Research Article
BibTex RIS Cite

Characterization of F2 generation tomato plants and marker assisted selection against tomato spotted wilt virus (tswv) and tomato yellow leaf curl virus (tylcv)

Year 2024, Volume: 8 Issue: 3, 618 - 628, 29.09.2024
https://doi.org/10.31015/jaefs.2024.3.15

Abstract

Identifying the morphological characteristics of genetic material such as leaf, flower, yield, and fruit shape is crucial to genetic diversity assessment. Agronomic and morphological traits of 47 tomato plants in F2 generation were assessed, as well as their resistance to Tomato Spotted Wilt Virus (TSWV) and Tomato Yellow Leaf Curl Virus (TYLCV). The highest average fruit weight of the tomato lines in F2 generation was measured in the plants of the line with pink beef fruit type (G300), while the lowest was measured in the plants of the lines with round (cocktail) (S15) and ovate (V30, V31 and V32) fruit types. The highest fruit flesh firmness was measured as 2.74 kg/cm2 in F2 plants of line S230 with single red fruit type. The highest SSC (soluble solids content) was measured in F2 plants of line V31 and S230 with 6.93% and 6.73%, respectively. The longest internode was determined in F2 plants of the line with single red (S230) fruit type, while the highest stem diameter was measured in plants of the line with pink (G300) fruit type. Despite the variation in leaf color, G300 and S230 plants have potato-shaped leaves, while the other lines have tomato-shaped leaves. There were 2 homozygote resistant plants and 8 heterozygote resistant plants among the F2 plants. Among the F2 plants, 2 plants were homozygote resistant and 8 plants were heterozygote resistant to TYLCV. Heterozygote resistance to TSWV was detected only in 6 plants of line V30 and no resistance to TSWV was detected in plants of other lines. The F3 lines obtained by selfing because of the study can be the material of the breeding programmes in the coming years and testing studies against biotic and abiotic factors should be carried out. The results obtained here should be reinforced with further studies such as the determination of post-harvest preservation storage and shelf-life potentials.

