Review Article
BibTex RIS Cite
Year 2024, Volume: 7 Issue: 2, 55 - 82, 30.12.2024
https://doi.org/10.51819/jaltc.2024.1595910

Abstract

References

  • Abd-Alrazaq, A. A., Alajlani, M., Ali, N., Denecke, K., Bewick, B. M., & Househ, M. (2021). Perceptions and Opinions of Patients About Mental Health Chatbots: Scoping Review. Journal of Medical Internet Research, 23(1), e17828. https://doi.org/10.2196/17828
  • Abd-Alrazaq, A. A., Safi, Z., Alajlani, M., Warren, J., Househ, M., & Denecke, K. (2020). Technical Metrics Used to Evaluate Health Care Chatbots: Scoping Review. Journal of Medical Internet Research, 22(6), e18301. https://doi.org/10.2196/18301
  • American Psychological Association (2018, April 19). APA Dictionary of Psychology. Retrieved October 1, 2024, from https://dictionary.apa.org/psychological-assessment
  • Andargoli, A. E., Ulapane, N., Nguyen, T. A., Shuakat, N., Zelcer, J., & Wickramasinghe, N. (2024). Intelligent decision support systems for dementia care: A scoping review. Artificial Intelligence in Medicine, 150, 102815. https://doi.org/10.1016/j.artmed.2024.102815
  • Balasubramanian, E. A. S. (2023). AI-Enabled Mental Health Assessment and Intervention: Bridging Gaps in Access and Quality of Care. Power System Technology, 47(3). https://doi.org/10.52783/pst.159
  • Barra, P., Mnasri, Z., & Greco, D. (2023). Multimodal emotion recognition from voice and video signals. In IEEE EUROCON 2023 - 20th International Conference on Smart Technologies (pp. 169-174). https://doi.org/10.1109/eurocon56442.2023.10198928
  • Barua, P. D., Vicnesh, J., Lih, O. S., Palmer, E. E., Yamakawa, T., Kobayashi, M., & Acharya, U. R. (2022). Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review. Cognitive Neurodynamics, 18(1), 1–22. https://doi.org/10.1007/s11571-022-09904-0
  • Bogoslov, I. A., Corman, S., & Lungu, A. E. (2024). Perspectives on Artificial Intelligence Adoption for European Union Elderly in the Context of Digital Skills Development. Sustainability, 16(11), 4579. https://doi.org/10.3390/su16114579
  • Booth, F., Potts, C., Bond, R., Mulvenna, M. D., Ennis, E., & Mctear, M. F. (2022). Review mining to discover user experience issues in mental health and wellbeing chatbots. In European Conference on Cognitive Ergonomics. https://doi.org/10.1145/3552327.3552357
  • Cacioppo, J. T., & Cacioppo, S. (2018). The growing problem of loneliness. The Lancet, 391(10119), 426. https://doi.org/10.1016/s0140-6736(18)30142-9
  • Cascella, M., Schiavo, D., Cuomo, A., Ottaiano, A., Perri, F., Patrone, R., Migliarelli, S., Bignami, E. G., Vittori, A., & Cutugno, F. (2023). Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives. Pain Research and Management, 2023, 1–13. https://doi.org/10.1155/2023/6018736
  • Chang, W., Šabanović, S., & Huber, L. (2013). Situated Analysis of Interactions between Cognitively Impaired Older Adults and the Therapeutic Robot PARO. In Lecture notes in computer science (pp. 371–380). https://doi.org/10.1007/978-3-319-02675-6_37
  • Chen, S., Moyle, W., Jones, C., & Petsky, H. (2020). A social robot intervention on depression, loneliness, and quality of life for Taiwanese older adults in long-term care. International Psychogeriatrics, 32(8), 981–991. https://doi.org/10.1017/s1041610220000459
  • Chen, Y., Clayton, E. W., Novak, L. L., Anders, S., & Malin, B. (2023). Human-Centered Design to Address Biases in Artificial Intelligence. Journal of Medical Internet Research, 25, e43251. https://doi.org/10.2196/43251
  • Chou, Y., Lin, C., Lee, S., Chien, Y. C., & Cheng, L. (2023). Potential Mobile Health Applications for Improving the Mental Health of the Elderly: A Systematic Review. Clinical Interventions in Aging, Volume 18, 1523–1534. https://doi.org/10.2147/cia.s410396
  • Cortellessa, G., De Benedictis, R., Fracasso, F., Orlandini, A., Umbrico, A., & Cesta, A. (2021). AI and robotics to help older adults: Revisiting projects in search of lessons learned. Paladyn Journal of Behavioral Robotics, 12(1), 356–378. https://doi.org/10.1515/pjbr-2021-0025
  • Czaja, S. J., & Ceruso, M. (2022). The Promise of Artificial Intelligence in Supporting an Aging Population. Journal of Cognitive Engineering and Decision Making, 16(4), 182–193. https://doi.org/10.1177/15553434221129914
