Research Article
BibTex RIS Cite

Effects of mycorrhizal fungi application on some growth parameters of Monterey strawberry cultivars under different salt stress conditions

Year 2024, Volume: 8 Issue: 1, 158 - 168, 25.03.2024
https://doi.org/10.31015/jaefs.2024.1.16

Abstract

Salinity is one of the most important environmental problems for agricultural production. In recent years, some studies revealed that arbuscular mycorrhizal fungi positively influenced plant growth and development and increased the uptake of nutrients under saline conditions. This study was carried out to investigate the response of the Monterey strawberry cultivar to mycorrhizal fungi (Glomus spp.) root inoculations during salinity stress under greenhouse conditions. In the present study, four different salt concentrations (0, 20, 40, and 80 mM NaCl) were applied to growing media with and without mycorrhiza conditions. The parameters such as leaf number, leaf area, petiole length, root length, dry matter contents in leaves, crowns, and roots, fruit weight, fruit yield, and Na, P, and K accumulation in leaves, crowns, and roots were determined. It was determined that increasing the amount of salt negatively affected all parameters in the control treatment. Leaf area significantly decreased with increasing concentration of NaCl treatment with and without mycorrhiza conditions. High salinity caused an increase in the Na content, but K and P contents decreased with salinity. Finally, it is suggested that the application of mycorrhizae generally positively affected examined parameters in strawberries under salinity conditions.