References

  • Aktaş, H., & Aydın, G. (2022). Determination of The Response of Wild and Cultivated Tomato Genotypes to Some Disease and Pests by Molecular Markers. Horticultural Studies, 39(1), 15–21. https://doi.org/10.16882/HORTIS.1069414
  • Athinodorou, F., Foukas, P., Tsaniklidis, G., Kotsiras, A., Chrysargyris, A., Delis, C., Kyratzis, A. C., Tzortzakis, N., & Nikoloudakis, N. (2021). Morphological diversity, genetic characterization, and phytochemical assessment of the cypriot tomato germplasm. Plants, 10(8). https://doi.org/10.3390/PLANTS10081698
  • Bai, Y., Im, P., In, L., & Ut, D. O. (2007). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany, 100(5), 1085–1094. https://doi.org/10.1093/AOB/MCM150
  • Bakir, S., Capanoglu, E., Hall, R. D., & de Vos, R. C. H. (2020). Variation in secondary metabolites in a unique set of tomato accessions collected in Turkey. Food Chemistry, 317. https://doi.org/10.1016/J.FOODCHEM.2020.126406
  • Başak, H., Övünç F., Aydın H., & Aydın. A. (2024). Molecular Marker Assisted Determination of Resistance of Tomato Lines in F2 Stage to Root-Knot Nematodes (Meloidogyne Spp.). In N i z a m i S e y i d e l i y e v (Ed.), Agro International Conference on Agriculture-II (pp. 190–197). Institute of Economic Development and Social Researches.
  • Bernousi, I., Emami, A., Tajbakhsh, M., Darvishzadeh, R., & Henareh, M. (2011). Studies on Genetic Variability and Correlation among the Different Traits in Solanum lycopersicum L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 152–158. https://doi.org/10.15835/NBHA3915859
  • Caro, M., Verlaan, M. G., Julián, O., Finkers, R., Wolters, A. M. A., Hutton, S. F., Scott, J. W., Kormelink, R., Visser, R. G. F., Díez, M. J., Pérez-de-Castro, A., & Bai, Y. (2015). Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Molecular Breeding, 35(6), 132. https://doi.org/10.1007/S11032-015-0329-Y
  • Consuegra, O. G., Piñón Gómez, M., Martínez, Y., & Ii, Z. (2015). Pyramiding TYLCV and TSWV resistance genes in tomato genotypes. Rev. Protección Veg, 30(2), 161–164
  • Coşkun, Ö. F. (2023). Molecular Characterization, Population Structure Analysis, and Association Mapping of Turkish Parsley Genotypes Using iPBS Markers. Horticulturae, 9(3), 336. https://doi.org/10.3390/HORTICULTURAE9030336/S1
  • Demir, Ö., & Ünlü, H. (2023). Bazı Beef Tipi Domates Hatlarının Morfolojik Özelliklerinin Belirlenmesi. Cilt, 18, 59–65. https://doi.org/10.54975/isubuzfd.1288727
  • Dhaliwal, M. S., Jindal, S. K., Sharma, A., & Prasanna, H. C. (2020). Tomato yellow leaf curl virus disease of tomato and its management through resistance breeding: a review. The Journal of Horticultural Science and Biotechnology, 95(4), 425–444. https://doi.org/10.1080/14620316.2019.1691060
  • Dianese, É. C., de Fonseca, M. E. N., Goldbach, R., Kormelink, R., Inoue-Nagata, A. K., Resende, R. O., & Boiteux, L. S. (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding, 25(1), 133–142. https://doi.org/10.1007/S11032-009-9313-8/METRICS
  • Elbaz, M., Hanson, P., Fgaier, S., & Laarif, A. (2016). Evaluation of tomato entries with different combinations of resistance genes to tomato yellow leaf curl disease in Tunisia. Plant Breeding, 135(4), 525–530. https://doi.org/10.1111/PBR.12375
  • Fao. (2023). Food and Agriculture Organization of the United Nations. Erişim Tarihi: 2024, Nisan 1. https://www.fao.org/faostat/en/#data/QCL.
  • Foolad, M. R. (2007). Genome Mapping and Molecular Breeding of Tomato. International Journal of Plant Genomics, 2007. https://doi.org/10.1155/2007/64358
