Research Article
BibTex RIS Cite

Adsorption of crystal violet dye with selenium nanoparticles obtained by green synthesis from cherry (Prunus avium L.) fruit stalk

Year 2024, Volume: 8 Issue: 3, 521 - 530, 29.09.2024
https://doi.org/10.31015/jaefs.2024.3.5

Abstract

Crystal violet (CV) dye is a water-soluble, toxic, resistant organic dye that is quite dangerous for the ecosystem and causes environmental pollution. This study synthesized selenium nanoparticles (Se NPs) from agricultural Prunus avium L. (PaL.) wastes and removed crystal violet (CV) dye. In batch adsorption tests, the effects of pH, amount of adsorbent, time, initial concentration, and temperature were investigated. In this study, where 3 different kinetic and isotherm models were tested, it was determined that the most suitable kinetic and isotherm models for the removal of CV dye with PaL-Se NPs were Pseudo second order (R2:0.999) and Langmuir (R2:0.997), respectively. Additionally, the maximum adsorption capacity (qmax) was calculated as 142.61 mgCV/g PaL-Se NP. Accordingly, it can be said that low-cost PaL-Se NPs synthesized by environmentally friendly methods are a suitable alternative for the removal of CV dye.

References

  • AbdEl-Salam, A. H., Ewais, H. A., & Basaleh, A. S. (2017). Silver nanoparticles immobilised on the activated carbon as efficient adsorbent for removal of crystal violet dye from aqueous solutions. A kinetic study. Journal of Molecular Liquids, 248, 833–841. https://doi.org/10.1016/j.molliq.2017.10.109
  • Abu Sharib, A. S. A. A., Bonilla-Petriciolet, A., Selim, A. Q., Mohamed, E. A., & Seliem, M. K. (2021). Utilizing modified weathered basalt as a novel approach in the preparation of Fe3O4 nanoparticles: Experimental and theoretical studies for crystal violet adsorption. Journal of Environmental Chemical Engineering, 9(6), 106220. https://doi.org/10.1016/j.jece.2021.106220
  • Ali, I., Peng, C., Khan, Z. M., Sultan, M., & Naz, I. (2018). Green Synthesis of Phytogenic Magnetic Nanoparticles and Their Applications in the Adsorptive Removal of Crystal Violet from Aqueous Solution. Arabian Journal for Science and Engineering, 43(11), 6245–6259. https://doi.org/10.1007/s13369-018-3441-6
  • Alizadeh, N., Shariati, S., & Besharati, N. (2017). Adsorption of Crystal Violet and Methylene Blue on Azolla and Fig Leaves Modified with Magnetite Iron Oxide Nanoparticles. International Journal of Environmental Research, 11(2), 197–206. https://doi.org/10.1007/s41742-017-0019-1
  • Amodu, O. S., Ojumu, T. V., Ntwampe, S. K., & Ayanda, O. S. (2015). Rapid Adsorption of Crystal Violet onto Magnetic Zeolite Synthesized from Fly Ash and Magnetite Nanoparticles. Journal of Encapsulation and Adsorption Sciences, 05(04), 191–203. https://doi.org/10.4236/jeas.2015.54016
  • Bani-Fwaz, M. Z., El-Zahhar, A. A., Abd-Rabboh, H. S. M., Hamdy, M. S., & Shkir, M. (2021). Synthesis of NiO nanoparticles by thermal routes for adsorptive removal of crystal violet dye from aqueous solutions. International Journal of Environmental Analytical Chemistry, 101(8), 1126–1144. https://doi.org/10.1080/03067319.2019.1678599
