Farklı Yetişme Ortamlarında Toprak Sıcaklıklarının Değişimlerinin İncelenmesi, KTÜ Perennial Bahçe Örneği
Yıl 2024,
Cilt: 9 Sayı: 2, 269 - 275, 30.06.2024
Türker Oğuztürk
,
Cengiz Acar
Öz
Bu çalışma, Karadeniz Teknik Üniversitesinde kurulan perennial bahçe örneğinde farklı yetişme ortamlarında toprak sıcaklıklarının aylara göre ve yetişme ortamlarına göre nasıl değiştiğini incelemeyi amaçlamaktadır. Çalışmada, %50 dere mili + %50 toprak, %25 dere mili + %75 toprak ve %100 toprak besi ortamlarında 4 farklı dikey katman kombinasyon tipi ile 12 adet yetişme ortamı oluşturulmuştur. Yetişme ortamlarında dikey katmanlar 7 doğal takson ve 10 egzotik taksonla oluşturulmuştur. Bu 12 yetişme ortamının toprak sıcaklığı üzerindeki etkileri araştırılmıştır. Sıcaklık (°C) ve elektiriksel iletkenlikleri (EC) sürekli olarak ölçülmüş ve kaydedilmiştir. Hazırlanan 12 yetişme ortamında çalışmanın amacına uygun olarak toprak sıcaklıkları ve EC değerleri besi ortamlarının yüzeyinden 5 cm derinlikten düzenli olarak ölçülmüştür. Elde edilen ölçüm verileri sayesinde, farklı besi ortamları ile farklı dikey katman sisteminde toprak sıcaklıklarının ve EC değerlerinin nasıl değiştiğinin tespit edilmesi hedeflenmektedir. Analiz sonuçlarına göre topraktaki mil karışım miktarı aylık ortalama sıcaklığı ve EC değerlerini anlamlı düzeyde etkilemektedir. Çalışmadan elde edilen sonuçlar, bitki sağlığını korumak ve bitkisel üretim verimliliğini optimum seviyeye çıkarmak için önemli bilgiler sunmaktadır. Karadeniz Teknik Üniversitesi perennial bahçesi örneğinde gerçekleştirilen bu çalışma, bölgesel toprak yapısına ve iklim özelliklerine uyumlu bitki yetiştirme stratejilerinin geliştirilmesine ve yeni bakış açılarının kazandırılmasına olanak sağlayaktır.
Etik Beyan
Bu çalışma, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Peyzaj Mimarlığı Anabilim Dalı’nda “FDK-2022-9985” nolu BAP projesi tarafından desteklenen “Doğal ve Egzotik Bazı Perennial Bitkilerin Trabzon Koşullarında Gelişimlerinin Belirlenmesi” isimli doktora tezinden üretilmiştir.
Destekleyen Kurum
Karadeniz Teknik Üniversitesi, Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi
Proje Numarası
FDK-2022-9985
Teşekkür
Bu çalışma Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir (Proje no: FDK-2022-9985).
Kaynakça
- Bunt, J. & Rovira, A. (1955). Mıcrobıologıcal Studıes Of
Some Subantarctıc Soıls. European Journal of
Soil Science, 6, 119-128.
- Cai, T. & Dang, Q. (2002). Effects of soil temperature on
parameters of a coupled photosynthesis-stomatal
conductance model. Tree Physiology, 22(12),
819-27.
- Corwin, D.L. & Lesch, S.M. (2005). Apparent soil
electrical conductivity measurements in
agriculture. Computers and Electronics in
Agriculture, 46(1-3), 11-43.
- Corwin, D. & Lesch, S. (2005). Apparent soil electrical
conductivity measurements in agriculture.
Computers and Electronics in Agriculture, 46, 11-
43.
- Çorbacı Ö.L., Ekren, E. & Bayram, F. (2023). Farklı
IBA (Indol-3-Bütirik Asit) dozlarının
Argyranthemum frutescens (L.) Sch.Bip. (Çesme
Papatyası) çeliklerinin büyüme ve gelismesi
üzerine etkilerinin belirlenmesi. Artvin Çoruh
Üniversitesi Orman Fakültesi Dergisi, 24(2), 108-
116.