  • Gómez, O., Piñón, M., Martínez, Y., Quiñónes, M., Fonseca, D., & Laterrot, H. (2004). Breeding for resistance to begomovirus in tropic-adapted tomato genotypes. Plant Breeding, 123(3), 275–279. https://doi.org/10.1111/J.1439-0523.2004.00959.X
  • Grozeva, S., Nankar, A. N., Ganeva, D., Tringovska, I., Pasev, G., & Kostova, D. (2021). Characterization of tomato accessions for morphological, agronomic, fruit quality, and virus resistance traits. Canadian Journal of Plant Science, 101(4), 476–489. https://doi.org/10.1139/CJPS-2020-0030/SUPPL_FILE/CJPS-2020-0030SUPPLE.DOCX
  • Güngör, R., Başak, H., & Aydın, A. (2023). S2 Kademesindeki Domates Genotiplerinin Morfolojik ve Pomolojik Karakterizasyonu. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi, 3(2), 152-163.Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58(4), 216–225. https://doi.org/10.1002/ARCH.20044
  • Doyle and Doyle (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15. https://cir.nii.ac.jp/crid/1573950400018579968
  • Jensen, K. S., Van Betteray, B., Smeets, J., Ji, Y., Scott, J. W., Mejía, L., Havey, M. J., & Maxwell, D. P. (2007). Co-dominant SCAR Marker, P6-25, for Detection of the ty-3, Ty-3, and Ty-3a alleles at 25 cM of Chromosome 6 of Tomato. www.plantpath.wisc.edu/GeminivirusResistantTomatoes
  • Khan, T., Rashid, R., Shah, L., Afroza, B., Khan, S., Bhat, M. A., Alwutayd, K. M., Mahajan, R., Chung, Y. S., Mansoor, S., & Sun, H. J. (2024). Genetic and phenotypic diversity in Solanum lycopersicum genotypes: insights from morpho-molecular and biochemical analyses. Plant Biotechnology Reports, 18(2), 207–221. https://doi.org/10.1007/S11816-024-00894-5
  • Kim, M., Park, Y., Lee, J., & Sim, S. C. (2020). Development of molecular markers for Ty-2 and Ty-3 selection in tomato breeding. Scientia Horticulturae, 265, 109230. https://doi.org/10.1016/J.SCIENTA.2020.109230
  • Kouam, E. B., Dongmo, J. R., & Djeugap, J. F. (2018). Exploring morphological variation in tomato (Solanum lycopersicum) : A combined study of disease resistance, genetic divergence and association of characters . Agricultura Tropica et Subtropica, 51(2), 71–82. https://doi.org/10.2478/ATS-2018-0008
  • Lázaro, A. (2018). Tomato landraces: an analysis of diversity and preferences. Plant Genetic Resources, 16(4), 315–324. https://doi.org/10.1017/S1479262117000351
  • Mejía, L., Teni, R. E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M. K., & Maxwell, D. P. (2005). Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Horticulturae, 695, 251–255. https://doi.org/10.17660/ACTAHORTIC.2005.695.27
  • Mitra, D. S., Kumar, S., Yadav, S., Verma, S., & Yadav, L. (2023). Assessment of Genetic Variability, Heritability and Genetic Advance among Different Characters in Tomato [Solanum lycopersicum (Mill.) Wettsd]. International Journal of Environment and Climate Change, 13(11), 2742–2750. https://doi.org/10.9734/IJECC/2023/V13I113442
  • Morilipinar, E. O., Şekerci, A. D., Coşkun, Ö. F., & Gülşen, O. (2021). Genetic Analysis of Local Pumpkin Populations. International Journal of Agricultural and Natural Sciences, 14(3), 264–272. https://www.ijans.org/index.php/ijans/article/view/551
  • Noris, E., & Miozzi, L. (2015). Real-Time PCR Protocols for the Quantification of the Begomovirus Tomato Yellow Leaf Curl Sardinia Virus in Tomato Plants and in Its Insect Vector. Methods in Molecular Biology, 1236, 61–72. https://doi.org/10.1007/978-1-4939-1743-3_6
  • Periago, M. J., Martínez-Valverde, I., Chesson, A., & Provan, G. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323–330. https://doi.org/10.1002/JSFA.1035
  • Pradeepkumar, T., Bastian, D., Radhakrishnan, N. V., & Aipe, K. C. (2001). Genetic variation in tomato for yield and resistance to bacterial wilt. Journal of Tropical Agriculture, 39(2), 157–158. https://jtropag.kau.in/index.php/ojs2/article/view/46
