Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 4, 756 - 760, 29.12.2023
https://doi.org/10.31015/jaefs.2023.4.4

Abstract

References

  • Ashoor, S. H., & Knox, M. J. (1984). Determination of organic acids in foods by high-performance liquid chromatography: citric acid. Journal of Chromatography A, 299, 288-292. https://doi.org/10.1016/S0021-9673(01)97843-4
  • Avallone, R., Plessi, M., Baraldi, M., & Monzani, A. (1997). Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. Journal of food composition and analysis, 10(2), 166-172. https://doi.org/10.1006/jfca.1997.0528
  • Ayaz, F. A., Torun, H., Ayaz, S. E. M. A., Correia, P. J., Alaiz, M., Sanz, C., ... & Strnad, M. (2007). Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): sugars, amino and organic acids, minerals and phenolic compounds. Journal of food quality, 30(6), 1040-1055. https://doi.org/10.1111/j.1745-4557.2007.00176.x
  • Bates, S. H., Jones, R. B., & Bailey, C. J. (2000). Insulin‐like effect of pinitol. British journal of pharmacology, 130(8), 1944-1948. ,https://doi.org/10.1038/sj.bjp.0703523
  • Battle, I., & Tous, J. (1997). Carob Tree (Ceratonia siliqua L.), International Plant Genetic Resources Institute. Via delle Sette Chiese, 142, 00145. https://hdl.handle.net/10568/104277
  • Biner, B., Gubbuk, H. A. M. İ. D. E., Karhan, M. U. S. T. A. F. A., Aksu, M., & Pekmezci, M. (2007). Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food chemistry, 100(4), 1453-1455. https://doi.org/10.1016/j.foodchem.2005.11.037
  • Bozan, B., Başer, K. H. C., & Kara, S. (1997). Quantitative determination of naphthaquinones of Arnebia densiflora (Nordm.) Ledeb. by an improved high-performance liquid chromatographic method. Journal of Chromatography A, 782(1), 133-136. https://doi.org/10.1016/S0021-9673(97)00460-3
  • Brassesco, M. E., Brandao, T. R., Silva, C. L., & Pintado, M. (2021). Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends in Food Science & Technology, 114, 310-322. https://doi.org/10.1016/j.tifs.2021.05.037
  • Cheng, G. W., & Crisosto, C. H. (1997). Iron—polyphenol complex formation and skin discoloration in peaches and nectarines. Journal of the American Society for Horticultural Science, 122(1), 95-99. https://doi.org/10.21273/JASHS.122.1.95
  • Correia, P. J., & Martins-Loução, M. A. (2005). The use of macronutrients and water in marginal Mediterranean areas: the case of carob-tree. Field Crops Research, 91(1), 1-6. https://doi.org/10.1016/j.fcr.2004.05.004
  • Food and Agriculture Organization. The State of Food and Agriculture 2020: Moving Forward on Food Loss and Waste Reduction (FAO, 2020). hl=tr&as_sdt=0%2C5&q=FAO+2020&btnG=
  • Goulas, V., Stylos, E., Chatziathanasiadou, M. V., Mavromoustakos, T., & Tzakos, A. G. (2016). Functional components of carob fruit: Linking the chemical and biological space. International journal of molecular sciences, 17(11), 1875. https://doi.org/10.3390/ijms17111875
  • Gubbuk, H., Kafkas, E., Guven, D., & Gunes, E. (2010). Physical and phytochemical profile of wild and domesticated carob (Ceratonia siliqua L.) genotypes. Spanish Journal of Agricultural Research, 8(4), 1129-1136. https://doi.org/ 10.5424/sjar/2010084-1209
  • JMP Start Statistics by John Sall and Ann Lehman. Duxbury Press, New York, NY, 1996. 521 pp. https://doi.org/10.1080/00224065.1996.11979708
  • Kang, M. J., Kim, J. I., Yoon, S. Y., Kim, J. C., & Cha, I. J. (2006). Pinitol from soybeans reduces postprandial blood glucose in patients with type 2 diabetes mellitus. Journal of medicinal food, 9(2), 182-186. https://doi.org/10.1089/jmf.2006.9.182
  • Karkacıer, M., & Artık, N. (1995). Keçiboynuzunun (Ceratonia siliqua L.) fiziksel özellikleri, kimyasal bileşimi ve ekstraksiyon koşulları. Gıda, 20(3). https://doi.org/10.1111/1541-4337.12177
  • Nasar‐Abbas, S. M., e‐Huma, Z., Vu, T. H., Khan, M. K., Esbenshade, H., & Jayasena, V. (2016). Carob kibble: A bioactive‐rich food ingredient. Comprehensive Reviews in Food Science and Food Safety, 15(1), 63-72. . https://doi.org/10.1111/1541-4337.12177
  • Narayanan, C. R., Joshi, D. D., Mujumdar, A. M., & Dhekne, V. V. (1987). Pinitol—a new anti-diabetic compound from the leaves of Bougainvillea spectabilis. Current Science, 56(3), 139-141. https://www.jstor.org/stable/24091051
  • Saura‐Calixto, F. (1988). Effect of condensed tannins in the analysis of dietary fiber in carob pods. Journal of Food Science, 53(6), 1769-1771. https://doi.org/10.1111/j.1365-2621.1988.tb07838.x
  • Smith, A. E., & Phillips, D. V. (1982). Influence of sequential prolonged periods of dark and light on pinitol concentration in clover and soybean tissue. Physiologia plantarum, 54(1), 31-33. https://doi.org/10.1111/j.1399-3054.1982.tb00572.x
  • Tous, J., Romero, A., & Batlle, I. (2013). The Carob tree: Botany, horticulture, and genetic resources. Horticultural Reviews Volume 41, 385-456. https://doi.org/10.1002/9781118707418.ch08
  • Nasar‐Abbas, S. M., e‐Huma, Z., Vu, T. H., Khan, M. K., Esbenshade, H., & Jayasena, V. (2016). Carob kibble: A bioactive‐rich food ingredient. Comprehensive Reviews in Food Science and Food Safety, 15(1), 63-72. https://doi.org/10.1111/1541-4337.12177
  • Vernon, D. M., Tarczynski, M. C., Jensen, R. G., & Bohnert, H. J. (1993). Cyclitol production in transgenic tobacco. The Plant Journal, 4(1), 199-205. https://doi.org/10.1046/j.1365-313X.1993.04010199.x
  • Viruel, J., Le Galliot, N., Pironon, S., Nieto Feliner, G., Suc, J. P., Lakhal‐Mirleau, F., ... & Baumel, A. (2020). A strong east–west Mediterranean divergence supports a new phylogeographic history of the carob tree (Ceratonia siliqua, Leguminosae) and multiple domestications from native populations. Journal of Biogeography, 47(2), 460-471. https://doi.org/10.1111/jbi.13726
  • Wursch, P., Del Vedovo, S., Rosset, J., & Smiley, M. (1984). The tannin granules from ripe carob pod. Lebensmittel-Wissenschaft+ Technologie, 17(6), 351-354. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8932738
  • Youssef, M. K. E., El-Manfaloty, M. M., & Ali, H. M. (2013). Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food and Public Health, 3(6), 304-308. https://doi.org/10.5923/j.fph.20130306.06
  • Zunft, H. J. F., Lüder, W., Harde, A., Haber, B., Graubaum, H. J., & Gruenwald, J. (2001). Carob pulp preparation for treatment of hypercholesterolemia. Advances in therapy, 18, 230-236. .https://doi.org/10.1007/BF02853169