- Çorbacı, Ö.L., Yazgan, M.E. & Özyavuz, M. (2017).
Kurakçıl Ppeyzaj (Xerıscape) ve Uygulamaları.
Karakayalar Matbaa, Uzunköprü-Edirne, 136p.
- Gavito, M., Curtis, P., Mikkelsen, T. & Jakobsen, I.
(2001). Interactive effects of soil temperature,
atmospheric carbon dioxide and soil N on root
development, biomass and nutrient uptake of
winter wheat during vegetative growth. Journal of
experimental botany, 52(362), 1913-23.
- Goet, G., Sonkar, I., Kumar, S., Hari Prasad, K.S. &
Ojha, C.S.P. (2024). Effect of Salinity on Crop
Growth and Soil Moisture Dynamics: A Study
with Root Water Uptake Model. Journal of
Hazardous, Toxic, and Radioactive Waste, 28(3),
04024009.
- Hartman, K. & Tringe, S. (2019). Interactions between
plants and soil shaping the root microbiome under
abiotic stress. Biochemical Journal, 476(19),
2705-2724.
- Huang, X., Muneer, M., Li, J., Hou, W., Ma, C., Jiao,
J., Cai, Y., Chen, X., Wu, L., & Zheng, C.
(2021). Integrated Nutrient Management
Significantly Improves Pomelo (Citrus grandis)
Root Growth and Nutrients Uptake under Acidic
Soil of Southern China. Agronomy, 11(6), 1231.
- Li, H., Lan, Z., Chen, H. & Huang, J.J. (2024). How do
non‐halophyte locust trees thrive in temperate
coastal regions: A study of salinity and multiple
environmental factors on water uptake patterns.
Hydrological Processes, 38(3), e15122.
- Meteoroloji Genel Müdürlüğü. (2023). Meteoroloji 11.
Bölge Müdürlüğü.
- Ni, J., Cheng, Y., Bordoloi, S., Bora, H., Wang, Q., Ng,
C. & Garg, A. (2018). Investigating plant root
effects on soil electrical conductivity: An
integrated field monitoring and statistical modelling approach. Earth Surface Processes and
Landforms, 44, 825-839.
- Parasuraman, P., Pattnaik, S. & Busi, S. (2019). New
and Future Developments in Microbial
Biotechnology and Bioengineering. Microbial
Biotechnology in Agro-Environmental
Sustainability. Chapter 18, Plant-Microbe
Interactions in Ecosystems Functioning and
Sustainability. 255-266, Elsevier.
- Rainer, T. & West, C. (2015). Planting in a Post-Wild
World: Designing Plant Communities for
Resilient Landscapes. Timber Press.
- Sabri, N., Zakaria, Z., Mohamad, S., Jaafar, B. & Hara,
H. (2018). Importance of Soil Temperature for the
Growth of Temperate Crops under a Tropical
Climate and Functional Role of Soil Microbial
Diversity. Microbes and Environments, 33, 144 -
150.
- Singh, B.P., Cowie, A.L. & Chan, K.Y. (Eds.). (2011).
Soil health and climate change. Berlin,
Heidelberg: Springer Berlin Heidelberg.
- Tingey, D.T., Lee, E.H., Waschmann, R., Johnson,
M.G. & Rygiewicz, P.T. (2006). Does soil CO2
efflux acclimatize to elevated temperature and
CO2 during long‐term treatment of Douglas‐fir
seedlings? New Phytologist, 170(1), 107-118.
- Tingey, D.T., Lee, E.H., Waschmann, R., Johnson,
M.G. & Rygiewicz, P.T. (2006). Does soil CO2
efflux acclimatize to elevated temperature and
CO2 during long‐term treatment of Douglas‐fir
seedlings? New Phytologist, 170(1), 107-118.
- Yıldırım, N., Pulatkan, M. & Ercan Oğuztürk, G.
(2022). GA₃ treatments on seed germination in
Rhodothamnus sessilifolius, an endangered
species in Turkey. Caldasia, 44(2), 241-247.
- Yüksek, T., Oğuztürk, T. & Çorbacı, Ö.L. (2020).
