li, D. (2014). Conjugated linolenic acids and their bioactivities: a review. Food & Function, 5(7), 1360-1368. https://doi.org/10.1039/C4FO00037D
  • Zarrinabadi, I. G., Razmjoo, J., Mashhadi, A. A., & Boroomand, A. (2019). Physiological response and productivity of pot marigold (Calendula officinalis) genotypes under water deficit. Industrial Crops and Products, 139, 111488. https://doi.org/10.1016/j.indcrop.2019.111488
There are 29 citations in total.

Details

Primary Language English
Subjects Medicinal and Aromatic Plants
Journal Section Research Articles
Authors

Muzaffer Barut 0000-0002-9095-8225

Leyla Sezen Tansı 0000-0003-0726-3332

Şengül Karaman 0000-0001-7617-9957

Publication Date September 30, 2023
Submission Date August 14, 2023
Acceptance Date September 12, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

APA Barut, M., Tansı, L. S., & Karaman, Ş. (2023). Unveiling the phytochemical variability of fatty acids in world marigold (Calendula officinalis L.) germplasm affected by genotype. International Journal of Agriculture Environment and Food Sciences, 7(3), 639-649. https://doi.org/10.31015/jaefs.2023.3.18


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27