  • Baran, M. F., Keskin, C., Baran, A., Kurt, K., İpek, P., Eftekhari, A., Khalilov, R., Fridunbayov, I., & Cho, W. C. (2023). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L. (Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04366-8
  • Bhukal, S., Sharma, A., Rishi, Divya, Kumar, S., Deepak, B., Pal, K., & Mona, S. (2022). Spirulina Based Iron Oxide Nanoparticles for Adsorptive Removal of Crystal Violet Dye. Topics in Catalysis, 65(19–20), 1675–1685. https://doi.org/10.1007/s11244-022-01640-3
  • Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, e00116. https://doi.org/10.1016/j.sciaf.2019.e00116
  • Du, J.-J., Yuan, Y.-P., Sun, J.-X., Peng, F.-M., Jiang, X., Qiu, L.-G., Xie, A.-J., Shen, Y.-H., & Zhu, J.-F. (2011). New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. Journal of Hazardous Materials, 190(1–3), 945–951. https://doi.org/10.1016/j.jhazmat.2011.04.029
  • Gabal, M. A., Al-Harthy, E. A., Al Angari, Y. M., & Abdel Salam, M. (2014). MWCNTs decorated with Mn0.8Zn0.2Fe2O4 nanoparticles for removal of crystal-violet dye from aqueous solutions. Chemical Engineering Journal, 255, 156–164. https://doi.org/10.1016/j.cej.2014.06.019
  • Gad, E., Owda, M., Mousa, R., & Abdelhai, F. (2019). A Novel Starch Nanoparticle Citrate based Adsorbent for removing of Crystal Violet dye from aqueous solution. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2019.16593.2013
  • Gopi, S., Pius, A., & Thomas, S. (2016). Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. Journal of Water Process Engineering, 14, 1–8. https://doi.org/10.1016/j.jwpe.2016.07.010
  • Guo, X., & Wang, J. (2019). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850. https://doi.org/10.1016/j.molliq.2019.111850
  • Ho, Y. S., Wase’, D., & Forster, C. F. (1996). Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent. Water SA, 22(3), 214–219.
  • Kubra, K. T., Salman, Md. S., & Hasan, Md. N. (2021). Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. Journal of Molecular Liquids, 328, 115468. https://doi.org/10.1016/j.molliq.2021.115468
  • Kulkarni, M. R., Revanth, T., Acharya, A., & Bhat, P. (2017). Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resource-Efficient Technologies, 3(1), 71–77. https://doi.org/10.1016/j.reffit.2017.01.009
  • Kumar, P. S., Ramalingam, S., Kirupha, S. D., Murugesan, A., Vidhyadevi, T., & Sivanesan, S. (2011). Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal, 167(1), 122–131. https://doi.org/10.1016/J.CEJ.2010.12.010
  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221–2295. https://doi.org/10.1021/JA02268A002/ASSET/JA02268A002.FP.PNG_V03
  • Madan, S., Shaw, R., Tiwari, S., & Tiwari, S. K. (2019). Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Applied Surface Science, 487, 907–917. https://doi.org/10.1016/j.apsusc.2019.04.273
  • Mashkoor, F., Nasar, A., & Inamuddin. (2020). Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environmental Chemistry Letters, 18(3), 605–629. https://doi.org/10.1007/s10311-020-00970-6
  • Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega, 5(33), 20684–20697. https://doi.org/10.1021/acsomega.0c01905