References

  • Abbas, M.A., Younis, M.E. & Shukry, W.M. (1991). Plant Growth, Metabolism and Adaptation in Relation to Stress Conditions. XIV. Effect of salinity on the ınternal solute concentrations in Phaseolus vulgaris. Journal of Plant Physiology Volume 138. Issue 6. October 1991. Pages 722–727.
  • Adak, N. (2010). Camarosa çilek çeşidinde değişik EC düzeylerinin verim ve kalite üzerine etkileri. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi. 27(2):22-33.
  • Allen, F. M. (1991). The Ecology of Mycorrhizae. Cambridge Uniandrsity Press. 184pp.
  • Alpaslan, M., Günes, A., Taban, S., Erdal, I. & Tarakçioğlu, C. (1998). Variations in calcium. phosphorus. iron. copper. zinc and manganese contents of wheat and rice varieties under salt stress. Tr. J. Agric. Fores. 22. 227/233.
  • Augé, R.M. (2001). Water relations, drought and vesicu lar arbuscular mycorrhizal symbiosis. In Mycorrhiza, Vol. 11, no. 1, pp. 3–42.
  • Aysen, Koç, A., Balcı, G., Ertürk, Y., Seçkin, B., Keles, H. & Bakoğlu, N. (2015). Farklı tuz konsantrasyonlarının ve uygulamaların çilek gelişimi üzerine etkileri. VII. Ulusal Bahçe Bitkileri Kongresi Bildirileri - Cilt I: Meyvecilik
  • Azizinya, S., Ghanadha, M.R., Zali, A.A., Samadi, B.Y. & Ahmadi, A. (2005). An evaluation of quantitative traits related to drought resistance in synthetic wheat genotypes in stress and non-stress conditions. Iran. J. Agric. Sci. 2005. 36. 281–293.
  • Bohnert, H. J. & Jensen, R. G. (1996). Metabolic engineering for increased salt tolerance: the next step. Aust. J. Plant Physiol. 23: 661–667.
  • Botella, M.A., Rosado, A., Bressan, R.A. & Hasegawa, P.M. (2005). Plant adaptive responses to salinity stress, plant abiotic stress, Blackwell Publishing Ltd., 270p.
  • Chartzoulaki, S. K. & Klapaki, G.. (2000) Response of two green house pepper hybrids to NaCl salinity during different growth stages. Sci Hortic. 86. 247-260.
  • Demirsoy, H., Demirsoy, L. & Öztürk, A. (2005). Improved model for the non-destructive estimation of strawberry leaf area. Fruits, 60(1), p69-73.
  • Dinç, U., Senol, S., Kapur, S., Atalay, I. & Cangir, C. (1993). Turkish Lands. C.U. Faculty of Agriculture. General Publication No. 2: 51, p233.
  • Erenoğlu, B., Burak, M., Şeniz, V. & Fidancı. A., (2003). Melezleme ıslahı ile elde edilen bazı çilek çeşitlerinin In Vitro şartlarında tuza (NaCI) mukavemetleri üzerinde araştırmalar. Ulusal Kivi ve Üzümsü Meyveler Sempozyumu. 23- 25 Ekim 2003. Karadeniz Teknik Üniversitesi. Ordu Ziraat Fakültesi. Ordu. 288-294.
  • Erdal, İ., Türkmen, Ö. & Yıldız, M. (2000). Tuz stresi altında yetiştirilen hıyar (Cucumis sativus L.) fidelerinin gelişimi ve kimi besin maddeleri içeriğindeki değişimler üzerine potasyumlu gübrelemenin etkisi. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi 10(1): 25-29
  • Essa, T.A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J. Agron. Crop Sci. 188. 86–93.
  • Evelin, H., Kapoor, R. & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany. 104: 1263–1280.
  • Franco, J.A., Esteban, C. & Rodriguez, C. (1993). Effects ofsalinity on various growth stages of muskmelon cv. Revigal J. Hort. Sci. 68. pp. 899–904.
  • Gai, J. P., Christie, P., Feng, G. & Li, X. L. (2006). Twenty years of research on community composition and Species distribution of arbuscular mycorrhizal fungi in China: a review. Mycorrhiza 16: 229–239.
  • Gómez-del-Campo, M., Baeza, P., Ruiz, C. & Lissarrague, J.R. (2015). Water-stress induced physiological changes in leaves of four container-grown grapevine cultivars (Vitis vinifera L.). VITIS J. Grapevine Res. 2015. 43. 99.
  • Güneş, A., İnal, A., Alpaslan, M. & Çıkılı, Y. (1999). Effect of Salinity on Phosphorus Induced Zinc Deficieny in Pepper (Capsicum annuum L.) Plants. Tr. Journal of Agriculture and Forestry. 23: 459-464.
  • Hoagland, D. R. & Arnon, D. I. (1938). Growing plants without soil by the water-culture method. Growing plants without soil by the water-culture method.
  • Hong, C.Y., Chao, Y.Y., Yang, M.Y., Cho, S.C. & Kao, C.H. (2009). Na+ but not clor osmotic stress is ınvolved in NaCl ınduced expression of glutathione reductase in roots of rice seedlings, Journal of Plant Physiology, 166, 1598-1606
  • Jamalian, S., Gholami, M. & Esna-Ashari, M. (2013). Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theoretical and Experimental Plant Physiology, 25, 291-299.
  • Jeffrıes, P., Gıanınazzı, S., Perotto, S., Turnau, K. & Barea, J.M. (2003). The contributionof arbuscular mycorrhizal fungi in sustainable main -tenance of plant health and soil fertility. In Biolo-gy and Fertility of Soil s, vol. 37, no. 1, pp. 1–16.DOI: 10.1007/s00374-002-0546-5.
  • Ferreira, J. F., Liu, X., & Suarez, D. L. (2019). Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity stress. Scientia Horticulturae, 243, 401-410.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri (II. Bitki Analizleri). Ankara Üniversitesi Ziraat Fakültesi Yayınları. Ankara.