  • Qiao, N., Liu, Y., Liu, J., Zhang, D., Chi, W., Li, J., Zhu, X., Liu, H., & Li, F. (2023). Antagonism of tomato spotted wilt virus against tomato yellow leaf curl virus in Nicotiana benthamiana detected by transcriptome analysis. Genes & Genomics, 45(1), 23–37. https://doi.org/10.1007/S13258-022-01325-X
  • Rani, C. I., Veeraragavathatham, D., & Sanjutha, S. (2008). Studies on Correlation and Path Coefficient analysis on Yield Attributes in 1 Root Knot Nematode Resistant F Hybrids of Tomato. Journal of Applied Sciences Research, 4(3), 287–295
  • Salim, M. M. R., Rashid, M. H., Hossain, M. M., & Zakaria, M. (2020). Morphological characterization of tomato (Solanum lycopersicum L.) genotypes. Journal of the Saudi Society of Agricultural Sciences, 19(3), 233–240. https://doi.org/10.1016/J.JSSAS.2018.11.001
  • Schuster, D. J., Mann, R. S., Toapanta, M., Cordero, R., Thompson, S., Cyman, S., Shurtleff, A., & Morris, R. F. (2010). Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Management Science, 66(2), 186–195. https://doi.org/10.1002/PS.1853
  • Svetlana, G., Adam, T., Aleksandra, T., Zdravko, S., Jelica, G.-V., Janko, C., Mirjana, V., & Vukasin, P. (2012). Principal component analysis of tomato genotypes based on some morphological and biochemical quality indicators. Ratarstvo i Povrtarstvo, 49(3), 296–301. https://doi.org/10.5937/RATPOV49-2452
  • Tanksley, S. D., & McCouch, S. R. (1997). Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science, 277(5329), 1063–1066. https://doi.org/10.1126/SCIENCE.277.5329.1063
  • Tecirli, T., Şekerci, A. D., Coşkun, Ö. F., & Gülşen, O. (2018). Morphological and Molecular Diversity Among Heliotropium greuteri Samples. In Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi (Vol. 34, Issue 2, pp. 1–7). Erciyes Üniversitesi. https://dergipark.org.tr/tr/pub/erciyesfen/issue/39694/408357
  • Tekin, S., Köksalan, E. Ü., & Aras, V. (2024). Determination of Resistance to Tomato Yellow Leaf Curl Virus by Molecular Methods in Pink Beef Tomatoes. Ekin Journal of Crop Breeding and Genetics, 10(1), 52–58. www.ekinjournal.com
  • Turhan, A., Şeniz, V., Üniversitesi, U., Yüksekokulu, M., Türkiye, B. /, Fakültesi, Z., & Bölümü, B. B. (n.d.). Türkiye’de Yetiştirilen Bazi Domates Gen Kaynaklarinin Verim, Meyve Ve Morfolojik Özelliklerinin Belirlenmesi. Retrieved May 8, 2024, from www.ziraat.selcuk.edu.tr/dergi
  • Türkmen, Ö., Dal Canbar, Y., Kal, U., Kayak, N., & Kiymaci, G. (2022). Determination of Morphological Characteristics of Some Prominent Tomato Genotypes. Selcuk Journal of Agriculture and Food Sciences, 36(1), 106–113. https://doi.org/10.15316/SJAFS.2022.015
  • Williams, C. E., & St. Clair, D. A. (2011). Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Https://Doi.Org/10.1139/G93-083, 36(3), 619–630. https://doi.org/10.1139/G93-083
  • Yaman, M. (2022). Evaluation of genetic diversity by morphological, biochemical and molecular markers in sour cherry genotypes. Molecular Biology Reports, 49(6), 5293–5301. https://doi.org/10.1007/S11033-021-06941-6
  • Yana, D., & Rahima, A. (2023). Response of Tomato Varieties and Organic Mulch on Growth and Products of Tomato (Lycopersicum esculentum Mill). Jurnal Penelitian Pendidikan IPA, 9(9), 6937–6944. https://doi.org/10.29303/JPPIPA.V9I9.5010
  • Ziaf, K., Amjad, M., Shakeel, A., Azhar, M., & Saeed, A. (2016). Assessment Of Genetic Diversity in Tomato for Fruit Morphology, Composition and Yield. Pak. J. Bot, 48(6), 2477–2483
Year 2024, Volume: 8 Issue: 3, 618 - 628, 29.09.2024
https://doi.org/10.31015/jaefs.2024.3.15

