Research Article
BibTex RIS Cite

Isolation of phosphate solubilizing bacteria from different medicinal aromatic plants and identification using MALDI TOF MS

Year 2024, Volume: 8 Issue: 4, 824 - 834
https://doi.org/10.31015/jaefs.2024.4.11

Abstract

Phosphate-solubilizing bacteria, which are among the plant growth-promoting bacteria, dissolve insoluble phosphate in the soil by several pathways and promote plant growth. Therefore, it offers an alternative option instead of applying chemical fertilizers that disrupt soil chemistry and ecological balance. Although research on phosphate solubilizing bacteria has increased recently, the research on the peppermint and fennel rhizosphere is still limited. Investigating different rhizospheric local bacteria that can solubilize phosphate and replace chemical fertilizers is necessary. It was determined that 15 of the 53 bacterial isolates obtained from peppermint (Mentha piperita L.) and fennel (Foeniculum vulgare L.) rhizospheres formed a transparent (halo) region around the colonies on Pikovskaya Agar (PKA) medium using the MALDI-TOF MS method. The morphological, biochemical and IAA production of these isolates as well as quantitative measurements of phosphate solubilization by the isolates in NBRIP broth medium was evaluated. The highest efficiency was noted from Bacillus subtilis MMS-7 with solubilization value of 281.6 mg L-1. This was followed by Pseudomonas fluorescens MMS-11 with solubilization value of 263.4 mg L-1 and Bacillus thuringiensis MMS-3 with solubilization value of 172.1 mg L-1, respectively. Among the Phosphate solubilizing bacterial isolates, P solubilization index ranged 1.2-3.7 on PKA agar medium. Additionally, the highest IAA production was noted at 23.38 µg ml-1, using Bacillus subtilis MMS-7. This was followed by Pseudomonas fluorescens MMS-11 with value of 19.72 µg ml-1 and Bacillus thuringiensis using MMS-3 with value of 18.98 µg ml-1. This study demonstrated that selected local isolates can be used as effective phosphate-based microbial fertilizers.

Thanks

Murat Güler thanks Prof. Dr. Khalid Mahmood Khavar for his advice on preparing articles.