  • Kacar, B. (1991). Çay ve çay topraklarının kimyasal analizleri: 1. çay analizleri. Çay-Kur.
  • Kamar, R., Sarıdas, M. A. & Paydaş, S. (2023). Çileklerde farklı tuz konsantrasyonlarının verim ve pomolojik özellikler üzerine etkileri. Çukurova Tarım ve Gıda Bilimleri Dergisi. 38(1). 40-56.
  • Karaduva, L. & Kurnaz, Ş. (1992). Samsun ekolojik koşullarında çileklerde yaz dikim zamanının belirlenmesi üzerinde bir araştırma. Türkiye I. Ulusal Bahçe Bitkileri Kongresi, İzmir. 223-226.
  • Karlidag, H., Yildirim, E. & Turan, M. (2009). Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, 66, 180-187.
  • Kaya, C., Higgs, D., Saltali, K., & Gezerel, O. (2002). Response of strawberry grown at high salinity and alkalinity to supplementary potassium. Journal of Plant Nutrition, 25(7), 1415-1427.
  • Keutgen, A.J. & Pawelzik, E.. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ. Exp. Bot. 65. 170-176.
  • Kurt, Z. (2021). Determınıng the effıcacy of some nanomaterıals on the morphologıcal and physıologıcal characterıstıcs of boysenberry growed under in vitro cultural condıtıons and the stress of salt. Akdeniz University, Science Institute, Department of Horticulture, PhD Thesis, Antalya, Turkiye, 47 pp.
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press. London
  • Martin, F. & Slater, H. (2007). An evolving host for mycorrhizal research. New Phytologist. Volume 174. Number 2. April 2007. pp. 225-228(4)
  • Moghaieb, R. E.A., Saneokab, H., Ito, J. & Fujita, K. (2001). Characterization of salt tolerance in tomato plant in terms of photosynthesis and water relations. Soil Sci. Plant Nutr. 47(2): 377–385.
  • Üzal, Ö. & Yıldız, K. (2014). Bazı çilek (Fragaria x ananassa L.) çeşitlerinin tuz stresine tepkileri. Yuzuncu Yıl University Journal of Agricultural Sciences, 24(2), 159-167.
  • Palta, Ş., Demir, S., Şengönül, K., Kara, Ö. & Şensoy, H. (2010). Arbüsküler mikorizal funguslar (amf), bitki ve toprakla ilişkileri, mera ıslahındaki önemleri. Bartın Orman Fakültesi Dergisi, 12(18), 87-98.
  • Pirlak, L. & Esitken, A. (2004). Salinity Effects on Growth. Proline And İon Accumulation in Strawberry Plants. Acta Agriculturae Scandinavica Section B-Soil and Plant Science. 54:189-192.
  • Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., ... & Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91-108.
  • Ruız-lozano, J.M. & Azcón, R. (2000). Symbiotic effi -ciency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. In Mycorrhiza, vol. 10,pp. 137–143
  • Saied, A. S., Keutgen, A. J., & Noga, G. (2005). The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs.’Elsanta’and ‘Korona’. Scientia Horticulturae, 103(3), 289-303. Sato, S., Sakaguchi, S., Furukawa, H. & Ikeda, H. (2006). Effects of NaCl application to hydroponic nutrient solution on fruit characteristic of tomato (Lycopersicon esculentum Mill.). Scientific Horticulture. 109. 248–253.
  • Sharıfı, M., Ghorbanlı, M. & Ebrahımzadeh, H. (2007). Improved growth of salinity- stressed soybe -an after inoculation with salt pre-treated mycorrhizal fungi. In Journal of Plant Physiology, vol. 164, no. 9,pp. 1144–1151.
  • Siebeneichler, T., Crizel, R. L., Reisser, P., Perin, E., Messias, R., Rombaldi, C. & Galli, V. (2022). Changes in the abscisic acid. phenylpropanoids and ascorbic acid metabolism during strawberry fruit growth and ripening. Journal of Food Composition and Analysis (108).
  • Sivritepe, N. (1995). Asmalarda Tuza Dayanıklılık Testleri ve Tuza Dayanımda Etkili Bazı Faktörler Üzerinde Araştırmalar. Uludağ Üniversitesi. Fen Bilimleri Enstitüsü. Bahçe Bitkileri Anabilim Dalı. Doktora tezi. Bursa. 176s.
  • Sönmez, F., Çığ, F., Erman, M. & Tüfenkçi, Ş. (2013). Çinko. Tuz ve mikorizanın mısırın gelişimi ile P ve Zn alımına etkisi. YYÜ Tar Bil Derg. 23(1):1-9.
  • Turhan, E., & Eris, A. (2005). Changes of micronutrients, dry weight, and chlorophyll contents in strawberry plants under salt stress conditions. Communications in Soil Science and Plant Analysis, 36(7-8), 1021-1028.
  • TÜİK. (2023). Türkiye İstatistik Kurumu. Retrieved from https://www.tuik.gov.tr/
  • Yıldırım, E., Karlidag, H. & Turan, H. (2009). Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant Soil Environ, 55.5: 213-221.
  • Yılmaz, H. & Kına, A., (2008). The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananssa L.). African Journal of Biotechnology, 7(18).
  • Younesi, O. & Moradi, A. (2014). Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agriculture (pol’nohospodárstvo), 60(1), 10-21.
  • Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X. & Fang, C. (2011). Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany (62). 1103–1118.
Year 2024, Volume: 8 Issue: 1, 158 - 168, 25.03.2024
https://doi.org/10.31015/jaefs.2024.1.16