Determination of sugars and organic acids in diverse carob genotypes using HPLC techniques

Year 2023, Volume: 7 Issue: 4, 756 - 760, 29.12.2023
https://doi.org/10.31015/jaefs.2023.4.4

Abstract

Carob fruit is widely known for their abundance of health-boosting compounds like polyphenols, ascorbic acid, organic acids, and micronutrients. These compounds offer various benefits, including antioxidative, antimicrobial, antidiabetic, liver-protective, anti-inflammatory, anticancer, and heart-protective effects. In this research, High-Performance Liquid Chromatography (HPLC) methods were employed to assess sugar and organic acid levels in mature fruit pods of three distinct carob genotypes from the Kahramanmaras region in Turkey. The findings revealed that genotype-2 had the highest concentrations of glucose (1301 mg/100g) and fructose (875 mg/100g), genotype-3 exhibited the highest level of xylose (1548 mg/100g), while genotype-1 displayed the highest levels of sucrose (9183 mg/100g) and total sugars (12457 mg/100g). Regarding organic acids, genotype-1 exhibited the highest levels of oxalic acid (17.62 mg/100g), citric acid (612.50 mg/100g), and fumaric acid (8.0 mg/100g), while genotype-3 showed the highest levels of malic acid (234.92 mg/100g) and succinic acid (1089.76 mg/100g); however, genotype-2 had the highest amount of ascorbic acid (8.17 mg/100g). In conclusion, genotype-1 demonstrated the most favorable performance in terms of having the highest levels of total sugar and organic acids compared to the other two genotypes.