References

  • Abd el-Megeed, F.H. & Youseif, S.H. (2018). Molecular identification and plant growth pro-moting activities of endophytic Pantoea sp. isolated from Zygophyllum album medicinal plant. Egyptian Journal of Genetics And Cytology, 47(1).
  • Adhikari, P., Jain, R., Sharma, A., Pandey, A. (2021). Plant growth promotion at low temperature by phosphate-solubilizing Pseudomonas spp. isolated from high-altitude Himalayan soil. Microbial Ecology, 82(3), 677-687. https://doi.org/10.1007/s00248-021-01702-1 Ahmed, E.A., Hassan, E.A., El Tobgy, K.M.K., Ramadan, E.M. (2014). Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Annals of Agricultural Sciences, 59(2), 273-280. https://doi.org/10.1016/j.aoas.2014.11.016
  • Alaylar, B. (2022). Isolation and characterization of culturable endophytic plant growth-promoting Bacillus species from Mentha longifolia L. Turkish Journal of Agriculture and Forestry, 46(1), 73-82. https://doi.org/10.3906/tar-2109-24
  • Al-Habib, A.A.S. (2021, April). IAA production by Pseudomonas putida associated with rhizosphere of some medicine plants. In IOP Conference Series: Earth and Environmental Science, 735(1), 12-076. https://doi.org/10.1088/1755-1315/735/1/012076
  • ALKahtani, M.D., Fouda, A., Attia, K. A., Al-Otaibi, F., Eid, A.M., Ewais, E.E.D., Abdelaal, K.A. (2020). Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10(9), 1325. https://doi.org/10.3390/agronomy10091325
  • Alemneh, A.A., Cawthray, G.R., Zhou, Y., Ryder, M. H., Denton, M.D. (2021). Ability to produce indole acetic acid is associated with improved phosphate solubilising activity of rhizobacteria. Archives of Microbiology, 203, 3825-3837. https://doi.org/10.1007/s00203-021-02364-w
  • Ambreen, S., Yasmin, A., Aziz, S. (2020). Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading Chlorpyrifos, Triazophos and Dimethoate. Heliyon, 6(7). https://doi.org/10.1016/j.heliyon.2020.e04221
  • Amri, M., Rjeibi, M.R., Gatrouni, M., Mateus, D.M., Asses, N., Pinho, H. J., Abbes, C. (2023). Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms, 11(3), 783. https://doi.org/10.3390/microorganisms11030783
  • Anand, K., Kumari, B., Mallick, M.A. (2016). Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. International Journal of Pharmacy and Pharmaceutical Sciences, 8(2), 37-40. https://doi.org/10.1155/2019/4917256
  • Arora, N.K. & Mishra, J. (2016). Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Applied Soil Ecology, 107, 405-407. https://doi.org/10.1016/j.apsoil.2016.05.020
  • Ashfaq, M.Y., Da'na, D.A., Al-Ghouti, M.A. (2022). Application of MALDI-TOF MS for identification of environmental bacteria: A review. Journal of Environmental Management, 305, 114359.
  • Azaroual, S.E., Hazzoumi, Z., Mernissi, N.E., Aasfar, A., Meftah Kadmiri, I., Bouizgarne, B. (2020). Role of inorganic phosphate solubilizing bacilli isolated from moroccan phosphate rock mine and rhizosphere soils in wheat (Triticum aestivum L) phosphorus uptake. Current Microbiology, 77, 2391-2404. https://doi.org/10.1007/s00284-020-02046-8
  • Barton, C.J. (1948). Photometric analysis of phosphate rock. Analytical Chemistry 20(11), 1068-1073 https://doi.org/10.1021/ac60023a024
  • Bektaş, İ. (2021). Toprakta bazı bakterilerin fosfat çözünürlüğü ile organik asit üretimi arasındaki ilişkinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 8(1), 66-76. https://doi.org/10.30910/turkjans.677316
  • Blanco-Vargas, A., Rodríguez-Gacha, L.M., Sánchez-Castro, N., Garzón-Jaramillo, R., Pedroza-Camacho, L.D., Poutou-Piñales, R.A., Pedroza-Rodríguez, A.M. (2020). Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon, (6),10. https://doi.org/10.1016/j.heliyon.2020.e05218
  • Bose, A., Kher, M.M., Nataraj, M., Keharia, H. (2016). Phytostimulatory effect of indole-3-acetic acid by Enterobacter cloacae SN19 isolated from Teramnus labialis (L. f.) Spreng rhizosphere. Biocatalysis and agricultural biotechnology, 6, 128-137. https://doi.org/10.1016/j.bcab.2016.03.005
  • Chandra, H., Kumari, P., Bisht, R., Prasad, R., Yadav, S. (2020). Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Molecular Biology Reports, 47(8), 6015-6026. https://doi.org/10.1007/s11033-020-05676-0
  • Cheng, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., Ma, Y. (2023). Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Science of The Total Environment, 166468. https://doi.org/10.1016/j.scitotenv.2023.166468
  • Chiellini, C., De Leo, M., Longo, V., Pieracci, Y., Pistelli, L. (2023). Characterization of the endophytic bacterial community of Bituminaria bituminosa plant grown in vitro and its interaction with the plant extract. Frontiers in Plant Science, 13, 1076573. https://doi.org/10.3389/fpls.2022.1076573