Abstract

References

  • Abbas, M.A., Younis, M.E. & Shukry, W.M. (1991). Plant Growth, Metabolism and Adaptation in Relation to Stress Conditions. XIV. Effect of salinity on the ınternal solute concentrations in Phaseolus vulgaris. Journal of Plant Physiology Volume 138. Issue 6. October 1991. Pages 722–727.
  • Adak, N. (2010). Camarosa çilek çeşidinde değişik EC düzeylerinin verim ve kalite üzerine etkileri. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi. 27(2):22-33.
  • Allen, F. M. (1991). The Ecology of Mycorrhizae. Cambridge Uniandrsity Press. 184pp.
  • Alpaslan, M., Günes, A., Taban, S., Erdal, I. & Tarakçioğlu, C. (1998). Variations in calcium. phosphorus. iron. copper. zinc and manganese contents of wheat and rice varieties under salt stress. Tr. J. Agric. Fores. 22. 227/233.
  • Augé, R.M. (2001). Water relations, drought and vesicu lar arbuscular mycorrhizal symbiosis. In Mycorrhiza, Vol. 11, no. 1, pp. 3–42.
  • Aysen, Koç, A., Balcı, G., Ertürk, Y., Seçkin, B., Keles, H. & Bakoğlu, N. (2015). Farklı tuz konsantrasyonlarının ve uygulamaların çilek gelişimi üzerine etkileri. VII. Ulusal Bahçe Bitkileri Kongresi Bildirileri - Cilt I: Meyvecilik
  • Azizinya, S., Ghanadha, M.R., Zali, A.A., Samadi, B.Y. & Ahmadi, A. (2005). An evaluation of quantitative traits related to drought resistance in synthetic wheat genotypes in stress and non-stress conditions. Iran. J. Agric. Sci. 2005. 36. 281–293.
  • Bohnert, H. J. & Jensen, R. G. (1996). Metabolic engineering for increased salt tolerance: the next step. Aust. J. Plant Physiol. 23: 661–667.
  • Botella, M.A., Rosado, A., Bressan, R.A. & Hasegawa, P.M. (2005). Plant adaptive responses to salinity stress, plant abiotic stress, Blackwell Publishing Ltd., 270p.
  • Chartzoulaki, S. K. & Klapaki, G.. (2000) Response of two green house pepper hybrids to NaCl salinity during different growth stages. Sci Hortic. 86. 247-260.
  • Demirsoy, H., Demirsoy, L. & Öztürk, A. (2005). Improved model for the non-destructive estimation of strawberry leaf area. Fruits, 60(1), p69-73.
  • Dinç, U., Senol, S., Kapur, S., Atalay, I. & Cangir, C. (1993). Turkish Lands. C.U. Faculty of Agriculture. General Publication No. 2: 51, p233.
  • Erenoğlu, B., Burak, M., Şeniz, V. & Fidancı. A., (2003). Melezleme ıslahı ile elde edilen bazı çilek çeşitlerinin In Vitro şartlarında tuza (NaCI) mukavemetleri üzerinde araştırmalar. Ulusal Kivi ve Üzümsü Meyveler Sempozyumu. 23- 25 Ekim 2003. Karadeniz Teknik Üniversitesi. Ordu Ziraat Fakültesi. Ordu. 288-294.
  • Erdal, İ., Türkmen, Ö. & Yıldız, M. (2000). Tuz stresi altında yetiştirilen hıyar (Cucumis sativus L.) fidelerinin gelişimi ve kimi besin maddeleri içeriğindeki değişimler üzerine potasyumlu gübrelemenin etkisi. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi 10(1): 25-29
  • Essa, T.A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J. Agron. Crop Sci. 188. 86–93.
  • Evelin, H., Kapoor, R. & Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany. 104: 1263–1280.
  • Franco, J.A., Esteban, C. & Rodriguez, C. (1993). Effects ofsalinity on various growth stages of muskmelon cv. Revigal J. Hort. Sci. 68. pp. 899–904.
  • Gai, J. P., Christie, P., Feng, G. & Li, X. L. (2006). Twenty years of research on community composition and Species distribution of arbuscular mycorrhizal fungi in China: a review. Mycorrhiza 16: 229–239.
  • Gómez-del-Campo, M., Baeza, P., Ruiz, C. & Lissarrague, J.R. (2015). Water-stress induced physiological changes in leaves of four container-grown grapevine cultivars (Vitis vinifera L.). VITIS J. Grapevine Res. 2015. 43. 99.
