Research Article
BibTex RIS Cite

Effects of temperature rise on grapevine phenology (Vitis vinifera L.): Impacts on early flowering and harvest in the 2024 Growing Season

Year 2024, Volume: 8 Issue: 4, 970 - 979
https://doi.org/10.31015/jaefs.2024.4.26

Abstract

Numerous studies have documented that climate change will considerably impact grapevine phenology. In the 2024 growing season, notable differences emerged from the previous five years, between 2019 and 2023. Rising temperatures at the beginning of the growth cycle of grapevines began the phenology phases earlier, leading to earlier bud burst and flowering for various grape varieties in many regions of Türkiye. This study examines variations in phenological phases across different years, using short-term climate data from a weather station in a cv. Sultan 7 (Vitis vinifera L.) vineyard in Yunusemre, Manisa, Türkiye. The objective of the study is to determine the impact of temperature fluctuations ranging from January to September on grapevine phenology intervals during critical stages: bud burst, full bloom, veraison, and maturity, specifically for between 2019 and 2024. Evaluations focused on critical factors, including growth cycle duration, days within specific temperature ranges, effective heat summation for the variety, and the Winkler Index values. The 2024 growing season recorded the highest temperatures in April and June, and bud burst occurred 5 days (2021) to 10 days (2019) earlier, while full bloom was determined for 16 days (2019 and 2022) to 27 days (2021) earlier than in previous years. The findings showed that years characterized by earlier flowering, 2024 (day of the year (DOY) 120) and 2022 (DOY 136), may be associated with earlier harvest. In addition, the Winkler Index recorded a highest of 2945.01 growing degree days (GDD) in 2024, with a specific effective heat summation value of 2,138.79 GDD for variety in a shorter timeframe. The findings suggest that although the intervals between veraison and harvest tend to remain almost similar each year, early flowering, the ripening period, and elevated temperatures before veraison in the same season can greatly contribute to prompting an earlier harvest.