  • Muthukumaran, C., Sivakumar, V. M., & Thirumarimurugan, M. (2016). Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. Journal of the Taiwan Institute of Chemical Engineers, 63, 354–362. https://doi.org/10.1016/j.jtice.2016.03.034
  • Ngoc Hoang, B., Thi Nguyen, T., Van Nguyen, D., & Van Tan, L. (2021). Removal of crystal violet from aqueous solution using environment-friendly and water-resistance membrane based on polyvinyl/agar/maltodextrin. Materials Today: Proceedings, 38, 3046–3052. https://doi.org/10.1016/j.matpr.2020.09.391
  • Nikam, P. B., Salunkhe, J. D., Minkina, T., Rajput, V. D., Kim, B. S., & Patil, S. V. (2022). A review on green synthesis and recent applications of red nano Selenium. Results in Chemistry, 4, 100581. https://doi.org/10.1016/j.rechem.2022.100581
  • Rahmat, M., Kiran, S., Gulzar, T., Yusuf, M., Nawaz, R., Khalid, J., Fatima, N., Ullah, A., & Azam, M. (2023). Plant-assisted synthesis and characterization of MnO2 nanoparticles for removal of crystal violet dye: an environmental remedial approach. Environmental Science and Pollution Research, 30(20), 57587–57598. https://doi.org/10.1007/s11356-023-26601-5
  • Rehan, A. I., Rasee, A. I., Awual, M. E., Waliullah, R. M., Hossain, M. S., Kubra, K. T., Salman, Md. S., Hasan, Md. M., Hasan, Md. N., Sheikh, Md. C., Marwani, H. M., Khaleque, Md. A., Islam, A., & Awual, Md. R. (2023). Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 673, 131859. https://doi.org/10.1016/j.colsurfa.2023.131859
  • Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390–397. https://doi.org/10.1016/j.ecoenv.2015.09.018
  • Samrot, A. V., Ali, H. H., Selvarani A, J., Faradjeva, E., P, R., P, P., & Kumar S, S. (2021). Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. Current Research in Green and Sustainable Chemistry, 4, 100066. https://doi.org/10.1016/j.crgsc.2021.100066
  • Solmaz, A., Turna, T., & Baran, A. (2024). Ecofriendly synthesis of selenium nanoparticles using agricultural <scp> Citrus fortunella </scp> waste and decolourization of crystal violet from aqueous solution. The Canadian Journal of Chemical Engineering, 102(6), 2051–2067. https://doi.org/10.1002/cjce.25179
  • Sun, P., Hui, C., Azim Khan, R., Du, J., Zhang, Q., & Zhao, Y.-H. (2015). Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Reports, 5(1), 12638. https://doi.org/10.1038/srep12638
  • Temkin, M. I. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim, 12, 327–356.
  • Vijayaraghavan, K., Padmesh, T., Palanivelu, K., & Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(1–3), 304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016
  • Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127279
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
  • Zhao, X., Chen, H., Kong, F., Zhang, Y., Wang, S., Liu, S., Lucia, L. A., Fatehi, P., & Pang, H. (2019). Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. Chemical Engineering Journal, 364, 226–243. https://doi.org/10.1016/j.cej.2019.01.159
Year 2024, Volume: 8 Issue: 3, 521 - 530, 29.09.2024
https://doi.org/10.31015/jaefs.2024.3.5