  • D’Alfonso, S. (2020). AI in mental health. Current Opinion in Psychology, 36, 112–117. https://doi.org/10.1016/j.copsyc.2020.04.005
  • Darzi, P. (2023). Could Artificial Intelligence be a Therapeutic for Mental Issues? Science Insights, 43(5), 1111–1113. https://doi.org/10.15354/si.23.co132
  • Dashwood, M., Churchhouse, G., Young, M., & Kuruvilla, T. (2021). Artificial intelligence as an aid to diagnosing dementia: an overview. Progress in Neurology and Psychiatry, 25(3), 42–47. https://doi.org/10.1002/pnp.721
  • de Mello, F. L., & de Souza, S. A. (2019). Psychotherapy and Artificial Intelligence: A Proposal for Alignment. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00263
  • Ding, Z., Lee, T., & Chan, A. S. (2022). Digital Cognitive Biomarker for Mild Cognitive Impairments and Dementia: A Systematic Review. Journal of Clinical Medicine, 11(14), 4191. https://doi.org/10.3390/jcm11144191
  • Favaro, A., Motley, S., Samus, Q. M., Butala, A., Dehak, N., Oh, E. S., & Moro‐Velazquez, L. (2022). Artificial Intelligence Tools to Evaluate Language and Speech Patterns in Alzheimer’s Disease. Alzheimer S & Dementia, 18(S2). https://doi.org/10.1002/alz.064913
  • Fear, K., & Gleber, C. (2023). Shaping the Future of Older Adult Care: ChatGPT, Advanced AI, and the Transformation of Clinical Practice. JMIR Aging, 6, e51776. https://doi.org/10.2196/51776
  • Fisher, A. J. (2015). Toward a dynamic model of psychological assessment: Implications for personalized care. Journal of Consulting and Clinical Psychology, 83(4), 825–836. https://doi.org/10.1037/ccp0000026
  • Giannouli, V. (2023). Financial capacity assessments and AI: A Greek drama for geriatric psychiatry? International Journal of Geriatric Psychiatry, 38(9). https://doi.org/10.1002/gps.6008
  • Graham, S. A., Lee, E. E., Jeste, D. V., Van Patten, R., Twamley, E. W., Nebeker, C., Yamada, Y., Kim, H., & Depp, C. A. (2019). Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry Research, 284, 112732. https://doi.org/10.1016/j.psychres.2019.112732
  • Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H., & Jeste, D. V. (2019). Artificial Intelligence for Mental Health and Mental Illnesses: an Overview. Current Psychiatry Reports, 21(11). https://doi.org/10.1007/s11920-019-1094-0
  • Grimm, B., Talbot, B., & Larsen, L. (2022). PHQ-V/GAD-V: Assessments to Identify Signals of Depression and Anxiety from Patient Video Responses. Applied Sciences, 12(18), 9150. https://doi.org/10.3390/app12189150
  • Gual-Montolio, P., Jaén, I., Martínez-Borba, V., Castilla, D., & Suso-Ribera, C. (2022). Using Artificial Intelligence to Enhance Ongoing Psychological Interventions for Emotional Problems in Real- or Close to Real-Time: A Systematic Review. International Journal of Environmental Research and Public Health, 19(13), 7737. https://doi.org/10.3390/ijerph19137737
  • Guzzi, P. H., & Veltri, P. (2023). An Artificial Intelligence-Based Framework for Supporting Management of Patients Affected by Dementia. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 3891–3892. https://doi.org/10.1109/bibm58861.2023.10385707
  • Hemalatha, P., Princes, C. S., & Kumar, K. P. (2024). Enhancing Mental Health Treatment Through Virtual Reality and Artificial Intelligence: A Review and Future Directions. International Journal for Multidisciplinary Research, 6(4). https://doi.org/10.36948/ijfmr.2024.v06i04.24269
  • Hickey, B. A., Chalmers, T., Newton, P., Lin, C., Sibbritt, D., McLachlan, C. S., Clifton-Bligh, R., Morley, J., & Lal, S. (2021). Smart Devices and Wearable Technologies to Detect and Monitor Mental Health Conditions and Stress: A Systematic Review. Sensors, 21(10), 3461. https://doi.org/10.3390/s21103461
  • Ho, C. W., & Malpani, R. (2022). Scaling up the Research Ethics Framework for Healthcare Machine Learning as Global Health Ethics and Governance. The American Journal of Bioethics, 22(5), 36–38. https://doi.org/10.1080/15265161.2022.2055209
  • Holt-Lunstad, J., Layton, R., Barton, B., & Smith, T. B. (2020). Science into practice: effective solutions for social isolation and loneliness. Generations Journal, 44(3), 1–10.