  • Clarke, P.H. & Cowan, S.T. (1952). Biochemical methods for bacteriology. Current Microbiology, 6(1), 187-197. https://doi.org/10.1099/00221287-6-1-2-187
  • Çelikten, M. & Bozkurt, İ.A. (2018). Determination of efficacies of bacteria isolated from wheat rhizospheres on plant growth. Mustafa Kemal Üniversitesi, Ziraat Fakültesi Dergisi 23(1), 33–48.
  • Dip, D.P., Sannazzaro, A.I., Otondo, J., Pistorio, M., Estrella, M.J. (2024). Exploring phosphate solubilizing bacterial communities in rhizospheres of native and exotic forage grasses in alkaline-sodic soils of the flooding pampa. Current Microbiology, 81(7), 1-12. https://doi.org/10.1007/s00284-024-03704-x
  • Genç, S. & Soysal, M.İ. (2018). Parametri̇k ve parametri̇k olmayan çoklu karşilaştirma testleri̇. Black Sea Journal of Engineering and Science, 1(1), 18-27.
  • Gupta, R., Kumari, A., Sharma, S., Alzahrani, O.M., Noureldeen, A., Darwish, H. (2022). Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 29(1), 35-42. https://doi.org/10.1016/j.sjbs.2021.09.075
  • Han, X.J., Zeng, Q.W., Zhao, Y.P. (2020). Identification of inorganic phosphate-solubilizing bacterium Mp1-Ha4 in poplar rhizosphere and its phosphate-solubilizing mechanism. Biotechnology Bulletin, 36(3), 141. 10.13560/j.cnki.biotech.bull.1985.2019-0952
  • Hassan, S.E.D. (2017). Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research, 8(6), 687-695. https://doi.org/10.1016/j.jare.2017.09.001
  • Ibáñez, A., Diez-Galán, A., Cobos, R., Calvo-Peña, C., Barreiro, C., Medina-Turienzo, J., Coque, J.J.R. (2021). Using rhizosphere phosphate solubilizing bacteria to improve barley (Hordeum vulgare) plant productivity. Microorganisms, 9(8), 1619. https://doi.org/10.3390/microorganisms9081619
  • Kaur, M., Vyas, P., Rahi, P., Sharma, S., (2022). Chlorpyrifos-and carbofuran-tolerant phosphate-solubilising Arthrobacter oxydans and Bacillus flexus improved growth and phosphorus content in potato in pesticide-amended soils. Potato Research, 65(2), 213-231. https://doi.org/10.1007/s11540-021-09520-1
  • Khan, M.S., Gao, J., Chen, X., Zhang, M., Yang, F., Du, Y., Zhang, X. (2020). The endophytic bacteria Bacillus velezensis Lle-9, isolated from Lilium leucanthum, harbors antifungal activity and plant growth-promoting effects. Journal of Microbiology and Biotechnology, 30(5), 668. https://doi.org/10.4014/jmb.1910.10021
  • Li, H.P., Han, Q.Q., Liu, Q. M., Gan, Y.N., Rensing, C., Rivera, W.L., Zhang, J. L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375.
  • Linu, M.S., Asok, A.K., Thampi, M., Sreekumar, J., Jisha, M.S. (2019). Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) rhizosphere. Communications in Soil Science and Plant Analysis, 50(4), 444-457. https://doi.org/10.1080/00103624.2019.1566469
  • Liu, L.F., Di, Y.N., He, L.L., Xie, L.Y., Hu, Y.F., Li, F.S. (2020). Study on the growth promotion effect and IAA production capacity of Bacillus subtilis B9. Journal of Yunnan Agricultural University 35(2), 227-234 doi: 10.12101/j.issn.1004-390X(n).201907034
  • Marfungah, S., Puspita, F., Tjahjono, B., Siregar, B., Gafur, A. (2023). Potential of indigenous rhizobacteria as biocontrol agents of Xanthomonas sp. Philipp J Sci, 152(5), 1539-1548. https://doi.org/10.56899/152.05.02
  • Meneguzzi, R.D.V., Fernandez, M., Cappellari, L.D.R., Giordano, W., Banchio, E. (2024). Isolation and characterization of plant growth-promoting bacteria from the rhizosphere of medicinal and aromatic plant Minthostachys verticillata. Plants, 13(15), 2062. https://doi.org/10.3390/plants13152062
  • Mishra, B.K., Meena, K.K., Dubey, P.N., Aishwath, O.P., Kant, K., Sorty, A. M., Bitla, U. (2016). Influence on yield and quality of fennel (Foeniculum vulgare Mill.) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacterial isolates. Ecological Engineering, 97, 327-333. https://doi.org/10.1016/j.ecoleng.2016.10.034
  • Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A., Antonius, S. (2023). IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon, 9(6). https://doi.org/10.2139/ssrn.4335395
  • Meena, R.K., Singh, R.K., Singh, N.P., Meena, S.K., Meena, V.S. (2015). Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural Biotechnology, 4(4), 806-811. https://doi.org/10.1016/j.bcab.2015.08.006
  • Muthuri, C., Nyambura, N.C., Njeri, V.M., Tani, A., Wangari, M.C., (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology 6, 6414-6422. https://doi.org/10.5897/ajmr12.1170
  • Nazir, R., Ganai, B.A., Rahi, P., Rehman, S., Farooq, S., Dar, R., Abd_Allah, E.F. (2020). MALDI-TOF-MS and 16S rRNA characterization of lead tolerant metallophile bacteria isolated from saffron soils of Kashmir for their sequestration potential. Saudi Journal of Biological Sciences, 27(8), 2047-2053. https://doi.org/10.1016/j.sjbs.2020.04.021