Abstract

References

  • Aktaş, H., & Aydın, G. (2022). Determination of The Response of Wild and Cultivated Tomato Genotypes to Some Disease and Pests by Molecular Markers. Horticultural Studies, 39(1), 15–21. https://doi.org/10.16882/HORTIS.1069414
  • Athinodorou, F., Foukas, P., Tsaniklidis, G., Kotsiras, A., Chrysargyris, A., Delis, C., Kyratzis, A. C., Tzortzakis, N., & Nikoloudakis, N. (2021). Morphological diversity, genetic characterization, and phytochemical assessment of the cypriot tomato germplasm. Plants, 10(8). https://doi.org/10.3390/PLANTS10081698
  • Bai, Y., Im, P., In, L., & Ut, D. O. (2007). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany, 100(5), 1085–1094. https://doi.org/10.1093/AOB/MCM150
  • Bakir, S., Capanoglu, E., Hall, R. D., & de Vos, R. C. H. (2020). Variation in secondary metabolites in a unique set of tomato accessions collected in Turkey. Food Chemistry, 317. https://doi.org/10.1016/J.FOODCHEM.2020.126406
  • Başak, H., Övünç F., Aydın H., & Aydın. A. (2024). Molecular Marker Assisted Determination of Resistance of Tomato Lines in F2 Stage to Root-Knot Nematodes (Meloidogyne Spp.). In N i z a m i S e y i d e l i y e v (Ed.), Agro International Conference on Agriculture-II (pp. 190–197). Institute of Economic Development and Social Researches.
  • Bernousi, I., Emami, A., Tajbakhsh, M., Darvishzadeh, R., & Henareh, M. (2011). Studies on Genetic Variability and Correlation among the Different Traits in Solanum lycopersicum L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1), 152–158. https://doi.org/10.15835/NBHA3915859
  • Caro, M., Verlaan, M. G., Julián, O., Finkers, R., Wolters, A. M. A., Hutton, S. F., Scott, J. W., Kormelink, R., Visser, R. G. F., Díez, M. J., Pérez-de-Castro, A., & Bai, Y. (2015). Assessing the genetic variation of Ty-1 and Ty-3 alleles conferring resistance to tomato yellow leaf curl virus in a broad tomato germplasm. Molecular Breeding, 35(6), 132. https://doi.org/10.1007/S11032-015-0329-Y
  • Consuegra, O. G., Piñón Gómez, M., Martínez, Y., & Ii, Z. (2015). Pyramiding TYLCV and TSWV resistance genes in tomato genotypes. Rev. Protección Veg, 30(2), 161–164
  • Coşkun, Ö. F. (2023). Molecular Characterization, Population Structure Analysis, and Association Mapping of Turkish Parsley Genotypes Using iPBS Markers. Horticulturae, 9(3), 336. https://doi.org/10.3390/HORTICULTURAE9030336/S1
  • Demir, Ö., & Ünlü, H. (2023). Bazı Beef Tipi Domates Hatlarının Morfolojik Özelliklerinin Belirlenmesi. Cilt, 18, 59–65. https://doi.org/10.54975/isubuzfd.1288727
  • Dhaliwal, M. S., Jindal, S. K., Sharma, A., & Prasanna, H. C. (2020). Tomato yellow leaf curl virus disease of tomato and its management through resistance breeding: a review. The Journal of Horticultural Science and Biotechnology, 95(4), 425–444. https://doi.org/10.1080/14620316.2019.1691060
  • Dianese, É. C., de Fonseca, M. E. N., Goldbach, R., Kormelink, R., Inoue-Nagata, A. K., Resende, R. O., & Boiteux, L. S. (2010). Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding, 25(1), 133–142. https://doi.org/10.1007/S11032-009-9313-8/METRICS
  • Elbaz, M., Hanson, P., Fgaier, S., & Laarif, A. (2016). Evaluation of tomato entries with different combinations of resistance genes to tomato yellow leaf curl disease in Tunisia. Plant Breeding, 135(4), 525–530. https://doi.org/10.1111/PBR.12375
  • Fao. (2023). Food and Agriculture Organization of the United Nations. Erişim Tarihi: 2024, Nisan 1. https://www.fao.org/faostat/en/#data/QCL.
  • Foolad, M. R. (2007). Genome Mapping and Molecular Breeding of Tomato. International Journal of Plant Genomics, 2007. https://doi.org/10.1155/2007/64358
  • Gómez, O., Piñón, M., Martínez, Y., Quiñónes, M., Fonseca, D., & Laterrot, H. (2004). Breeding for resistance to begomovirus in tropic-adapted tomato genotypes. Plant Breeding, 123(3), 275–279. https://doi.org/10.1111/J.1439-0523.2004.00959.X