  • Huang, X., Zhang, Z., Guo, F., Wang, X., Chi, K., & Wu, K. (2024). Research on Older Adults’ Interaction with E-Health Interface Based on Explainable Artificial Intelligence. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2402.07915
  • Iloanusi, N., & Chun, S. A. (2024). AI Impact on Health Equity for Marginalized, Racial, and Ethnic Minorities. Digital Government Research, 841–848. https://doi.org/10.1145/3657054.3657152
  • Irshad, S., Azmi, S., & Begum, N. (2022). Uses of Artificial Intelligence in Psychology. Journal of Health and Medical Sciences, 5(4). https://doi.org/10.31014/aior.1994.05.04.242
  • Kalafatis, C., Modarres, M. H., Marefat, H., Khanbagi, M., Karimi, H., Vahabi, Z., & Razavi, S. K. (2019). P4-207: Employing Artificial Intelligence in the Development of a Self-Administered, Computerised Cognitive Assessment for the Assessment of Neurodegeneration. Alzheimer S & Dementia, 15(7S_Part_26). https://doi.org/10.1016/j.jalz.2019.06.3870
  • Kale, M. B., Wankhede, N. L., Pawar, R. S., Ballal, S., Kumawat, R., Goswami, M., Khalid, M., Taksande, B. G., Upaganlawar, A. B., Umekar, M. J., Kopalli, S. R., & Koppula, S. (2024). AI-Driven Innovations in Alzheimer’s Disease: Integrating Early Diagnosis, Personalized Treatment, and Prognostic Modelling. Ageing Research Reviews, 102497. https://doi.org/10.1016/j.arr.2024.102497
  • Khoo, E., Small, R., Cheng, W., Hatchard, T., Glynn, B., Rice, D. B., Skidmore, B., Kenny, S., Hutton, B., & Poulin, P. A. (2019). Comparative evaluation of group-based mindfulness-based stress reduction and cognitive behavioural therapy for the treatment and management of chronic pain: A systematic review and network meta-analysis. Evidence-Based Mental Health, 22(1), 26–35. https://doi.org/10.1136/ebmental-2018-300062
  • Koc, M. (2023). Artificial intelligence in geriatrics. The Turkish Journal of Geriatrics, 26(4), 352–360. https://doi.org/10.29400/tjgeri.2023.362
  • Kwon, J., Ha, J., Kim, D., Choi, J. W., & Kim, L. (2021). Emotion Recognition Using a Glasses-Type Wearable Device via Multi-Channel Facial Responses. IEEE Access, 9, 146392–146403. https://doi.org/10.1109/access.2021.3121543
  • Lee, E., Karim, H., Iaboni, A., & Sekhon, H. (2022). Artificial Intelligence in Geriatric Mental Health: Recent Advances in Clinical Research. American Journal of Geriatric Psychiatry, 30(4), S15–S16. https://doi.org/10.1016/j.jagp.2022.01.275
  • Leong, F. T. L., Lui, P. P., & Kalibatseva, Z. (2019). Multicultural Issues in Clinical Psychological Assessment. In Cambridge University Press eBooks (pp. 25–37). https://doi.org/10.1017/9781108235433.003
  • Li, R., Wang, X., Lawler, K., Garg, S., Bai, Q., & Alty, J. (2022). Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions. Journal of Biomedical Informatics, 127, 104030. https://doi.org/10.1016/j.jbi.2022.104030
  • Li, Y., Buys, N., Ferguson, S., Li, Z., Shi, Y., Li, L., & Sun, J. (2023). The evaluation of cognitive-behavioral therapy-based intervention on type 2 diabetes patients with comorbid metabolic syndrome: a randomized controlled trial. Diabetology & Metabolic Syndrome, 15(1). https://doi.org/10.1186/s13098-023-01100-2
  • London, A. J., Razin, Y. S., Borenstein, J., Eslami, M., Perkins, R., & Robinette, P. (2023). Ethical Issues in Near-Future Socially Supportive Smart Assistants for Older Adults. IEEE Transactions on Technology and Society, 4(4), 291–301. https://doi.org/10.1109/tts.2023.3237124
  • Luxton, D. D. (2014). Artificial intelligence in psychological practice: Current and future applications and implications. Professional Psychology Research and Practice, 45(5), 332–339. https://doi.org/10.1037/a0034559
  • Marais, C., Song, Y., Ferreira, R., Aounti, S., Duflos, C., Baptista, G., & Pers, Y. (2022). Evaluation of mindfulness based stress reduction in symptomatic knee or hip osteoarthritis patients: a pilot randomized controlled trial. BMC Rheumatology, 6(1). https://doi.org/10.1186/s41927-022-00277-9
  • Martinez-Martin, N. (2021). Minding the AI: Ethical Challenges and Practice for AI Mental Health Care Tools. In Advances in neuroethics (pp. 111–125). https://doi.org/10.1007/978-3-030-74188-4_8