Abstract

References

  • AbdEl-Salam, A. H., Ewais, H. A., & Basaleh, A. S. (2017). Silver nanoparticles immobilised on the activated carbon as efficient adsorbent for removal of crystal violet dye from aqueous solutions. A kinetic study. Journal of Molecular Liquids, 248, 833–841. https://doi.org/10.1016/j.molliq.2017.10.109
  • Abu Sharib, A. S. A. A., Bonilla-Petriciolet, A., Selim, A. Q., Mohamed, E. A., & Seliem, M. K. (2021). Utilizing modified weathered basalt as a novel approach in the preparation of Fe3O4 nanoparticles: Experimental and theoretical studies for crystal violet adsorption. Journal of Environmental Chemical Engineering, 9(6), 106220. https://doi.org/10.1016/j.jece.2021.106220
  • Ali, I., Peng, C., Khan, Z. M., Sultan, M., & Naz, I. (2018). Green Synthesis of Phytogenic Magnetic Nanoparticles and Their Applications in the Adsorptive Removal of Crystal Violet from Aqueous Solution. Arabian Journal for Science and Engineering, 43(11), 6245–6259. https://doi.org/10.1007/s13369-018-3441-6
  • Alizadeh, N., Shariati, S., & Besharati, N. (2017). Adsorption of Crystal Violet and Methylene Blue on Azolla and Fig Leaves Modified with Magnetite Iron Oxide Nanoparticles. International Journal of Environmental Research, 11(2), 197–206. https://doi.org/10.1007/s41742-017-0019-1
  • Amodu, O. S., Ojumu, T. V., Ntwampe, S. K., & Ayanda, O. S. (2015). Rapid Adsorption of Crystal Violet onto Magnetic Zeolite Synthesized from Fly Ash and Magnetite Nanoparticles. Journal of Encapsulation and Adsorption Sciences, 05(04), 191–203. https://doi.org/10.4236/jeas.2015.54016
  • Bani-Fwaz, M. Z., El-Zahhar, A. A., Abd-Rabboh, H. S. M., Hamdy, M. S., & Shkir, M. (2021). Synthesis of NiO nanoparticles by thermal routes for adsorptive removal of crystal violet dye from aqueous solutions. International Journal of Environmental Analytical Chemistry, 101(8), 1126–1144. https://doi.org/10.1080/03067319.2019.1678599
  • Baran, M. F., Keskin, C., Baran, A., Kurt, K., İpek, P., Eftekhari, A., Khalilov, R., Fridunbayov, I., & Cho, W. C. (2023). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L. (Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04366-8
  • Bhukal, S., Sharma, A., Rishi, Divya, Kumar, S., Deepak, B., Pal, K., & Mona, S. (2022). Spirulina Based Iron Oxide Nanoparticles for Adsorptive Removal of Crystal Violet Dye. Topics in Catalysis, 65(19–20), 1675–1685. https://doi.org/10.1007/s11244-022-01640-3
  • Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African, 5, e00116. https://doi.org/10.1016/j.sciaf.2019.e00116
  • Du, J.-J., Yuan, Y.-P., Sun, J.-X., Peng, F.-M., Jiang, X., Qiu, L.-G., Xie, A.-J., Shen, Y.-H., & Zhu, J.-F. (2011). New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. Journal of Hazardous Materials, 190(1–3), 945–951. https://doi.org/10.1016/j.jhazmat.2011.04.029
  • Gabal, M. A., Al-Harthy, E. A., Al Angari, Y. M., & Abdel Salam, M. (2014). MWCNTs decorated with Mn0.8Zn0.2Fe2O4 nanoparticles for removal of crystal-violet dye from aqueous solutions. Chemical Engineering Journal, 255, 156–164. https://doi.org/10.1016/j.cej.2014.06.019
  • Gad, E., Owda, M., Mousa, R., & Abdelhai, F. (2019). A Novel Starch Nanoparticle Citrate based Adsorbent for removing of Crystal Violet dye from aqueous solution. Egyptian Journal of Chemistry, 0(0), 0–0. https://doi.org/10.21608/ejchem.2019.16593.2013
  • Gopi, S., Pius, A., & Thomas, S. (2016). Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. Journal of Water Process Engineering, 14, 1–8. https://doi.org/10.1016/j.jwpe.2016.07.010
  • Guo, X., & Wang, J. (2019). Comparison of linearization methods for modeling the Langmuir adsorption isotherm. Journal of Molecular Liquids, 296, 111850. https://doi.org/10.1016/j.molliq.2019.111850
  • Ho, Y. S., Wase’, D., & Forster, C. F. (1996). Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent. Water SA, 22(3), 214–219.
  • Kubra, K. T., Salman, Md. S., & Hasan, Md. N. (2021). Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. Journal of Molecular Liquids, 328, 115468. https://doi.org/10.1016/j.molliq.2021.115468
  • Kulkarni, M. R., Revanth, T., Acharya, A., & Bhat, P. (2017). Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resource-Efficient Technologies, 3(1), 71–77. https://doi.org/10.1016/j.reffit.2017.01.009
  • Kumar, P. S., Ramalingam, S., Kirupha, S. D., Murugesan, A., Vidhyadevi, T., & Sivanesan, S. (2011). Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chemical Engineering Journal, 167(1), 122–131. https://doi.org/10.1016/J.CEJ.2010.12.010