References

  • Alba, V., Russi, A., Caputo, A. R., & Gentilesco, G. (2024). Climate Change and Viticulture in Italy: Historical Trends and Future Scenarios. Atmosphere, 15(8), 885. https://doi.org/10.3390/atmos15080885
  • Alikadic, A., Pertot, I., Eccel, E., Dolci, C., Zarbo, C., Caffarra, A., De Filippi, R.& Furlanello, C. (2019). The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agricultural and Forest Meteorology, 271, 73-82. https://doi.org/10.1016/j.agrformet.2019.02.030
  • Arias, L. A., Berli, F., Fontana, A., Bottini, R. & Piccoli, P. (2022). Climate change effects on grapevine physiology and biochemistry: Benefits and challenges of high altitude as an adaptation strategy. Frontiers in Plant Science, 13, 835425. https://doi.org/10.3389/fpls.2022.835425
  • Bartlett, M. K. & Sinclair, G. (2021). Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars. Journal of Experimental Botany, 72(5), 1995-2009. https://doi.org/10.1093/jxb/eraa577
  • Bock, A., Sparks, T., Estrella, N. & Menzel, A. (2011). Changes in the phenology and composition of wine from Franconia, Germany. Climate Research, 50(1), 69-81. https://doi.org/10.3354/cr01048
  • Cameron, W., Petrie, P. R. & Barlow, E. W. R. (2022). The effect of temperature on grapevine phenological intervals: Sensitivity of budburst to flowering. Agricultural and Forest Meteorology, 315, 108841. https://doi.org/10.1016/j.agrformet.2022.108841
  • Coombe, B. G. (1995). Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1(2), 104-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
  • Copernicus Climate Change Service (CCCS), (2024). Surface air temperature for April 2024. Climate Bulletins. Retrieved in November, 20, 2024, from https://climate.copernicus.eu/surface-air-temperature-april-2024
  • Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G. & Orlandini, S., 2010. Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. Journal Agriculture. Science, 148, 657–666. https://doi.org/10.1017/S0021859610000432.
  • Duchêne, E., Huard, F. & Pieri, P. (2014). Grapevine and climate change: what adaptations of plant material and training systems should we anticipate. Journal International des Sciences de la Vigne et du Vin, 3, 61-69.
  • Espinosa-Roldán, F. E., García-Díaz, A., Raboso, E., Crespo, J., Cabello, F., Martínez de Toda, F. & Muñoz-Organero, G. (2024). Phenological Evaluation of Minority Grape Varieties in the Wine Region of Madrid as a Strategy for Adaptation to Climate Change. Horticulturae, 10(4), 353. https://doi.org/10.3390/horticulturae10040353
  • Fraga, H., Malheiro, A. C., Moutinho‐Pereira, J. & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94-110. https://doi.org/10.1002/fes3.14
  • García de Cortázar-Atauri , I.,, Duchêne, E., Destrac, A., Barbeau, G., De Rességuier, L., Lacombe, T., Parker, A.K., Saurin, N. & van Leeuwen, C. (2017). Grapevine phenology in France: from past observations to future evolutions in the context of climate change. Oeno One, 51(2), 115-126. https://doi.org/10.20870/oeno-one.2016.0.0.1622
  • Jones, G. V. & Davis, R. E. (2000). Using a synoptic climatological approach to understand climate–viticulture relationships. International Journal of Climatology, 20(8), 813-837. https://doi.org/10.1002/1097-0088(20000630)20:8<813::AID-JOC495>3.0.CO;2-W
  • Jones G.V., White M.A.,Cooper O.R. & Storchmann K. (2005). Climate change and global wine quality. Climate. Change, 73, 319–343. https://doi.org/10.1007/s10584-005-4704-2.
  • Jones, G. V. (2007). Climate change: observations, projections, and general implications for viticulture and wine production. In: Climate and Viticulture Congress, Zaragoza, 10th – 14th April 2007.
  • Jones, G. V., Reid, R. & Vilks, A. (2012). Climate, grapes, and wine: structure and suitability in a variable and changing climate. In: P.H. Dougherty (Eds), The geography of wine: regions, terroir and techniques (pp. 109-133). Springer.
  • Kartschall, T., Wodinski, M., Von Bloh, W., Oesterle, H., Rachimow, C. & Hoppmann, D. (2015). Changes in phenology and frost risks of Vitis vinifera (cv Riesling). Meteorologische Zeitschrift, 24:189-200.