  • Grozeva, S., Nankar, A. N., Ganeva, D., Tringovska, I., Pasev, G., & Kostova, D. (2021). Characterization of tomato accessions for morphological, agronomic, fruit quality, and virus resistance traits. Canadian Journal of Plant Science, 101(4), 476–489. https://doi.org/10.1139/CJPS-2020-0030/SUPPL_FILE/CJPS-2020-0030SUPPLE.DOCX
  • Güngör, R., Başak, H., & Aydın, A. (2023). S2 Kademesindeki Domates Genotiplerinin Morfolojik ve Pomolojik Karakterizasyonu. Kırşehir Ahi Evran Üniversitesi Ziraat Fakültesi Dergisi, 3(2), 152-163.Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58(4), 216–225. https://doi.org/10.1002/ARCH.20044
  • Doyle and Doyle (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15. https://cir.nii.ac.jp/crid/1573950400018579968
  • Jensen, K. S., Van Betteray, B., Smeets, J., Ji, Y., Scott, J. W., Mejía, L., Havey, M. J., & Maxwell, D. P. (2007). Co-dominant SCAR Marker, P6-25, for Detection of the ty-3, Ty-3, and Ty-3a alleles at 25 cM of Chromosome 6 of Tomato. www.plantpath.wisc.edu/GeminivirusResistantTomatoes
  • Khan, T., Rashid, R., Shah, L., Afroza, B., Khan, S., Bhat, M. A., Alwutayd, K. M., Mahajan, R., Chung, Y. S., Mansoor, S., & Sun, H. J. (2024). Genetic and phenotypic diversity in Solanum lycopersicum genotypes: insights from morpho-molecular and biochemical analyses. Plant Biotechnology Reports, 18(2), 207–221. https://doi.org/10.1007/S11816-024-00894-5
  • Kim, M., Park, Y., Lee, J., & Sim, S. C. (2020). Development of molecular markers for Ty-2 and Ty-3 selection in tomato breeding. Scientia Horticulturae, 265, 109230. https://doi.org/10.1016/J.SCIENTA.2020.109230
  • Kouam, E. B., Dongmo, J. R., & Djeugap, J. F. (2018). Exploring morphological variation in tomato (Solanum lycopersicum) : A combined study of disease resistance, genetic divergence and association of characters . Agricultura Tropica et Subtropica, 51(2), 71–82. https://doi.org/10.2478/ATS-2018-0008
  • Lázaro, A. (2018). Tomato landraces: an analysis of diversity and preferences. Plant Genetic Resources, 16(4), 315–324. https://doi.org/10.1017/S1479262117000351
  • Mejía, L., Teni, R. E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M. K., & Maxwell, D. P. (2005). Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Horticulturae, 695, 251–255. https://doi.org/10.17660/ACTAHORTIC.2005.695.27
  • Mitra, D. S., Kumar, S., Yadav, S., Verma, S., & Yadav, L. (2023). Assessment of Genetic Variability, Heritability and Genetic Advance among Different Characters in Tomato [Solanum lycopersicum (Mill.) Wettsd]. International Journal of Environment and Climate Change, 13(11), 2742–2750. https://doi.org/10.9734/IJECC/2023/V13I113442
  • Morilipinar, E. O., Şekerci, A. D., Coşkun, Ö. F., & Gülşen, O. (2021). Genetic Analysis of Local Pumpkin Populations. International Journal of Agricultural and Natural Sciences, 14(3), 264–272. https://www.ijans.org/index.php/ijans/article/view/551
  • Noris, E., & Miozzi, L. (2015). Real-Time PCR Protocols for the Quantification of the Begomovirus Tomato Yellow Leaf Curl Sardinia Virus in Tomato Plants and in Its Insect Vector. Methods in Molecular Biology, 1236, 61–72. https://doi.org/10.1007/978-1-4939-1743-3_6
  • Periago, M. J., Martínez-Valverde, I., Chesson, A., & Provan, G. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323–330. https://doi.org/10.1002/JSFA.1035
  • Pradeepkumar, T., Bastian, D., Radhakrishnan, N. V., & Aipe, K. C. (2001). Genetic variation in tomato for yield and resistance to bacterial wilt. Journal of Tropical Agriculture, 39(2), 157–158. https://jtropag.kau.in/index.php/ojs2/article/view/46
  • Qiao, N., Liu, Y., Liu, J., Zhang, D., Chi, W., Li, J., Zhu, X., Liu, H., & Li, F. (2023). Antagonism of tomato spotted wilt virus against tomato yellow leaf curl virus in Nicotiana benthamiana detected by transcriptome analysis. Genes & Genomics, 45(1), 23–37. https://doi.org/10.1007/S13258-022-01325-X