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., Başer, İ. (2022). Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27(1), 127-133. https://doi.org/10.17557/tjfc.1019160
  • Pan, L., & Cai, B. (2023). Phosphate-solubilizing bacteria: advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms, 11(12), 2904. https://doi.org/10.3390/microorganisms11122904
  • Panigrahi, S., Mohanty, S., Rath, C.C. (2020). Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. South African Journal of Botany, 134, 17-26. https://doi.org/10.1016/j.sajb.2019.09.017
  • Pantigoso, H.A., He, Y., Manter, D.K., Fonte, S.J., Vivanco, J.M. (2022). Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bulletin of the National Research Centre, 46(1), 224. https://doi.org/10.1186/s42269-022-00913-x
  • Patil, S. J., Surana, K. R., Mahajan, S.K. (2023). In vitro antimicrobial and antifungal activity of Mentha piperita active phytoconstituents. Journal of Agricultural Sciences, 14(6), 1875-1877. doi: http://rjas.org/Article/Article/5701
  • Paul, D. & Sinha, S.N. (2017). Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science, 15(1), 130-136. https://doi.org/10.1016/j.aasci.2016.10.001
  • Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362–370. Plant Soil, 287, 77-84.
  • Rafieian, F., Amani, R., Rezaei, A., Karaça, A. C., Jafari, S.M. (2024). Exploring fennel (Foeniculum vulgare): composition, functional properties, potential health benefits, and safety. Critical Reviews in Food Science and Nutrition, 64(20), 6924-6941. https://doi.org/10.1080/10408398.2023.2176817
  • Roychowdhury, R., Qaiser, T.F., Mukherjee, P., Roy, M. (2019). Isolation and characterization of a Pseudomonas aeruginosa strain PGP for plant growth promotion. Proceedings of the national academy of sciences, India section b: biological sciences, 89, 353-360. https://doi.org/10.1007/s40011-017-0946-9
  • Sarwar, M., Kremer, R.J., (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285. https://doi.org/10.1111/j.1472-765x.1995.tb00446.x
  • Shakeela, S., Padder, S. A., Bhat, Z.A. (2017). Isolation and characterization of plant growth promoting rhizobacteria associated with medicinal plant Picrorhiza kurroa. Journal of Pharmacognosy and Phytochemistry, 6(3), 157-168.
  • Shankar, M., Ponraj, P., Ilakkiam, D., Gunasekaran, P. (2011). Root colonization of a rice growth promoting strain of Enterobacter cloacae. Journal of Basic Microbiology, 51(5), 523-530. https://doi.org/10.1002/jobm.201000342
  • Siddique, R., Gul, A., Ozturk, M., Altay, V. (2021). Phosphate solubilizing bacteria for soil sustainability. Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology, 423-435. https://doi.org/10.1002/9781119670391.ch21
  • Silva, C.F.D., Vitorino, L.C., Mendonça, M.A.C., Araújo, W.L.D., Dourado, M.N., Albuquerque, L. C. D., Souchie, E. L. (2020). Screening of plant growth-promoting endophytic bacteria from the roots of the medicinal plant Aloe vera. South African Journal of Botany, 134, 3-16. https://doi.org/10.1016/j.sajb.2019.09.019
  • Sivri, G. T. & Öksüz, Ö. (2019). Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Tekirdağ Ziraat Fakültesi Dergisi, 16(2), 244-250. https://doi.org/10.33462/jotaf.526431
  • Thakur, D., Kaur, M., Mishra, A. (2017). Isolation and screening of plant growth promoting Bacillus spp. and Pseudomonas spp. and their effect on growth, rhizospheric population and phosphorous concentration of Aloe vera. Journal of Medicinal Plants Studies, 5(1), 187-192. https://doi.org/10.9735/0975-5276.10.4.1143-1146
  • Thampi, M., Dhanraj, N.D., Prasad, A., Ganga, G., Jisha, M.S. (2023). Phosphorus solubilizing microbes (PSM): biological tool to combat salinity stress in crops. Symbiosis, 91(1), 15-32. https://doi.org/10.1007/s13199-023-00947-3
  • Wu, Y., Xiao, S., Qi, J., Gong, Y., Li, K. (2022). Pseudomonas fluorescens BsEB-1: an endophytic bacterium isolated from the root of Bletilla striata that can promote its growth. Plant Signaling & Behavior, 17(1), 2100626. https://doi.org/10.1080/15592324.2022.2100626
  • Vijayalakshmi, K. & Senthilkumar, G. (2023). Identification and characterization of Stenotrophomonas rhizophila isolated from rhizosphere soil of Tephrosia purpurea L.(Green manure crop) of Tamil Nadu. Journal of Agricultural Sciences, 15(1), 60-67.
  • Zhong, J., Hu, X., Liu, X., Cui, X., Lv, Y., Tang, C., Sun, W. (2021). Isolation and identification of uranium tolerant phosphate-solubilizing Bacillus spp. and their synergistic strategies to U (VI)immobilization. Frontiers in Microbiology, 12, 676391. https://doi.org/10.3389/fmicb.2021.676391
Year 2024, Volume: 8 Issue: 4, 824 - 834
https://doi.org/10.31015/jaefs.2024.4.11