  • Malheiro, A. C., Campos, R., Fraga, H., Eiras-Dias, J., Silvestre, J. & Santos, J. A. (2013). Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. OENO One, 47(4), 287-299. https://doi.org/10.20870/oeno-one.2013.47.4.1558
  • Molitor D., Caffarra A., Sinigoj P., Pertot I., Hoffmann L. & Junk J. (2014). Late frost damage risk for viticulture under future climate conditions: a case study for the Luxembourgish winegrowing region. Australian Journal of Grape and Wine Research. 20, 160-168. https://doi.org/10.1111/ajgw.12059
  • Munoz-Organero, G., Espinosa, F. E., Cabello, F., Zamorano, J. P., Urbanos, M. A., Puertas, B., ... & Fernandez-Pastor, M. (2022). Phenological study of 53 Spanish minority grape varieties to search for adaptation of vitiviniculture to climate change conditions. Horticulturae, 8(11), 984. https://doi.org/10.3390/horticulturae8110984
  • Parker, L. E., Zhang, N., Abatzoglou, J. T., Kisekka, I., McElrone, A. J. & Ostoja, S. M. (2024). A variety-specific analysis of climate change effects on California winegrapes. International Journal of Biometeorology, 1-13. https://doi.org/10.1007/s00484-024-02684-8
  • Rafique, R., Ahmad, T., Ahmed, M., Khan, M. A., Wilkerson, C. J. & Hoogenboom, G. (2023). Seasonal variability in the effect of temperature on key phenological stages of four table grapes cultivars. International Journal of Biometeorology, 67(5), 745-759. https://doi.org/10.1007/s00484-023-02548-7
  • Ramos, M. C. & Yuste, J. (2023). Grapevine phenology of white cultivars in rueda designation of origin (Spain) in response to weather conditions and potential shifts under warmer climate. Agronomy, 13(1), 146. https://doi.org/10.3390/agronomy13010146
  • Rogiers, S. Y., Greer, D. H., Liu, Y., Baby, T. & Xiao, Z. (2022). Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Frontiers in Plant Science, 13, 1094633. https://doi.org/10.3389/fpls.2022.1094633
  • Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L. T., Correia, C., ... & Schultz, H. R. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092
  • Teker, T. & Altindisli, A. (2021). Excessive pruning levels in young grapevines (Vitis vinifera L. cv. Sultan 7) cause water loss in seedless cluster berries. International Journal of Fruit Science, 21(1), 979-992. https://doi.org/10.1080/15538362.2021.1964416
  • Teker, T. & Soltekin, O. (2023). Berry shattering phenomena in vineyards: The influence of maximum temperatures during flowering period in an extreme year. Scientia Horticulturae, 321, 112278.
  • Teker, T. (2023). A study of kaolin effects on grapevine physiology and its ability to protect grape clusters from sunburn damage. Scientia Horticulturae, 311, 111824. https://doi.org/10.1016/j.scienta.2022.111824
  • Templ, B., Templ, M., Barbieri, R., Meier, M. & Zufferey, V. (2021). Coincidence of temperature extremes and phenological events of grapevines. OENO One, 55(1), 367-383.
  • TMS, (2024a). Turkish State Meteorological Service, Assessment of temperature and rainfall in April 2024 (In Turkish). Retrieved in October, 20, 2024, from https://www.mgm.gov.tr/FILES/iklim/yillikiklim/2024/Nisan-Sicaklik-Yagis-Degerlendirmesi.pdf
  • TMS, (2024b). Turkish State Meteorological Service, Assessment of temperature and rainfall in June 2024 (In Turkish). Retrieved in October, 20, 2024, from https://www.mgm.gov.tr/FILES/iklim/yillikiklim/2024/Haziran-Sicaklik-Yagis-Degerlendirmesi.pdf
  • TMS, (2024c). Turkish State Meteorological Service, official climate statistics (Manisa) (In Turkish). Retrieved in October, 20, 2024, from https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=MANISA
  • Tomasi, D., Jones, G. V., Giust, M., Lovat, L. & Gaiotti, F. (2011). Grapevine phenology and climate change: relationships and trends in the Veneto region of Italy for 1964–2009. American Journal of Enology and Viticulture, 62(3), 329-339. https://doi.org/10.5344/ajev.2011.10108
  • Winkler, A.J. (1974). General viticulture. University of California Press.
  • Wu, J., Abudureheman, R., Zhong, H., Yadav, V., Zhang, C., Ma, Y., ... & Wang, X. (2023). The impact of high temperatures in the field on leaf tissue structure in different grape cultivars. Horticulturae, 9(7), 731. https://doi.org/10.3390/horticulturae9070731