Solucan gübresi ve torf uygulamalarının farklı
saksı ortamında Plectranthus amboinicus (Lour.)
spreng bitkisinin gelişimine etkisi. Journal of
Anatolian Environmental and Animal Sciences,
5(4), 743-749.
- Zhou, J., Deng, Y., Shen, L., Wen, C., Yan, Q., Ning, D.,
Qin, Y., Xue, K., Wu, L., He, Z., Voordeckers,
J., Nostrand, J., Buzzard, V., Michaletz, S.,
Enquist, B., Weiser, M., Kaspari, M., Waide,
R., Yang, Y. & Brown, J. (2016). Temperature
mediates continental-scale diversity of microbes
in forest soils. Nature Communications, 7(1), 12083.
Examination of Changes in Soil Temperatures in Different Growing Environments, KTÜ Perennial Garden Example
Yıl 2024,
Cilt: 9 Sayı: 2, 269 - 275, 30.06.2024
Türker Oğuztürk
,
Cengiz Acar
Öz
This study aims to examine how soil temperatures in different growing environments change according to months and growing environments in the example of the perennial garden established at Karadeniz Technical University. In the study, 12 growing environments were created with 4 different vertical layer combination types in 50% stream shaft + 50% soil, 25% stream shaft + 75% soil and 100% soil nutrient media. Vertical layers in the habitats were created with 7 natural taxa and 10 exotic taxa. The effects of these 12 growing environments on soil temperature were investigated. Temperature (°C) and electrical conductivity (EC) were continuously measured and recorded. In accordance with the purpose of the study, soil temperatures and EC values were measured regularly from a depth of 5 cm from the surface of the growing media in 12 prepared growing media. Thanks to the measurement data obtained, it is aimed to determine how soil temperatures and EC values change in different nutrient media and different vertical layer systems. According to the analysis results, the amount of silt mixture in the soil significantly affects the monthly average temperature and EC values. The results obtained from the study provide important information to protect plant health and optimize plant production efficiency. This study, carried out on the example of the perennial garden of Karadeniz Technical University, will enable the development of plant growing strategies compatible with regional soil structure and climate characteristics and gaining new perspectives.
Proje Numarası
FDK-2022-9985
Kaynakça
- Bunt, J. & Rovira, A. (1955). Mıcrobıologıcal Studıes Of
Some Subantarctıc Soıls. European Journal of
Soil Science, 6, 119-128.
- Cai, T. & Dang, Q. (2002). Effects of soil temperature on
parameters of a coupled photosynthesis-stomatal
conductance model. Tree Physiology, 22(12),
819-27.
- Corwin, D.L. & Lesch, S.M. (2005). Apparent soil
electrical conductivity measurements in
agriculture. Computers and Electronics in
Agriculture, 46(1-3), 11-43.
- Corwin, D. & Lesch, S. (2005). Apparent soil electrical
conductivity measurements in agriculture.
Computers and Electronics in Agriculture, 46, 11-
43.
- Çorbacı Ö.L., Ekren, E. & Bayram, F. (2023). Farklı
IBA (Indol-3-Bütirik Asit) dozlarının
Argyranthemum frutescens (L.) Sch.Bip. (Çesme
Papatyası) çeliklerinin büyüme ve gelismesi
üzerine etkilerinin belirlenmesi. Artvin Çoruh
Üniversitesi Orman Fakültesi Dergisi, 24(2), 108-
116.
- Çorbacı, Ö.L., Yazgan, M.E. & Özyavuz, M. (2017).
Kurakçıl Ppeyzaj (Xerıscape) ve Uygulamaları.
Karakayalar Matbaa, Uzunköprü-Edirne, 136p.
- Gavito, M., Curtis, P., Mikkelsen, T. & Jakobsen, I.
(2001). Interactive effects of soil temperature,
atmospheric carbon dioxide and soil N on root
development, biomass and nutrient uptake of
winter wheat during vegetative growth. Journal of
experimental botany, 52(362), 1913-23.