Supporting Institution

Çukurova University

References

  • Ashoor, S. H., & Knox, M. J. (1984). Determination of organic acids in foods by high-performance liquid chromatography: citric acid. Journal of Chromatography A, 299, 288-292. https://doi.org/10.1016/S0021-9673(01)97843-4
  • Avallone, R., Plessi, M., Baraldi, M., & Monzani, A. (1997). Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. Journal of food composition and analysis, 10(2), 166-172. https://doi.org/10.1006/jfca.1997.0528
  • Ayaz, F. A., Torun, H., Ayaz, S. E. M. A., Correia, P. J., Alaiz, M., Sanz, C., ... & Strnad, M. (2007). Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): sugars, amino and organic acids, minerals and phenolic compounds. Journal of food quality, 30(6), 1040-1055. https://doi.org/10.1111/j.1745-4557.2007.00176.x
  • Bates, S. H., Jones, R. B., & Bailey, C. J. (2000). Insulin‐like effect of pinitol. British journal of pharmacology, 130(8), 1944-1948. ,https://doi.org/10.1038/sj.bjp.0703523
  • Battle, I., & Tous, J. (1997). Carob Tree (Ceratonia siliqua L.), International Plant Genetic Resources Institute. Via delle Sette Chiese, 142, 00145. https://hdl.handle.net/10568/104277
  • Biner, B., Gubbuk, H. A. M. İ. D. E., Karhan, M. U. S. T. A. F. A., Aksu, M., & Pekmezci, M. (2007). Sugar profiles of the pods of cultivated and wild types of carob bean (Ceratonia siliqua L.) in Turkey. Food chemistry, 100(4), 1453-1455. https://doi.org/10.1016/j.foodchem.2005.11.037
  • Bozan, B., Başer, K. H. C., & Kara, S. (1997). Quantitative determination of naphthaquinones of Arnebia densiflora (Nordm.) Ledeb. by an improved high-performance liquid chromatographic method. Journal of Chromatography A, 782(1), 133-136. https://doi.org/10.1016/S0021-9673(97)00460-3
  • Brassesco, M. E., Brandao, T. R., Silva, C. L., & Pintado, M. (2021). Carob bean (Ceratonia siliqua L.): A new perspective for functional food. Trends in Food Science & Technology, 114, 310-322. https://doi.org/10.1016/j.tifs.2021.05.037
  • Cheng, G. W., & Crisosto, C. H. (1997). Iron—polyphenol complex formation and skin discoloration in peaches and nectarines. Journal of the American Society for Horticultural Science, 122(1), 95-99. https://doi.org/10.21273/JASHS.122.1.95
  • Correia, P. J., & Martins-Loução, M. A. (2005). The use of macronutrients and water in marginal Mediterranean areas: the case of carob-tree. Field Crops Research, 91(1), 1-6. https://doi.org/10.1016/j.fcr.2004.05.004
  • Food and Agriculture Organization. The State of Food and Agriculture 2020: Moving Forward on Food Loss and Waste Reduction (FAO, 2020). hl=tr&as_sdt=0%2C5&q=FAO+2020&btnG=
  • Goulas, V., Stylos, E., Chatziathanasiadou, M. V., Mavromoustakos, T., & Tzakos, A. G. (2016). Functional components of carob fruit: Linking the chemical and biological space. International journal of molecular sciences, 17(11), 1875. https://doi.org/10.3390/ijms17111875
  • Gubbuk, H., Kafkas, E., Guven, D., & Gunes, E. (2010). Physical and phytochemical profile of wild and domesticated carob (Ceratonia siliqua L.) genotypes. Spanish Journal of Agricultural Research, 8(4), 1129-1136. https://doi.org/ 10.5424/sjar/2010084-1209
  • JMP Start Statistics by John Sall and Ann Lehman. Duxbury Press, New York, NY, 1996. 521 pp. https://doi.org/10.1080/00224065.1996.11979708
  • Kang, M. J., Kim, J. I., Yoon, S. Y., Kim, J. C., & Cha, I. J. (2006). Pinitol from soybeans reduces postprandial blood glucose in patients with type 2 diabetes mellitus. Journal of medicinal food, 9(2), 182-186. https://doi.org/10.1089/jmf.2006.9.182