Sıcaklık Artışının Üzüm Fenolojisi Üzerindeki Etkileri: 2024 Yılı Vejetasyon Sezonunda Erken Çiçeklenme ve Hasat Zamanı Üzerine Etkileri

Year 2024, Volume: 8 Issue: 4, 970 - 979
https://doi.org/10.31015/jaefs.2024.4.26

Abstract

Birçok çalışma, iklim değişikliğinin asma fenolojisini önemli ölçüde etkileyeceğini belgelemiştir. 2024 büyüme sezonunda, önceki beş yıldan önemli farklılıklar ortaya çıkmıştır. Asmaların büyüme döngüsünün başlangıcındaki artan sıcaklıklar, fenoloji evrelerini daha erken başlatmış ve Türkiye'nin birçok bölgesinde çeşitli üzüm çeşitleri için tomurcukların daha erken açılmasına ve erken çiçeklenme evrelerine yol açmıştır. Bu çalışmada, Türkiye, Manisa, Yunusemre'deki cv. Sultan 7 (Vitis vinifera L.) bağındaki bir hava istasyonundan alınan kısa vadeli iklim verileri kullanılarak değişen yıllardaki fenolojik evrelerdeki farklılıklar incelenmiştir. Çalışmanın amacı, Ocak ayından Eylül ayına kadar olan sıcaklık dalgalanmalarının, özellikle 2019 ve 2024 yılları arasında, kritik evreler olan gözlerde uyanma, tam çiçeklenme, ben düşme ve olgunluk sırasında asma fenolojisi aralıkları üzerindeki etkisini belirlemektir. Değerlendirmeler, vejetasyon döngü süresi, belirli sıcaklık aralıklarındaki günler, çeşit için etkili sıcaklık toplamı ve Winkler Endeksi değerleri gibi kritik faktörlere odaklanmıştır. 2024 büyüme sezonunda en yüksek sıcaklıklar Nisan ve Haziran aylarında kaydedilirken, gözlerin uyanma dönemi 5 gün (2021) ile 10 gün (2019), tam çiçeklenme ise önceki yıllara göre 16 gün (2019 ve 2022) ila 27 gün (2021) daha erken gerçekleşmiştir. Bulgular, daha erken çiçeklenme ile karakterize edilen yılların, 2024 (DOY 120) ve 2022'nin (DOY 136), daha erken hasatla ilişkili olabileceğini göstermiştir. Ek olarak, Winkler Endeksi değerinin 2024'te 2945.01 Gün Derece (GD) ile en yüksek değeri kaydetti ve daha kısa bir zaman diliminde çeşit için 2138.79 GD'lik belirli bir etkili ısı toplama değeri elde edildi. Bulgular, ben düşme ile hasat arasındaki aralıkların her yıl neredeyse aynı kalma eğiliminde olmasına rağmen, sezondaki erken çiçeklenme aşaması ve ben düşmeden önce Haziran ayındaki yüksek sıcaklıkların daha erken bir hasadı teşvik etmeye önemli ölçüde katkıda bulunabileceğini göstermektedir.