  • Güneş, A., İnal, A., Alpaslan, M. & Çıkılı, Y. (1999). Effect of Salinity on Phosphorus Induced Zinc Deficieny in Pepper (Capsicum annuum L.) Plants. Tr. Journal of Agriculture and Forestry. 23: 459-464.
  • Hoagland, D. R. & Arnon, D. I. (1938). Growing plants without soil by the water-culture method. Growing plants without soil by the water-culture method.
  • Hong, C.Y., Chao, Y.Y., Yang, M.Y., Cho, S.C. & Kao, C.H. (2009). Na+ but not clor osmotic stress is ınvolved in NaCl ınduced expression of glutathione reductase in roots of rice seedlings, Journal of Plant Physiology, 166, 1598-1606
  • Jamalian, S., Gholami, M. & Esna-Ashari, M. (2013). Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes. Theoretical and Experimental Plant Physiology, 25, 291-299.
  • Jeffrıes, P., Gıanınazzı, S., Perotto, S., Turnau, K. & Barea, J.M. (2003). The contributionof arbuscular mycorrhizal fungi in sustainable main -tenance of plant health and soil fertility. In Biolo-gy and Fertility of Soil s, vol. 37, no. 1, pp. 1–16.DOI: 10.1007/s00374-002-0546-5.
  • Ferreira, J. F., Liu, X., & Suarez, D. L. (2019). Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity stress. Scientia Horticulturae, 243, 401-410.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri (II. Bitki Analizleri). Ankara Üniversitesi Ziraat Fakültesi Yayınları. Ankara.
  • Kacar, B. (1991). Çay ve çay topraklarının kimyasal analizleri: 1. çay analizleri. Çay-Kur.
  • Kamar, R., Sarıdas, M. A. & Paydaş, S. (2023). Çileklerde farklı tuz konsantrasyonlarının verim ve pomolojik özellikler üzerine etkileri. Çukurova Tarım ve Gıda Bilimleri Dergisi. 38(1). 40-56.
  • Karaduva, L. & Kurnaz, Ş. (1992). Samsun ekolojik koşullarında çileklerde yaz dikim zamanının belirlenmesi üzerinde bir araştırma. Türkiye I. Ulusal Bahçe Bitkileri Kongresi, İzmir. 223-226.
  • Karlidag, H., Yildirim, E. & Turan, M. (2009). Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Scientia Agricola, 66, 180-187.
  • Kaya, C., Higgs, D., Saltali, K., & Gezerel, O. (2002). Response of strawberry grown at high salinity and alkalinity to supplementary potassium. Journal of Plant Nutrition, 25(7), 1415-1427.
  • Keutgen, A.J. & Pawelzik, E.. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ. Exp. Bot. 65. 170-176.
  • Kurt, Z. (2021). Determınıng the effıcacy of some nanomaterıals on the morphologıcal and physıologıcal characterıstıcs of boysenberry growed under in vitro cultural condıtıons and the stress of salt. Akdeniz University, Science Institute, Department of Horticulture, PhD Thesis, Antalya, Turkiye, 47 pp.
  • Marschner, H. (1995). Mineral Nutrition of Higher Plants. Academic Press. London
  • Martin, F. & Slater, H. (2007). An evolving host for mycorrhizal research. New Phytologist. Volume 174. Number 2. April 2007. pp. 225-228(4)
  • Moghaieb, R. E.A., Saneokab, H., Ito, J. & Fujita, K. (2001). Characterization of salt tolerance in tomato plant in terms of photosynthesis and water relations. Soil Sci. Plant Nutr. 47(2): 377–385.
  • Üzal, Ö. & Yıldız, K. (2014). Bazı çilek (Fragaria x ananassa L.) çeşitlerinin tuz stresine tepkileri. Yuzuncu Yıl University Journal of Agricultural Sciences, 24(2), 159-167.
  • Palta, Ş., Demir, S., Şengönül, K., Kara, Ö. & Şensoy, H. (2010). Arbüsküler mikorizal funguslar (amf), bitki ve toprakla ilişkileri, mera ıslahındaki önemleri. Bartın Orman Fakültesi Dergisi, 12(18), 87-98.