Abstract

References

  • Abd el-Megeed, F.H. & Youseif, S.H. (2018). Molecular identification and plant growth pro-moting activities of endophytic Pantoea sp. isolated from Zygophyllum album medicinal plant. Egyptian Journal of Genetics And Cytology, 47(1).
  • Adhikari, P., Jain, R., Sharma, A., Pandey, A. (2021). Plant growth promotion at low temperature by phosphate-solubilizing Pseudomonas spp. isolated from high-altitude Himalayan soil. Microbial Ecology, 82(3), 677-687. https://doi.org/10.1007/s00248-021-01702-1 Ahmed, E.A., Hassan, E.A., El Tobgy, K.M.K., Ramadan, E.M. (2014). Evaluation of rhizobacteria of some medicinal plants for plant growth promotion and biological control. Annals of Agricultural Sciences, 59(2), 273-280. https://doi.org/10.1016/j.aoas.2014.11.016
  • Alaylar, B. (2022). Isolation and characterization of culturable endophytic plant growth-promoting Bacillus species from Mentha longifolia L. Turkish Journal of Agriculture and Forestry, 46(1), 73-82. https://doi.org/10.3906/tar-2109-24
  • Al-Habib, A.A.S. (2021, April). IAA production by Pseudomonas putida associated with rhizosphere of some medicine plants. In IOP Conference Series: Earth and Environmental Science, 735(1), 12-076. https://doi.org/10.1088/1755-1315/735/1/012076
  • ALKahtani, M.D., Fouda, A., Attia, K. A., Al-Otaibi, F., Eid, A.M., Ewais, E.E.D., Abdelaal, K.A. (2020). Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10(9), 1325. https://doi.org/10.3390/agronomy10091325
  • Alemneh, A.A., Cawthray, G.R., Zhou, Y., Ryder, M. H., Denton, M.D. (2021). Ability to produce indole acetic acid is associated with improved phosphate solubilising activity of rhizobacteria. Archives of Microbiology, 203, 3825-3837. https://doi.org/10.1007/s00203-021-02364-w
  • Ambreen, S., Yasmin, A., Aziz, S. (2020). Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading Chlorpyrifos, Triazophos and Dimethoate. Heliyon, 6(7). https://doi.org/10.1016/j.heliyon.2020.e04221
  • Amri, M., Rjeibi, M.R., Gatrouni, M., Mateus, D.M., Asses, N., Pinho, H. J., Abbes, C. (2023). Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms, 11(3), 783. https://doi.org/10.3390/microorganisms11030783
  • Anand, K., Kumari, B., Mallick, M.A. (2016). Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. International Journal of Pharmacy and Pharmaceutical Sciences, 8(2), 37-40. https://doi.org/10.1155/2019/4917256
  • Arora, N.K. & Mishra, J. (2016). Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Applied Soil Ecology, 107, 405-407. https://doi.org/10.1016/j.apsoil.2016.05.020
  • Ashfaq, M.Y., Da'na, D.A., Al-Ghouti, M.A. (2022). Application of MALDI-TOF MS for identification of environmental bacteria: A review. Journal of Environmental Management, 305, 114359.
  • Azaroual, S.E., Hazzoumi, Z., Mernissi, N.E., Aasfar, A., Meftah Kadmiri, I., Bouizgarne, B. (2020). Role of inorganic phosphate solubilizing bacilli isolated from moroccan phosphate rock mine and rhizosphere soils in wheat (Triticum aestivum L) phosphorus uptake. Current Microbiology, 77, 2391-2404. https://doi.org/10.1007/s00284-020-02046-8
  • Barton, C.J. (1948). Photometric analysis of phosphate rock. Analytical Chemistry 20(11), 1068-1073 https://doi.org/10.1021/ac60023a024
  • Bektaş, İ. (2021). Toprakta bazı bakterilerin fosfat çözünürlüğü ile organik asit üretimi arasındaki ilişkinin belirlenmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 8(1), 66-76. https://doi.org/10.30910/turkjans.677316
  • Blanco-Vargas, A., Rodríguez-Gacha, L.M., Sánchez-Castro, N., Garzón-Jaramillo, R., Pedroza-Camacho, L.D., Poutou-Piñales, R.A., Pedroza-Rodríguez, A.M. (2020). Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon, (6),10. https://doi.org/10.1016/j.heliyon.2020.e05218