  • Meyer, G. J., Finn, S. E., Eyde, L. D., Kay, G. G., Moreland, K. L., Dies, R. R., Eisman, E. J., Kubiszyn, T. W., & Reed, G. M. (2001). Psychological testing and psychological assessment: A review of evidence and issues. American Psychologist, 56(2), 128–165. https://doi.org/10.1037/0003-066x.56.2.128
  • Mhlanga, D. (2024). Artificial Intelligence in Elderly Care: Navigating Ethical and Responsible AI Adoption for Seniors. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4675564
  • Mittal, A., Dumka, L., & Mohan, L. (2023). A Comprehensive Review on the Use of Artificial Intelligence in Mental Health Care. 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), 15, 1–5. https://doi.org/10.1109/icccnt56998.2023.10308255
  • Modarres, M. H., Khazaie, V. R., Ghorbani, M., Ghoreyshi, A. M., AkhavanPour, A., Ebrahimpour, R., Vahabi, Z., Kalafatis, C., & Razavi, S. K. (2021). Early diagnosis of Alzheimer’s dementia with the artificial intelligence‐based Integrated Cognitive Assessment. Alzheimer S & Dementia, 16(S6). https://doi.org/10.1002/alz.042863
  • Mody, V., & Mody, V. (2019). Mental Health Monitoring System using Artificial Intelligence: A Review. 2022 IEEE 7th International Conference for Convergence in Technology (I2CT), 1–6. https://doi.org/10.1109/i2ct45611.2019.9033652
  • Moskowitz, D. S., & Young, S. N. (2006). Ecological momentary assessment: what it is and why it is a method of the future in clinical psychopharmacology. Journal of Psychiatry & Neuroscience, 31(1), 13–20.
  • Naglieri, J. A., & Graham, J. R. (2012). Current Status and Future Directions of Assessment Psychology. Handbook of Psychology, Second Edition. https://doi.org/10.1002/9781118133880.hop210025
  • Nandanwar, A., & Dutt, V. (2023). Assessing stress, anxiety, and depression with social robots via conversational AI. In Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments. https://doi.org/10.1145/3594806.3596589
  • Nasir, S., Khan, R. A., & Bai, S. (2024). Ethical Framework for Harnessing the Power of AI in Healthcare and Beyond. IEEE Access, 12, 31014–31035. https://doi.org/10.1109/access.2024.3369912
  • Nelson, B., McGorry, P. D., Wichers, M., Wigman, J. T. W., & Hartmann, J. A. (2017). Moving From Static to Dynamic Models of the Onset of Mental Disorder. JAMA Psychiatry, 74(5), 528. https://doi.org/10.1001/jamapsychiatry.2017.0001
  • Olawade, D. B., Wada, O. Z., Odetayo, A., David-Olawade, A. C., Asaolu, F., & Eberhardt, J. (2024). Enhancing mental health with Artificial Intelligence: Current trends and future prospects. Journal of Medicine Surgery and Public Health, 3, 100099. https://doi.org/10.1016/j.glmedi.2024.100099
  • Park, J., Choi, W., Jeong, T., & Seo, J. (2023). Digital twins and land management in South Korea. Land Use Policy, 124, 106442. https://doi.org/10.1016/j.landusepol.2022.106442
  • Pollack, M. E. (2005). Intelligent Technology for an Aging Population: The Use of AI to Assist Elders with Cognitive Impairment. AI Magazine, 26(2), 9–24. https://doi.org/10.1609/aimag.v26i2.1810
  • Rai, L., Boyle, R., Brosnan, L., Rice, H., Farina, F., Tarnanas, I., & Whelan, R. (2020). Digital Biomarkers Based Individualized Prognosis for People at Risk of Dementia: the AltoidaML Multi-site External Validation Study. Advances in Experimental Medicine and Biology, 157–171. https://doi.org/10.1007/978-3-030-32622-7_14
  • Ranade, A. G., Patel, M., & Magare, A. (2018). Emotion model for artificial intelligence and their applications. In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). https://doi.org/10.1109/pdgc.2018.8745840
  • Randall, N., Bennett, C. C., Šabanović, S., Nagata, S., Eldridge, L., Collins, S., & Piatt, J. A. (2019). More than just friends: in-home use and design recommendations for sensing socially assistive robots (SARs) by older adults with depression. Paladyn Journal of Behavioral Robotics, 10(1), 237–255. https://doi.org/10.1515/pjbr-2019-0020
  • Ray, A., Bhardwaj, A., Malik, Y. K., Singh, S., & Gupta, R. (2022). Artificial intelligence and Psychiatry: An overview. Asian Journal of Psychiatry, 70, 103021. https://doi.org/10.1016/j.ajp.2022.103021
  • Renn, B. N., Schurr, M., Zaslavsky, O., & Pratap, A. (2021). Artificial Intelligence: An Interprofessional Perspective on Implications for Geriatric Mental Health Research and Care. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.734909