  • Pirlak, L. & Esitken, A. (2004). Salinity Effects on Growth. Proline And İon Accumulation in Strawberry Plants. Acta Agriculturae Scandinavica Section B-Soil and Plant Science. 54:189-192.
  • Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., ... & Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196, 91-108.
  • Ruız-lozano, J.M. & Azcón, R. (2000). Symbiotic effi -ciency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. In Mycorrhiza, vol. 10,pp. 137–143
  • Saied, A. S., Keutgen, A. J., & Noga, G. (2005). The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs.’Elsanta’and ‘Korona’. Scientia Horticulturae, 103(3), 289-303. Sato, S., Sakaguchi, S., Furukawa, H. & Ikeda, H. (2006). Effects of NaCl application to hydroponic nutrient solution on fruit characteristic of tomato (Lycopersicon esculentum Mill.). Scientific Horticulture. 109. 248–253.
  • Sharıfı, M., Ghorbanlı, M. & Ebrahımzadeh, H. (2007). Improved growth of salinity- stressed soybe -an after inoculation with salt pre-treated mycorrhizal fungi. In Journal of Plant Physiology, vol. 164, no. 9,pp. 1144–1151.
  • Siebeneichler, T., Crizel, R. L., Reisser, P., Perin, E., Messias, R., Rombaldi, C. & Galli, V. (2022). Changes in the abscisic acid. phenylpropanoids and ascorbic acid metabolism during strawberry fruit growth and ripening. Journal of Food Composition and Analysis (108).
  • Sivritepe, N. (1995). Asmalarda Tuza Dayanıklılık Testleri ve Tuza Dayanımda Etkili Bazı Faktörler Üzerinde Araştırmalar. Uludağ Üniversitesi. Fen Bilimleri Enstitüsü. Bahçe Bitkileri Anabilim Dalı. Doktora tezi. Bursa. 176s.
  • Sönmez, F., Çığ, F., Erman, M. & Tüfenkçi, Ş. (2013). Çinko. Tuz ve mikorizanın mısırın gelişimi ile P ve Zn alımına etkisi. YYÜ Tar Bil Derg. 23(1):1-9.
  • Turhan, E., & Eris, A. (2005). Changes of micronutrients, dry weight, and chlorophyll contents in strawberry plants under salt stress conditions. Communications in Soil Science and Plant Analysis, 36(7-8), 1021-1028.
  • TÜİK. (2023). Türkiye İstatistik Kurumu. Retrieved from https://www.tuik.gov.tr/
  • Yıldırım, E., Karlidag, H. & Turan, H. (2009). Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply. Plant Soil Environ, 55.5: 213-221.
  • Yılmaz, H. & Kına, A., (2008). The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananssa L.). African Journal of Biotechnology, 7(18).
  • Younesi, O. & Moradi, A. (2014). Effects of plant growth-promoting rhizobacterium (PGPR) and arbuscular mycorrhizal fungus (AMF) on antioxidant enzyme activities in salt-stressed bean (Phaseolus vulgaris L.). Agriculture (pol’nohospodárstvo), 60(1), 10-21.
  • Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X. & Fang, C. (2011). Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany (62). 1103–1118.
There are 52 citations in total.

Details

Primary Language English
Subjects Pomology and Treatment
Journal Section Research Articles
Authors

Emrah Bağ 0009-0004-7564-7252

Beril Kocaman 0000-0003-1230-3714

Publication Date March 25, 2024
Submission Date November 24, 2023
Acceptance Date March 5, 2024
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Bağ, E., & Kocaman, B. (2024). Effects of mycorrhizal fungi application on some growth parameters of Monterey strawberry cultivars under different salt stress conditions. International Journal of Agriculture Environment and Food Sciences, 8(1), 158-168. https://doi.org/10.31015/jaefs.2024.1.16


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27