  • Bose, A., Kher, M.M., Nataraj, M., Keharia, H. (2016). Phytostimulatory effect of indole-3-acetic acid by Enterobacter cloacae SN19 isolated from Teramnus labialis (L. f.) Spreng rhizosphere. Biocatalysis and agricultural biotechnology, 6, 128-137. https://doi.org/10.1016/j.bcab.2016.03.005
  • Chandra, H., Kumari, P., Bisht, R., Prasad, R., Yadav, S. (2020). Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Molecular Biology Reports, 47(8), 6015-6026. https://doi.org/10.1007/s11033-020-05676-0
  • Cheng, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., Ma, Y. (2023). Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. Science of The Total Environment, 166468. https://doi.org/10.1016/j.scitotenv.2023.166468
  • Chiellini, C., De Leo, M., Longo, V., Pieracci, Y., Pistelli, L. (2023). Characterization of the endophytic bacterial community of Bituminaria bituminosa plant grown in vitro and its interaction with the plant extract. Frontiers in Plant Science, 13, 1076573. https://doi.org/10.3389/fpls.2022.1076573
  • Clarke, P.H. & Cowan, S.T. (1952). Biochemical methods for bacteriology. Current Microbiology, 6(1), 187-197. https://doi.org/10.1099/00221287-6-1-2-187
  • Çelikten, M. & Bozkurt, İ.A. (2018). Determination of efficacies of bacteria isolated from wheat rhizospheres on plant growth. Mustafa Kemal Üniversitesi, Ziraat Fakültesi Dergisi 23(1), 33–48.
  • Dip, D.P., Sannazzaro, A.I., Otondo, J., Pistorio, M., Estrella, M.J. (2024). Exploring phosphate solubilizing bacterial communities in rhizospheres of native and exotic forage grasses in alkaline-sodic soils of the flooding pampa. Current Microbiology, 81(7), 1-12. https://doi.org/10.1007/s00284-024-03704-x
  • Genç, S. & Soysal, M.İ. (2018). Parametri̇k ve parametri̇k olmayan çoklu karşilaştirma testleri̇. Black Sea Journal of Engineering and Science, 1(1), 18-27.
  • Gupta, R., Kumari, A., Sharma, S., Alzahrani, O.M., Noureldeen, A., Darwish, H. (2022). Identification, characterization and optimization of phosphate solubilizing rhizobacteria (PSRB) from rice rhizosphere. Saudi Journal of Biological Sciences, 29(1), 35-42. https://doi.org/10.1016/j.sjbs.2021.09.075
  • Han, X.J., Zeng, Q.W., Zhao, Y.P. (2020). Identification of inorganic phosphate-solubilizing bacterium Mp1-Ha4 in poplar rhizosphere and its phosphate-solubilizing mechanism. Biotechnology Bulletin, 36(3), 141. 10.13560/j.cnki.biotech.bull.1985.2019-0952
  • Hassan, S.E.D. (2017). Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research, 8(6), 687-695. https://doi.org/10.1016/j.jare.2017.09.001
  • Ibáñez, A., Diez-Galán, A., Cobos, R., Calvo-Peña, C., Barreiro, C., Medina-Turienzo, J., Coque, J.J.R. (2021). Using rhizosphere phosphate solubilizing bacteria to improve barley (Hordeum vulgare) plant productivity. Microorganisms, 9(8), 1619. https://doi.org/10.3390/microorganisms9081619
  • Kaur, M., Vyas, P., Rahi, P., Sharma, S., (2022). Chlorpyrifos-and carbofuran-tolerant phosphate-solubilising Arthrobacter oxydans and Bacillus flexus improved growth and phosphorus content in potato in pesticide-amended soils. Potato Research, 65(2), 213-231. https://doi.org/10.1007/s11540-021-09520-1
  • Khan, M.S., Gao, J., Chen, X., Zhang, M., Yang, F., Du, Y., Zhang, X. (2020). The endophytic bacteria Bacillus velezensis Lle-9, isolated from Lilium leucanthum, harbors antifungal activity and plant growth-promoting effects. Journal of Microbiology and Biotechnology, 30(5), 668. https://doi.org/10.4014/jmb.1910.10021
  • Li, H.P., Han, Q.Q., Liu, Q. M., Gan, Y.N., Rensing, C., Rivera, W.L., Zhang, J. L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 272, 127375.
  • Linu, M.S., Asok, A.K., Thampi, M., Sreekumar, J., Jisha, M.S. (2019). Plant growth promoting traits of indigenous phosphate solubilizing Pseudomonas aeruginosa isolates from chilli (Capsicum annuum L.) rhizosphere. Communications in Soil Science and Plant Analysis, 50(4), 444-457. https://doi.org/10.1080/00103624.2019.1566469