  • Karkacıer, M., & Artık, N. (1995). Keçiboynuzunun (Ceratonia siliqua L.) fiziksel özellikleri, kimyasal bileşimi ve ekstraksiyon koşulları. Gıda, 20(3). https://doi.org/10.1111/1541-4337.12177
  • Nasar‐Abbas, S. M., e‐Huma, Z., Vu, T. H., Khan, M. K., Esbenshade, H., & Jayasena, V. (2016). Carob kibble: A bioactive‐rich food ingredient. Comprehensive Reviews in Food Science and Food Safety, 15(1), 63-72. . https://doi.org/10.1111/1541-4337.12177
  • Narayanan, C. R., Joshi, D. D., Mujumdar, A. M., & Dhekne, V. V. (1987). Pinitol—a new anti-diabetic compound from the leaves of Bougainvillea spectabilis. Current Science, 56(3), 139-141. https://www.jstor.org/stable/24091051
  • Saura‐Calixto, F. (1988). Effect of condensed tannins in the analysis of dietary fiber in carob pods. Journal of Food Science, 53(6), 1769-1771. https://doi.org/10.1111/j.1365-2621.1988.tb07838.x
  • Smith, A. E., & Phillips, D. V. (1982). Influence of sequential prolonged periods of dark and light on pinitol concentration in clover and soybean tissue. Physiologia plantarum, 54(1), 31-33. https://doi.org/10.1111/j.1399-3054.1982.tb00572.x
  • Tous, J., Romero, A., & Batlle, I. (2013). The Carob tree: Botany, horticulture, and genetic resources. Horticultural Reviews Volume 41, 385-456. https://doi.org/10.1002/9781118707418.ch08
  • Nasar‐Abbas, S. M., e‐Huma, Z., Vu, T. H., Khan, M. K., Esbenshade, H., & Jayasena, V. (2016). Carob kibble: A bioactive‐rich food ingredient. Comprehensive Reviews in Food Science and Food Safety, 15(1), 63-72. https://doi.org/10.1111/1541-4337.12177
  • Vernon, D. M., Tarczynski, M. C., Jensen, R. G., & Bohnert, H. J. (1993). Cyclitol production in transgenic tobacco. The Plant Journal, 4(1), 199-205. https://doi.org/10.1046/j.1365-313X.1993.04010199.x
  • Viruel, J., Le Galliot, N., Pironon, S., Nieto Feliner, G., Suc, J. P., Lakhal‐Mirleau, F., ... & Baumel, A. (2020). A strong east–west Mediterranean divergence supports a new phylogeographic history of the carob tree (Ceratonia siliqua, Leguminosae) and multiple domestications from native populations. Journal of Biogeography, 47(2), 460-471. https://doi.org/10.1111/jbi.13726
  • Wursch, P., Del Vedovo, S., Rosset, J., & Smiley, M. (1984). The tannin granules from ripe carob pod. Lebensmittel-Wissenschaft+ Technologie, 17(6), 351-354. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8932738
  • Youssef, M. K. E., El-Manfaloty, M. M., & Ali, H. M. (2013). Assessment of proximate chemical composition, nutritional status, fatty acid composition and phenolic compounds of carob (Ceratonia siliqua L.). Food and Public Health, 3(6), 304-308. https://doi.org/10.5923/j.fph.20130306.06
  • Zunft, H. J. F., Lüder, W., Harde, A., Haber, B., Graubaum, H. J., & Gruenwald, J. (2001). Carob pulp preparation for treatment of hypercholesterolemia. Advances in therapy, 18, 230-236. .https://doi.org/10.1007/BF02853169
There are 27 citations in total.

Details

Primary Language English
Subjects Fruit-Vegetables Technology, Plant Biotechnology in Agriculture
Journal Section Research Articles
Authors

Şule Polat 0000-0001-5469-5758

Awara Hamakhan 0000-0003-2351-4453

Ebru Kafkas 0000-0003-3412-5971

Md. Arfan Ali 0000-0002-1471-1837

Early Pub Date December 16, 2023
Publication Date December 29, 2023
Submission Date September 5, 2023
Acceptance Date October 24, 2023
Published in Issue Year 2023 Volume: 7 Issue: 4

Cite

APA Polat, Ş., Hamakhan, A., Kafkas, E., Ali, M. A. (2023). Determination of sugars and organic acids in diverse carob genotypes using HPLC techniques. International Journal of Agriculture Environment and Food Sciences, 7(4), 756-760. https://doi.org/10.31015/jaefs.2023.4.4


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27