  • Riboni, F. V., Comazzi, B., Bercovitz, K., Castelnuovo, G., Molinari, E., & Pagnini, F. (2020). Technologically-enhanced psychological interventions for older adults: a scoping review. BMC Geriatrics, 20(1). https://doi.org/10.1186/s12877-020-01594-9
  • Saadati, S. A., & Saadati, S. M. (2023). The role of chatbots in Mental Health Interventions: User experiences. AI And Tech in Behavioral and Social Sciences, 1(2), 19–25. https://doi.org/10.61838/kman.aitech.1.2.4
  • Sapci, A. H., & Sapci, H. A. (2019). Innovative Assisted Living Tools, Remote Monitoring Technologies, Artificial Intelligence-Driven Solutions, and Robotic Systems for Aging Societies: Systematic Review. JMIR Aging, 2(2), e15429. https://doi.org/10.2196/15429
  • Savoia, S. E., Stern, E. H., Salardini, A., & Dorai, C. (2021). Usability and functional validation of artificial intelligence‐enabled technology services in dementia care using a controlled trial in clinical practice. Alzheimer S & Dementia, 17(S7). https://doi.org/10.1002/alz.056547
  • Sharif, F., Masoudi, M., Ghanizadeh, A., Dabbaghmanesh, M. H., Ghaem, H., & Masoumi, S. (2014). The effect of cognitive-behavioral group therapy on depressive symptoms in people with type 2 diabetes: A randomized controlled clinical trial. Iran J Nurs Midwifery Res, 19(5), 529–536.
  • Shimada, K. (2023). The Role of Artificial Intelligence in Mental Health: A Review. Science Insights, 43(5), 1119–1127. https://doi.org/10.15354/si.23.re820
  • Shiwani, T., Relton, S., Evans, R., Kale, A., Heaven, A., Clegg, A., Abuzour, A., Alderman, J., Anand, A., Bhanu, C., Bunn, J., Collins, J., Cutillo, L., Hall, M., Keevil, V., Mitchell, L., Ogliari, G., Penfold, R., Van Oppen, J., . . . Todd, O. (2023). New Horizons in artificial intelligence in the healthcare of older people. Age And Ageing, 52(12). https://doi.org/10.1093/ageing/afad219
  • Solanki, P., Grundy, J., & Hussain, W. (2022). Operationalising ethics in artificial intelligence for healthcare: a framework for AI developers. AI And Ethics, 3(1), 223–240. https://doi.org/10.1007/s43681-022-00195-z
  • Spitzer, M., Dattner, I., & Zilcha-Mano, S. (2023). Digital twins and the future of precision mental health. Frontiers in Psychiatry, 14. https://doi.org/10.3389/fpsyt.2023.1082598
  • Stuck, R. E., & Walker, B. N. (2018). Human-Robot trust: Understanding user perceptions. In Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (pp. 325–326). Association for Computing Machinery. https://doi.org/10.1145/3173386.3176920
  • Taylor, H. O. (2020). Social Isolation’s Influence on Loneliness Among Older Adults. Clinical Social Work Journal, 48(1), 140–151. https://doi.org/10.1007/s10615-019-00737-9
  • Timmons, A. C., Duong, J. B., Fiallo, N. S., Lee, T., Vo, H. P. Q., Ahle, M. W., Comer, J. S., Brewer, L. C., Frazier, S. L., & Chaspari, T. (2022). A Call to Action on Assessing and Mitigating Bias in Artificial Intelligence Applications for Mental Health. Perspectives on Psychological Science, 18(5), 1062–1096. https://doi.org/10.1177/17456916221134490
  • Tsoi, K. K. F., Jia, P., Dowling, N. M., Titiner, J. R., Wagner, M., Capuano, A. W., & Donohue, M. C. (2022). Applications of artificial intelligence in dementia research. Cambridge Prisms Precision Medicine, 1. https://doi.org/10.1017/pcm.2022.10
  • Vallée, A. (2023). Digital twin for healthcare systems. Frontiers in Digital Health, 5. https://doi.org/10.3389/fdgth.2023.1253050
  • Wei, D. H., Hernandez, B., & Burdick, D. (2023). Artificial intelligence in mental health for the aging population: a scoping review. Innovation in Aging, 7(Supplement_1), 805. https://doi.org/10.1093/geroni/igad104.2598
  • Weiner, I. B. (2003). The Assessment Process. Handbook of Psychology, 1–25. https://doi.org/10.1002/0471264385.wei1001
  • Wright, A. G. C., & Hopwood, C. J. (2016). Advancing the Assessment of Dynamic Psychological Processes. Assessment, 23(4), 399–403. https://doi.org/10.1177/1073191116654760
  • Yan, Z., Wu, Y., Zhang, Y., & Chen, X. ’. (2022). EmoGlass: an End-to-End AI-Enabled Wearable Platform for Enhancing Self-Awareness of Emotional Health. CHI Conference on Human Factors in Computing Systems, 1–19. https://doi.org/10.1145/3491102.3501925
  • Yin, L., & Bickmore, T. (2018). Culturally-aware healthcare systems. In Intelligent Systems Reference Library (pp. 97–110). https://doi.org/10.1007/978-3-319-67024-9_5