  • Liu, L.F., Di, Y.N., He, L.L., Xie, L.Y., Hu, Y.F., Li, F.S. (2020). Study on the growth promotion effect and IAA production capacity of Bacillus subtilis B9. Journal of Yunnan Agricultural University 35(2), 227-234 doi: 10.12101/j.issn.1004-390X(n).201907034
  • Marfungah, S., Puspita, F., Tjahjono, B., Siregar, B., Gafur, A. (2023). Potential of indigenous rhizobacteria as biocontrol agents of Xanthomonas sp. Philipp J Sci, 152(5), 1539-1548. https://doi.org/10.56899/152.05.02
  • Meneguzzi, R.D.V., Fernandez, M., Cappellari, L.D.R., Giordano, W., Banchio, E. (2024). Isolation and characterization of plant growth-promoting bacteria from the rhizosphere of medicinal and aromatic plant Minthostachys verticillata. Plants, 13(15), 2062. https://doi.org/10.3390/plants13152062
  • Mishra, B.K., Meena, K.K., Dubey, P.N., Aishwath, O.P., Kant, K., Sorty, A. M., Bitla, U. (2016). Influence on yield and quality of fennel (Foeniculum vulgare Mill.) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacterial isolates. Ecological Engineering, 97, 327-333. https://doi.org/10.1016/j.ecoleng.2016.10.034
  • Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A., Antonius, S. (2023). IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon, 9(6). https://doi.org/10.2139/ssrn.4335395
  • Meena, R.K., Singh, R.K., Singh, N.P., Meena, S.K., Meena, V.S. (2015). Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and Agricultural Biotechnology, 4(4), 806-811. https://doi.org/10.1016/j.bcab.2015.08.006
  • Muthuri, C., Nyambura, N.C., Njeri, V.M., Tani, A., Wangari, M.C., (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology 6, 6414-6422. https://doi.org/10.5897/ajmr12.1170
  • Nazir, R., Ganai, B.A., Rahi, P., Rehman, S., Farooq, S., Dar, R., Abd_Allah, E.F. (2020). MALDI-TOF-MS and 16S rRNA characterization of lead tolerant metallophile bacteria isolated from saffron soils of Kashmir for their sequestration potential. Saudi Journal of Biological Sciences, 27(8), 2047-2053. https://doi.org/10.1016/j.sjbs.2020.04.021
  • Öksel, C., Balkan, A., Bilgin, O., Mirik, M., Başer, İ. (2022). Investigation of the effect of PGPR on yield and some yield components in winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 27(1), 127-133. https://doi.org/10.17557/tjfc.1019160
  • Pan, L., & Cai, B. (2023). Phosphate-solubilizing bacteria: advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms, 11(12), 2904. https://doi.org/10.3390/microorganisms11122904
  • Panigrahi, S., Mohanty, S., Rath, C.C. (2020). Characterization of endophytic bacteria Enterobacter cloacae MG00145 isolated from Ocimum sanctum with Indole Acetic Acid (IAA) production and plant growth promoting capabilities against selected crops. South African Journal of Botany, 134, 17-26. https://doi.org/10.1016/j.sajb.2019.09.017
  • Pantigoso, H.A., He, Y., Manter, D.K., Fonte, S.J., Vivanco, J.M. (2022). Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bulletin of the National Research Centre, 46(1), 224. https://doi.org/10.1186/s42269-022-00913-x
  • Patil, S. J., Surana, K. R., Mahajan, S.K. (2023). In vitro antimicrobial and antifungal activity of Mentha piperita active phytoconstituents. Journal of Agricultural Sciences, 14(6), 1875-1877. doi: http://rjas.org/Article/Article/5701
  • Paul, D. & Sinha, S.N. (2017). Isolation and characterization of phosphate solubilizing bacterium Pseudomonas aeruginosa KUPSB12 with antibacterial potential from river Ganga, India. Annals of Agrarian Science, 15(1), 130-136. https://doi.org/10.1016/j.aasci.2016.10.001
  • Pikovskaya, R. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362–370. Plant Soil, 287, 77-84.
  • Rafieian, F., Amani, R., Rezaei, A., Karaça, A. C., Jafari, S.M. (2024). Exploring fennel (Foeniculum vulgare): composition, functional properties, potential health benefits, and safety. Critical Reviews in Food Science and Nutrition, 64(20), 6924-6941. https://doi.org/10.1080/10408398.2023.2176817