  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1–39.
  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221–2295. https://doi.org/10.1021/JA02268A002/ASSET/JA02268A002.FP.PNG_V03
  • Madan, S., Shaw, R., Tiwari, S., & Tiwari, S. K. (2019). Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles. Applied Surface Science, 487, 907–917. https://doi.org/10.1016/j.apsusc.2019.04.273
  • Mashkoor, F., Nasar, A., & Inamuddin. (2020). Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environmental Chemistry Letters, 18(3), 605–629. https://doi.org/10.1007/s10311-020-00970-6
  • Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega, 5(33), 20684–20697. https://doi.org/10.1021/acsomega.0c01905
  • Muthukumaran, C., Sivakumar, V. M., & Thirumarimurugan, M. (2016). Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. Journal of the Taiwan Institute of Chemical Engineers, 63, 354–362. https://doi.org/10.1016/j.jtice.2016.03.034
  • Ngoc Hoang, B., Thi Nguyen, T., Van Nguyen, D., & Van Tan, L. (2021). Removal of crystal violet from aqueous solution using environment-friendly and water-resistance membrane based on polyvinyl/agar/maltodextrin. Materials Today: Proceedings, 38, 3046–3052. https://doi.org/10.1016/j.matpr.2020.09.391
  • Nikam, P. B., Salunkhe, J. D., Minkina, T., Rajput, V. D., Kim, B. S., & Patil, S. V. (2022). A review on green synthesis and recent applications of red nano Selenium. Results in Chemistry, 4, 100581. https://doi.org/10.1016/j.rechem.2022.100581
  • Rahmat, M., Kiran, S., Gulzar, T., Yusuf, M., Nawaz, R., Khalid, J., Fatima, N., Ullah, A., & Azam, M. (2023). Plant-assisted synthesis and characterization of MnO2 nanoparticles for removal of crystal violet dye: an environmental remedial approach. Environmental Science and Pollution Research, 30(20), 57587–57598. https://doi.org/10.1007/s11356-023-26601-5
  • Rehan, A. I., Rasee, A. I., Awual, M. E., Waliullah, R. M., Hossain, M. S., Kubra, K. T., Salman, Md. S., Hasan, Md. M., Hasan, Md. N., Sheikh, Md. C., Marwani, H. M., Khaleque, Md. A., Islam, A., & Awual, Md. R. (2023). Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 673, 131859. https://doi.org/10.1016/j.colsurfa.2023.131859
  • Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390–397. https://doi.org/10.1016/j.ecoenv.2015.09.018
  • Samrot, A. V., Ali, H. H., Selvarani A, J., Faradjeva, E., P, R., P, P., & Kumar S, S. (2021). Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. Current Research in Green and Sustainable Chemistry, 4, 100066. https://doi.org/10.1016/j.crgsc.2021.100066
  • Solmaz, A., Turna, T., & Baran, A. (2024). Ecofriendly synthesis of selenium nanoparticles using agricultural <scp> Citrus fortunella </scp> waste and decolourization of crystal violet from aqueous solution. The Canadian Journal of Chemical Engineering, 102(6), 2051–2067. https://doi.org/10.1002/cjce.25179
  • Sun, P., Hui, C., Azim Khan, R., Du, J., Zhang, Q., & Zhao, Y.-H. (2015). Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Reports, 5(1), 12638. https://doi.org/10.1038/srep12638
  • Temkin, M. I. (1940). Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim, 12, 327–356.
  • Vijayaraghavan, K., Padmesh, T., Palanivelu, K., & Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133(1–3), 304–308. https://doi.org/10.1016/j.jhazmat.2005.10.016
  • Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/J.CHEMOSPHERE.2020.127279
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172–184. https://doi.org/10.1016/j.cis.2014.04.002
  • Zhao, X., Chen, H., Kong, F., Zhang, Y., Wang, S., Liu, S., Lucia, L. A., Fatehi, P., & Pang, H. (2019). Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. Chemical Engineering Journal, 364, 226–243. https://doi.org/10.1016/j.cej.2019.01.159
There are 37 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering, Chemical Engineering (Other)
Journal Section Research Articles
Authors

Alper Solmaz 0000-0001-6928-3289

Talip Turna 0000-0001-6318-7245

Ayşe Baran 0000-0002-2317-0489

Publication Date September 29, 2024
Submission Date May 12, 2024
Acceptance Date July 31, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Solmaz, A., Turna, T., & Baran, A. (2024). Adsorption of crystal violet dye with selenium nanoparticles obtained by green synthesis from cherry (Prunus avium L.) fruit stalk. International Journal of Agriculture Environment and Food Sciences, 8(3), 521-530. https://doi.org/10.31015/jaefs.2024.3.5


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27