  • Youngstrom, E. A., Van Meter, A., Frazier, T. W., Hunsley, J., Prinstein, M. J., Ong, M., & Youngstrom, J. K. (2017). Evidence‐based assessment as an integrative model for applying psychological science to guide the voyage of treatment. Clinical Psychology Science and Practice, 24(4), 331–363. https://doi.org/10.1111/cpsp.12207
  • Yousefi, Z., Saadati, N., & Saadati, S. A. (2023). AI in Elderly Care: Understanding the Implications for Independence and Social Interaction. AI And Tech in Behavioral and Social Sciences, 1(4), 26–32. https://doi.org/10.61838/kman.aitech.1.4.5
  • Zhang, H., Xu, Y., & Xu, Y. (2024). Association of diastolic and systolic blood pressure with depression: a cross-sectional study from NHANES 2005-2018. Frontiers in Psychiatry, 15. https://doi.org/10.3389/fpsyt.2024.1433990
  • Zhang, Y., Zheng, X. T., Zhang, X., Pan, J., & Thean, A. V. (2024). Hybrid Integration of Wearable Devices for Physiological Monitoring. Chemical Reviews, 124(18), 10386–10434. https://doi.org/10.1021/acs.chemrev.3c00471

Harnessing Artificial Intelligence (AI) for Psychological Assessment and Treatment in Older Adults

Year 2024, Volume: 7 Issue: 2, 55 - 82, 30.12.2024
https://doi.org/10.51819/jaltc.2024.1595910

Abstract

This review article examines the use of artificial intelligence (AI) in psychological health and its contribution to enhancing psychological care for older adults. All over the world, where life expectancy is continually rising, older individuals face major and unique psychological issues, including anxiety, depression, and dementia. AI provides professionals with useful instruments to recognize psychological disorders at the initial stage and create an individual treatment approach. Technologies such as machine learning, natural language processing, and wearable devices can help identify early signs of psychological symptoms, facilitating more accurate diagnoses. In addition, other AI-enabled solutions, including chatbots, virtual assistants, and socially assistive robots, provide better and more timely interventions for older adults with issues including loneliness, cognitive decline, and limited mobility that would otherwise bar them from accessing conventional care. However, some problems can be associated with using artificial intelligence, such as ethical issues like privacy, fairness, and openness. Therefore, new technologies must be designed to address the needs of older adults, be user-friendly, and uphold individuals' dignity. Collaboration in this area is also important because healthcare providers, researchers, and AI developers must work together to ensure that AI technologies are developed to complement human care. Artificial intelligence has the potential to promote psychological well-being and overall life satisfaction by addressing these problems.

References

  • Abd-Alrazaq, A. A., Alajlani, M., Ali, N., Denecke, K., Bewick, B. M., & Househ, M. (2021). Perceptions and Opinions of Patients About Mental Health Chatbots: Scoping Review. Journal of Medical Internet Research, 23(1), e17828. https://doi.org/10.2196/17828
  • Abd-Alrazaq, A. A., Safi, Z., Alajlani, M., Warren, J., Househ, M., & Denecke, K. (2020). Technical Metrics Used to Evaluate Health Care Chatbots: Scoping Review. Journal of Medical Internet Research, 22(6), e18301. https://doi.org/10.2196/18301
  • American Psychological Association (2018, April 19). APA Dictionary of Psychology. Retrieved October 1, 2024, from https://dictionary.apa.org/psychological-assessment
  • Andargoli, A. E., Ulapane, N., Nguyen, T. A., Shuakat, N., Zelcer, J., & Wickramasinghe, N. (2024). Intelligent decision support systems for dementia care: A scoping review. Artificial Intelligence in Medicine, 150, 102815. https://doi.org/10.1016/j.artmed.2024.102815
  • Balasubramanian, E. A. S. (2023). AI-Enabled Mental Health Assessment and Intervention: Bridging Gaps in Access and Quality of Care. Power System Technology, 47(3). https://doi.org/10.52783/pst.159
  • Barra, P., Mnasri, Z., & Greco, D. (2023). Multimodal emotion recognition from voice and video signals. In IEEE EUROCON 2023 - 20th International Conference on Smart Technologies (pp. 169-174). https://doi.org/10.1109/eurocon56442.2023.10198928