References

  • Alba, V., Russi, A., Caputo, A. R., & Gentilesco, G. (2024). Climate Change and Viticulture in Italy: Historical Trends and Future Scenarios. Atmosphere, 15(8), 885. https://doi.org/10.3390/atmos15080885
  • Alikadic, A., Pertot, I., Eccel, E., Dolci, C., Zarbo, C., Caffarra, A., De Filippi, R.& Furlanello, C. (2019). The impact of climate change on grapevine phenology and the influence of altitude: A regional study. Agricultural and Forest Meteorology, 271, 73-82. https://doi.org/10.1016/j.agrformet.2019.02.030
  • Arias, L. A., Berli, F., Fontana, A., Bottini, R. & Piccoli, P. (2022). Climate change effects on grapevine physiology and biochemistry: Benefits and challenges of high altitude as an adaptation strategy. Frontiers in Plant Science, 13, 835425. https://doi.org/10.3389/fpls.2022.835425
  • Bartlett, M. K. & Sinclair, G. (2021). Temperature and evaporative demand drive variation in stomatal and hydraulic traits across grape cultivars. Journal of Experimental Botany, 72(5), 1995-2009. https://doi.org/10.1093/jxb/eraa577
  • Bock, A., Sparks, T., Estrella, N. & Menzel, A. (2011). Changes in the phenology and composition of wine from Franconia, Germany. Climate Research, 50(1), 69-81. https://doi.org/10.3354/cr01048
  • Cameron, W., Petrie, P. R. & Barlow, E. W. R. (2022). The effect of temperature on grapevine phenological intervals: Sensitivity of budburst to flowering. Agricultural and Forest Meteorology, 315, 108841. https://doi.org/10.1016/j.agrformet.2022.108841
  • Coombe, B. G. (1995). Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1(2), 104-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x
  • Copernicus Climate Change Service (CCCS), (2024). Surface air temperature for April 2024. Climate Bulletins. Retrieved in November, 20, 2024, from https://climate.copernicus.eu/surface-air-temperature-april-2024
  • Dalla Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G. & Orlandini, S., 2010. Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. Journal Agriculture. Science, 148, 657–666. https://doi.org/10.1017/S0021859610000432.
  • Duchêne, E., Huard, F. & Pieri, P. (2014). Grapevine and climate change: what adaptations of plant material and training systems should we anticipate. Journal International des Sciences de la Vigne et du Vin, 3, 61-69.
  • Espinosa-Roldán, F. E., García-Díaz, A., Raboso, E., Crespo, J., Cabello, F., Martínez de Toda, F. & Muñoz-Organero, G. (2024). Phenological Evaluation of Minority Grape Varieties in the Wine Region of Madrid as a Strategy for Adaptation to Climate Change. Horticulturae, 10(4), 353. https://doi.org/10.3390/horticulturae10040353
  • Fraga, H., Malheiro, A. C., Moutinho‐Pereira, J. & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94-110. https://doi.org/10.1002/fes3.14
  • García de Cortázar-Atauri , I.,, Duchêne, E., Destrac, A., Barbeau, G., De Rességuier, L., Lacombe, T., Parker, A.K., Saurin, N. & van Leeuwen, C. (2017). Grapevine phenology in France: from past observations to future evolutions in the context of climate change. Oeno One, 51(2), 115-126. https://doi.org/10.20870/oeno-one.2016.0.0.1622
  • Jones, G. V. & Davis, R. E. (2000). Using a synoptic climatological approach to understand climate–viticulture relationships. International Journal of Climatology, 20(8), 813-837. https://doi.org/10.1002/1097-0088(20000630)20:8<813::AID-JOC495>3.0.CO;2-W
  • Jones G.V., White M.A.,Cooper O.R. & Storchmann K. (2005). Climate change and global wine quality. Climate. Change, 73, 319–343. https://doi.org/10.1007/s10584-005-4704-2.
  • Jones, G. V. (2007). Climate change: observations, projections, and general implications for viticulture and wine production. In: Climate and Viticulture Congress, Zaragoza, 10th – 14th April 2007.
  • Jones, G. V., Reid, R. & Vilks, A. (2012). Climate, grapes, and wine: structure and suitability in a variable and changing climate. In: P.H. Dougherty (Eds), The geography of wine: regions, terroir and techniques (pp. 109-133). Springer.
  • Kartschall, T., Wodinski, M., Von Bloh, W., Oesterle, H., Rachimow, C. & Hoppmann, D. (2015). Changes in phenology and frost risks of Vitis vinifera (cv Riesling). Meteorologische Zeitschrift, 24:189-200.
  • Malheiro, A. C., Campos, R., Fraga, H., Eiras-Dias, J., Silvestre, J. & Santos, J. A. (2013). Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. OENO One, 47(4), 287-299. https://doi.org/10.20870/oeno-one.2013.47.4.1558