- Goet, G., Sonkar, I., Kumar, S., Hari Prasad, K.S. &
Ojha, C.S.P. (2024). Effect of Salinity on Crop
Growth and Soil Moisture Dynamics: A Study
with Root Water Uptake Model. Journal of
Hazardous, Toxic, and Radioactive Waste, 28(3),
04024009.
- Hartman, K. & Tringe, S. (2019). Interactions between
plants and soil shaping the root microbiome under
abiotic stress. Biochemical Journal, 476(19),
2705-2724.
- Huang, X., Muneer, M., Li, J., Hou, W., Ma, C., Jiao,
J., Cai, Y., Chen, X., Wu, L., & Zheng, C.
(2021). Integrated Nutrient Management
Significantly Improves Pomelo (Citrus grandis)
Root Growth and Nutrients Uptake under Acidic
Soil of Southern China. Agronomy, 11(6), 1231.
- Li, H., Lan, Z., Chen, H. & Huang, J.J. (2024). How do
non‐halophyte locust trees thrive in temperate
coastal regions: A study of salinity and multiple
environmental factors on water uptake patterns.
Hydrological Processes, 38(3), e15122.
- Meteoroloji Genel Müdürlüğü. (2023). Meteoroloji 11.
Bölge Müdürlüğü.
- Ni, J., Cheng, Y., Bordoloi, S., Bora, H., Wang, Q., Ng,
C. & Garg, A. (2018). Investigating plant root
effects on soil electrical conductivity: An
integrated field monitoring and statistical modelling approach. Earth Surface Processes and
Landforms, 44, 825-839.
- Parasuraman, P., Pattnaik, S. & Busi, S. (2019). New
and Future Developments in Microbial
Biotechnology and Bioengineering. Microbial
Biotechnology in Agro-Environmental
Sustainability. Chapter 18, Plant-Microbe
Interactions in Ecosystems Functioning and
Sustainability. 255-266, Elsevier.
- Rainer, T. & West, C. (2015). Planting in a Post-Wild
World: Designing Plant Communities for
Resilient Landscapes. Timber Press.
- Sabri, N., Zakaria, Z., Mohamad, S., Jaafar, B. & Hara,
H. (2018). Importance of Soil Temperature for the
Growth of Temperate Crops under a Tropical
Climate and Functional Role of Soil Microbial
Diversity. Microbes and Environments, 33, 144 -
150.
- Singh, B.P., Cowie, A.L. & Chan, K.Y. (Eds.). (2011).
Soil health and climate change. Berlin,
Heidelberg: Springer Berlin Heidelberg.
- Tingey, D.T., Lee, E.H., Waschmann, R., Johnson,
M.G. & Rygiewicz, P.T. (2006). Does soil CO2
efflux acclimatize to elevated temperature and
CO2 during long‐term treatment of Douglas‐fir
seedlings? New Phytologist, 170(1), 107-118.
- Tingey, D.T., Lee, E.H., Waschmann, R., Johnson,
M.G. & Rygiewicz, P.T. (2006). Does soil CO2
efflux acclimatize to elevated temperature and
CO2 during long‐term treatment of Douglas‐fir
seedlings? New Phytologist, 170(1), 107-118.
- Yıldırım, N., Pulatkan, M. & Ercan Oğuztürk, G.
(2022). GA₃ treatments on seed germination in
Rhodothamnus sessilifolius, an endangered
species in Turkey. Caldasia, 44(2), 241-247.
- Yüksek, T., Oğuztürk, T. & Çorbacı, Ö.L. (2020).
Solucan gübresi ve torf uygulamalarının farklı
saksı ortamında Plectranthus amboinicus (Lour.)
spreng bitkisinin gelişimine etkisi. Journal of
Anatolian Environmental and Animal Sciences,
5(4), 743-749.
- Zhou, J., Deng, Y., Shen, L., Wen, C., Yan, Q., Ning, D.,
Qin, Y., Xue, K., Wu, L., He, Z., Voordeckers,
J., Nostrand, J., Buzzard, V., Michaletz, S.,
Enquist, B., Weiser, M., Kaspari, M., Waide,
R., Yang, Y. & Brown, J. (2016). Temperature
mediates continental-scale diversity of microbes
in forest soils. Nature Communications, 7(1), 12083.