  • Barua, P. D., Vicnesh, J., Lih, O. S., Palmer, E. E., Yamakawa, T., Kobayashi, M., & Acharya, U. R. (2022). Artificial intelligence assisted tools for the detection of anxiety and depression leading to suicidal ideation in adolescents: a review. Cognitive Neurodynamics, 18(1), 1–22. https://doi.org/10.1007/s11571-022-09904-0
  • Bogoslov, I. A., Corman, S., & Lungu, A. E. (2024). Perspectives on Artificial Intelligence Adoption for European Union Elderly in the Context of Digital Skills Development. Sustainability, 16(11), 4579. https://doi.org/10.3390/su16114579
  • Booth, F., Potts, C., Bond, R., Mulvenna, M. D., Ennis, E., & Mctear, M. F. (2022). Review mining to discover user experience issues in mental health and wellbeing chatbots. In European Conference on Cognitive Ergonomics. https://doi.org/10.1145/3552327.3552357
  • Cacioppo, J. T., & Cacioppo, S. (2018). The growing problem of loneliness. The Lancet, 391(10119), 426. https://doi.org/10.1016/s0140-6736(18)30142-9
  • Cascella, M., Schiavo, D., Cuomo, A., Ottaiano, A., Perri, F., Patrone, R., Migliarelli, S., Bignami, E. G., Vittori, A., & Cutugno, F. (2023). Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives. Pain Research and Management, 2023, 1–13. https://doi.org/10.1155/2023/6018736
  • Chang, W., Šabanović, S., & Huber, L. (2013). Situated Analysis of Interactions between Cognitively Impaired Older Adults and the Therapeutic Robot PARO. In Lecture notes in computer science (pp. 371–380). https://doi.org/10.1007/978-3-319-02675-6_37
  • Chen, S., Moyle, W., Jones, C., & Petsky, H. (2020). A social robot intervention on depression, loneliness, and quality of life for Taiwanese older adults in long-term care. International Psychogeriatrics, 32(8), 981–991. https://doi.org/10.1017/s1041610220000459
  • Chen, Y., Clayton, E. W., Novak, L. L., Anders, S., & Malin, B. (2023). Human-Centered Design to Address Biases in Artificial Intelligence. Journal of Medical Internet Research, 25, e43251. https://doi.org/10.2196/43251
  • Chou, Y., Lin, C., Lee, S., Chien, Y. C., & Cheng, L. (2023). Potential Mobile Health Applications for Improving the Mental Health of the Elderly: A Systematic Review. Clinical Interventions in Aging, Volume 18, 1523–1534. https://doi.org/10.2147/cia.s410396
  • Cortellessa, G., De Benedictis, R., Fracasso, F., Orlandini, A., Umbrico, A., & Cesta, A. (2021). AI and robotics to help older adults: Revisiting projects in search of lessons learned. Paladyn Journal of Behavioral Robotics, 12(1), 356–378. https://doi.org/10.1515/pjbr-2021-0025
  • Czaja, S. J., & Ceruso, M. (2022). The Promise of Artificial Intelligence in Supporting an Aging Population. Journal of Cognitive Engineering and Decision Making, 16(4), 182–193. https://doi.org/10.1177/15553434221129914
  • D’Alfonso, S. (2020). AI in mental health. Current Opinion in Psychology, 36, 112–117. https://doi.org/10.1016/j.copsyc.2020.04.005
  • Darzi, P. (2023). Could Artificial Intelligence be a Therapeutic for Mental Issues? Science Insights, 43(5), 1111–1113. https://doi.org/10.15354/si.23.co132
  • Dashwood, M., Churchhouse, G., Young, M., & Kuruvilla, T. (2021). Artificial intelligence as an aid to diagnosing dementia: an overview. Progress in Neurology and Psychiatry, 25(3), 42–47. https://doi.org/10.1002/pnp.721
  • de Mello, F. L., & de Souza, S. A. (2019). Psychotherapy and Artificial Intelligence: A Proposal for Alignment. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00263
  • Ding, Z., Lee, T., & Chan, A. S. (2022). Digital Cognitive Biomarker for Mild Cognitive Impairments and Dementia: A Systematic Review. Journal of Clinical Medicine, 11(14), 4191. https://doi.org/10.3390/jcm11144191
  • Favaro, A., Motley, S., Samus, Q. M., Butala, A., Dehak, N., Oh, E. S., & Moro‐Velazquez, L. (2022). Artificial Intelligence Tools to Evaluate Language and Speech Patterns in Alzheimer’s Disease. Alzheimer S & Dementia, 18(S2). https://doi.org/10.1002/alz.064913
  • Fear, K., & Gleber, C. (2023). Shaping the Future of Older Adult Care: ChatGPT, Advanced AI, and the Transformation of Clinical Practice. JMIR Aging, 6, e51776. https://doi.org/10.2196/51776
  • Fisher, A. J. (2015). Toward a dynamic model of psychological assessment: Implications for personalized care. Journal of Consulting and Clinical Psychology, 83(4), 825–836. https://doi.org/10.1037/ccp0000026