  • Molitor D., Caffarra A., Sinigoj P., Pertot I., Hoffmann L. & Junk J. (2014). Late frost damage risk for viticulture under future climate conditions: a case study for the Luxembourgish winegrowing region. Australian Journal of Grape and Wine Research. 20, 160-168. https://doi.org/10.1111/ajgw.12059
  • Munoz-Organero, G., Espinosa, F. E., Cabello, F., Zamorano, J. P., Urbanos, M. A., Puertas, B., ... & Fernandez-Pastor, M. (2022). Phenological study of 53 Spanish minority grape varieties to search for adaptation of vitiviniculture to climate change conditions. Horticulturae, 8(11), 984. https://doi.org/10.3390/horticulturae8110984
  • Parker, L. E., Zhang, N., Abatzoglou, J. T., Kisekka, I., McElrone, A. J. & Ostoja, S. M. (2024). A variety-specific analysis of climate change effects on California winegrapes. International Journal of Biometeorology, 1-13. https://doi.org/10.1007/s00484-024-02684-8
  • Rafique, R., Ahmad, T., Ahmed, M., Khan, M. A., Wilkerson, C. J. & Hoogenboom, G. (2023). Seasonal variability in the effect of temperature on key phenological stages of four table grapes cultivars. International Journal of Biometeorology, 67(5), 745-759. https://doi.org/10.1007/s00484-023-02548-7
  • Ramos, M. C. & Yuste, J. (2023). Grapevine phenology of white cultivars in rueda designation of origin (Spain) in response to weather conditions and potential shifts under warmer climate. Agronomy, 13(1), 146. https://doi.org/10.3390/agronomy13010146
  • Rogiers, S. Y., Greer, D. H., Liu, Y., Baby, T. & Xiao, Z. (2022). Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Frontiers in Plant Science, 13, 1094633. https://doi.org/10.3389/fpls.2022.1094633
  • Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L. T., Correia, C., ... & Schultz, H. R. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092
  • Teker, T. & Altindisli, A. (2021). Excessive pruning levels in young grapevines (Vitis vinifera L. cv. Sultan 7) cause water loss in seedless cluster berries. International Journal of Fruit Science, 21(1), 979-992. https://doi.org/10.1080/15538362.2021.1964416
  • Teker, T. & Soltekin, O. (2023). Berry shattering phenomena in vineyards: The influence of maximum temperatures during flowering period in an extreme year. Scientia Horticulturae, 321, 112278.
  • Teker, T. (2023). A study of kaolin effects on grapevine physiology and its ability to protect grape clusters from sunburn damage. Scientia Horticulturae, 311, 111824. https://doi.org/10.1016/j.scienta.2022.111824
  • Templ, B., Templ, M., Barbieri, R., Meier, M. & Zufferey, V. (2021). Coincidence of temperature extremes and phenological events of grapevines. OENO One, 55(1), 367-383.
  • TMS, (2024a). Turkish State Meteorological Service, Assessment of temperature and rainfall in April 2024 (In Turkish). Retrieved in October, 20, 2024, from https://www.mgm.gov.tr/FILES/iklim/yillikiklim/2024/Nisan-Sicaklik-Yagis-Degerlendirmesi.pdf
  • TMS, (2024b). Turkish State Meteorological Service, Assessment of temperature and rainfall in June 2024 (In Turkish). Retrieved in October, 20, 2024, from https://www.mgm.gov.tr/FILES/iklim/yillikiklim/2024/Haziran-Sicaklik-Yagis-Degerlendirmesi.pdf
  • TMS, (2024c). Turkish State Meteorological Service, official climate statistics (Manisa) (In Turkish). Retrieved in October, 20, 2024, from https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=MANISA
  • Tomasi, D., Jones, G. V., Giust, M., Lovat, L. & Gaiotti, F. (2011). Grapevine phenology and climate change: relationships and trends in the Veneto region of Italy for 1964–2009. American Journal of Enology and Viticulture, 62(3), 329-339. https://doi.org/10.5344/ajev.2011.10108
  • Winkler, A.J. (1974). General viticulture. University of California Press.
  • Wu, J., Abudureheman, R., Zhong, H., Yadav, V., Zhang, C., Ma, Y., ... & Wang, X. (2023). The impact of high temperatures in the field on leaf tissue structure in different grape cultivars. Horticulturae, 9(7), 731. https://doi.org/10.3390/horticulturae9070731
There are 36 citations in total.

Details

Primary Language English
Subjects Oenology and Viticulture
Journal Section Research Articles
Authors

Turcan Teker 0000-0001-5488-4604

Early Pub Date December 26, 2024
Publication Date
Submission Date November 21, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2024 Volume: 8 Issue: 4

Cite

APA Teker, T. (2024). Effects of temperature rise on grapevine phenology (Vitis vinifera L.): Impacts on early flowering and harvest in the 2024 Growing Season. International Journal of Agriculture Environment and Food Sciences, 8(4), 970-979. https://doi.org/10.31015/jaefs.2024.4.26


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27