  • Roychowdhury, R., Qaiser, T.F., Mukherjee, P., Roy, M. (2019). Isolation and characterization of a Pseudomonas aeruginosa strain PGP for plant growth promotion. Proceedings of the national academy of sciences, India section b: biological sciences, 89, 353-360. https://doi.org/10.1007/s40011-017-0946-9
  • Sarwar, M., Kremer, R.J., (1995). Determination of bacterially derived auxins using a microplate method. Letters in Applied Microbiology, 20(5), 282-285. https://doi.org/10.1111/j.1472-765x.1995.tb00446.x
  • Shakeela, S., Padder, S. A., Bhat, Z.A. (2017). Isolation and characterization of plant growth promoting rhizobacteria associated with medicinal plant Picrorhiza kurroa. Journal of Pharmacognosy and Phytochemistry, 6(3), 157-168.
  • Shankar, M., Ponraj, P., Ilakkiam, D., Gunasekaran, P. (2011). Root colonization of a rice growth promoting strain of Enterobacter cloacae. Journal of Basic Microbiology, 51(5), 523-530. https://doi.org/10.1002/jobm.201000342
  • Siddique, R., Gul, A., Ozturk, M., Altay, V. (2021). Phosphate solubilizing bacteria for soil sustainability. Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology, 423-435. https://doi.org/10.1002/9781119670391.ch21
  • Silva, C.F.D., Vitorino, L.C., Mendonça, M.A.C., Araújo, W.L.D., Dourado, M.N., Albuquerque, L. C. D., Souchie, E. L. (2020). Screening of plant growth-promoting endophytic bacteria from the roots of the medicinal plant Aloe vera. South African Journal of Botany, 134, 3-16. https://doi.org/10.1016/j.sajb.2019.09.019
  • Sivri, G. T. & Öksüz, Ö. (2019). Identification of Propionibacterium spp. isolated from mihaliç cheeses by MALDI-TOF MS. Tekirdağ Ziraat Fakültesi Dergisi, 16(2), 244-250. https://doi.org/10.33462/jotaf.526431
  • Thakur, D., Kaur, M., Mishra, A. (2017). Isolation and screening of plant growth promoting Bacillus spp. and Pseudomonas spp. and their effect on growth, rhizospheric population and phosphorous concentration of Aloe vera. Journal of Medicinal Plants Studies, 5(1), 187-192. https://doi.org/10.9735/0975-5276.10.4.1143-1146
  • Thampi, M., Dhanraj, N.D., Prasad, A., Ganga, G., Jisha, M.S. (2023). Phosphorus solubilizing microbes (PSM): biological tool to combat salinity stress in crops. Symbiosis, 91(1), 15-32. https://doi.org/10.1007/s13199-023-00947-3
  • Wu, Y., Xiao, S., Qi, J., Gong, Y., Li, K. (2022). Pseudomonas fluorescens BsEB-1: an endophytic bacterium isolated from the root of Bletilla striata that can promote its growth. Plant Signaling & Behavior, 17(1), 2100626. https://doi.org/10.1080/15592324.2022.2100626
  • Vijayalakshmi, K. & Senthilkumar, G. (2023). Identification and characterization of Stenotrophomonas rhizophila isolated from rhizosphere soil of Tephrosia purpurea L.(Green manure crop) of Tamil Nadu. Journal of Agricultural Sciences, 15(1), 60-67.
  • Zhong, J., Hu, X., Liu, X., Cui, X., Lv, Y., Tang, C., Sun, W. (2021). Isolation and identification of uranium tolerant phosphate-solubilizing Bacillus spp. and their synergistic strategies to U (VI)immobilization. Frontiers in Microbiology, 12, 676391. https://doi.org/10.3389/fmicb.2021.676391
There are 59 citations in total.

Details

Primary Language English
Subjects Medicinal and Aromatic Plants , Soil Sciences and Ecology, Soil Microbiology
Journal Section Research Articles
Authors

Murat Güler 0000-0002-3074-6458

Early Pub Date December 19, 2024
Publication Date
Submission Date September 16, 2024
Acceptance Date November 10, 2024
Published in Issue Year 2024 Volume: 8 Issue: 4

Cite

APA Güler, M. (2024). Isolation of phosphate solubilizing bacteria from different medicinal aromatic plants and identification using MALDI TOF MS. International Journal of Agriculture Environment and Food Sciences, 8(4), 824-834. https://doi.org/10.31015/jaefs.2024.4.11


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27