  • Rani, C. I., Veeraragavathatham, D., & Sanjutha, S. (2008). Studies on Correlation and Path Coefficient analysis on Yield Attributes in 1 Root Knot Nematode Resistant F Hybrids of Tomato. Journal of Applied Sciences Research, 4(3), 287–295
  • Salim, M. M. R., Rashid, M. H., Hossain, M. M., & Zakaria, M. (2020). Morphological characterization of tomato (Solanum lycopersicum L.) genotypes. Journal of the Saudi Society of Agricultural Sciences, 19(3), 233–240. https://doi.org/10.1016/J.JSSAS.2018.11.001
  • Schuster, D. J., Mann, R. S., Toapanta, M., Cordero, R., Thompson, S., Cyman, S., Shurtleff, A., & Morris, R. F. (2010). Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Management Science, 66(2), 186–195. https://doi.org/10.1002/PS.1853
  • Svetlana, G., Adam, T., Aleksandra, T., Zdravko, S., Jelica, G.-V., Janko, C., Mirjana, V., & Vukasin, P. (2012). Principal component analysis of tomato genotypes based on some morphological and biochemical quality indicators. Ratarstvo i Povrtarstvo, 49(3), 296–301. https://doi.org/10.5937/RATPOV49-2452
  • Tanksley, S. D., & McCouch, S. R. (1997). Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science, 277(5329), 1063–1066. https://doi.org/10.1126/SCIENCE.277.5329.1063
  • Tecirli, T., Şekerci, A. D., Coşkun, Ö. F., & Gülşen, O. (2018). Morphological and Molecular Diversity Among Heliotropium greuteri Samples. In Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi (Vol. 34, Issue 2, pp. 1–7). Erciyes Üniversitesi. https://dergipark.org.tr/tr/pub/erciyesfen/issue/39694/408357
  • Tekin, S., Köksalan, E. Ü., & Aras, V. (2024). Determination of Resistance to Tomato Yellow Leaf Curl Virus by Molecular Methods in Pink Beef Tomatoes. Ekin Journal of Crop Breeding and Genetics, 10(1), 52–58. www.ekinjournal.com
  • Turhan, A., Şeniz, V., Üniversitesi, U., Yüksekokulu, M., Türkiye, B. /, Fakültesi, Z., & Bölümü, B. B. (n.d.). Türkiye’de Yetiştirilen Bazi Domates Gen Kaynaklarinin Verim, Meyve Ve Morfolojik Özelliklerinin Belirlenmesi. Retrieved May 8, 2024, from www.ziraat.selcuk.edu.tr/dergi
  • Türkmen, Ö., Dal Canbar, Y., Kal, U., Kayak, N., & Kiymaci, G. (2022). Determination of Morphological Characteristics of Some Prominent Tomato Genotypes. Selcuk Journal of Agriculture and Food Sciences, 36(1), 106–113. https://doi.org/10.15316/SJAFS.2022.015
  • Williams, C. E., & St. Clair, D. A. (2011). Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Https://Doi.Org/10.1139/G93-083, 36(3), 619–630. https://doi.org/10.1139/G93-083
  • Yaman, M. (2022). Evaluation of genetic diversity by morphological, biochemical and molecular markers in sour cherry genotypes. Molecular Biology Reports, 49(6), 5293–5301. https://doi.org/10.1007/S11033-021-06941-6
  • Yana, D., & Rahima, A. (2023). Response of Tomato Varieties and Organic Mulch on Growth and Products of Tomato (Lycopersicum esculentum Mill). Jurnal Penelitian Pendidikan IPA, 9(9), 6937–6944. https://doi.org/10.29303/JPPIPA.V9I9.5010
  • Ziaf, K., Amjad, M., Shakeel, A., Azhar, M., & Saeed, A. (2016). Assessment Of Genetic Diversity in Tomato for Fruit Morphology, Composition and Yield. Pak. J. Bot, 48(6), 2477–2483
There are 44 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment, Green-House Growing and Treatment, Horticultural Production (Other)
Journal Section Research Articles
Authors

Alim Aydın 0000-0002-9424-5556

Hakan Başak 0000-0002-1128-4059

Hamide Aydın 0000-0002-0588-6192

Ramazan Güngör 0000-0001-9834-1265

Publication Date September 29, 2024
Submission Date July 21, 2024
Acceptance Date September 13, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Aydın, A., Başak, H., Aydın, H., Güngör, R. (2024). Characterization of F2 generation tomato plants and marker assisted selection against tomato spotted wilt virus (tswv) and tomato yellow leaf curl virus (tylcv). International Journal of Agriculture Environment and Food Sciences, 8(3), 618-628. https://doi.org/10.31015/jaefs.2024.3.15


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27