  • Giannouli, V. (2023). Financial capacity assessments and AI: A Greek drama for geriatric psychiatry? International Journal of Geriatric Psychiatry, 38(9). https://doi.org/10.1002/gps.6008
  • Graham, S. A., Lee, E. E., Jeste, D. V., Van Patten, R., Twamley, E. W., Nebeker, C., Yamada, Y., Kim, H., & Depp, C. A. (2019). Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry Research, 284, 112732. https://doi.org/10.1016/j.psychres.2019.112732
  • Graham, S., Depp, C., Lee, E. E., Nebeker, C., Tu, X., Kim, H., & Jeste, D. V. (2019). Artificial Intelligence for Mental Health and Mental Illnesses: an Overview. Current Psychiatry Reports, 21(11). https://doi.org/10.1007/s11920-019-1094-0
  • Grimm, B., Talbot, B., & Larsen, L. (2022). PHQ-V/GAD-V: Assessments to Identify Signals of Depression and Anxiety from Patient Video Responses. Applied Sciences, 12(18), 9150. https://doi.org/10.3390/app12189150
  • Gual-Montolio, P., Jaén, I., Martínez-Borba, V., Castilla, D., & Suso-Ribera, C. (2022). Using Artificial Intelligence to Enhance Ongoing Psychological Interventions for Emotional Problems in Real- or Close to Real-Time: A Systematic Review. International Journal of Environmental Research and Public Health, 19(13), 7737. https://doi.org/10.3390/ijerph19137737
  • Guzzi, P. H., & Veltri, P. (2023). An Artificial Intelligence-Based Framework for Supporting Management of Patients Affected by Dementia. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 3891–3892. https://doi.org/10.1109/bibm58861.2023.10385707
  • Hemalatha, P., Princes, C. S., & Kumar, K. P. (2024). Enhancing Mental Health Treatment Through Virtual Reality and Artificial Intelligence: A Review and Future Directions. International Journal for Multidisciplinary Research, 6(4). https://doi.org/10.36948/ijfmr.2024.v06i04.24269
  • Hickey, B. A., Chalmers, T., Newton, P., Lin, C., Sibbritt, D., McLachlan, C. S., Clifton-Bligh, R., Morley, J., & Lal, S. (2021). Smart Devices and Wearable Technologies to Detect and Monitor Mental Health Conditions and Stress: A Systematic Review. Sensors, 21(10), 3461. https://doi.org/10.3390/s21103461
  • Ho, C. W., & Malpani, R. (2022). Scaling up the Research Ethics Framework for Healthcare Machine Learning as Global Health Ethics and Governance. The American Journal of Bioethics, 22(5), 36–38. https://doi.org/10.1080/15265161.2022.2055209
  • Holt-Lunstad, J., Layton, R., Barton, B., & Smith, T. B. (2020). Science into practice: effective solutions for social isolation and loneliness. Generations Journal, 44(3), 1–10.
  • Huang, X., Zhang, Z., Guo, F., Wang, X., Chi, K., & Wu, K. (2024). Research on Older Adults’ Interaction with E-Health Interface Based on Explainable Artificial Intelligence. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2402.07915
  • Iloanusi, N., & Chun, S. A. (2024). AI Impact on Health Equity for Marginalized, Racial, and Ethnic Minorities. Digital Government Research, 841–848. https://doi.org/10.1145/3657054.3657152
  • Irshad, S., Azmi, S., & Begum, N. (2022). Uses of Artificial Intelligence in Psychology. Journal of Health and Medical Sciences, 5(4). https://doi.org/10.31014/aior.1994.05.04.242
  • Kalafatis, C., Modarres, M. H., Marefat, H., Khanbagi, M., Karimi, H., Vahabi, Z., & Razavi, S. K. (2019). P4-207: Employing Artificial Intelligence in the Development of a Self-Administered, Computerised Cognitive Assessment for the Assessment of Neurodegeneration. Alzheimer S & Dementia, 15(7S_Part_26). https://doi.org/10.1016/j.jalz.2019.06.3870
  • Kale, M. B., Wankhede, N. L., Pawar, R. S., Ballal, S., Kumawat, R., Goswami, M., Khalid, M., Taksande, B. G., Upaganlawar, A. B., Umekar, M. J., Kopalli, S. R., & Koppula, S. (2024). AI-Driven Innovations in Alzheimer’s Disease: Integrating Early Diagnosis, Personalized Treatment, and Prognostic Modelling. Ageing Research Reviews, 102497. https://doi.org/10.1016/j.arr.2024.102497
  • Khoo, E., Small, R., Cheng, W., Hatchard, T., Glynn, B., Rice, D. B., Skidmore, B., Kenny, S., Hutton, B., & Poulin, P. A. (2019). Comparative evaluation of group-based mindfulness-based stress reduction and cognitive behavioural therapy for the treatment and management of chronic pain: A systematic review and network meta-analysis. Evidence-Based Mental Health, 22(1), 26–35. https://doi.org/10.1136/ebmental-2018-300062
  • Koc, M. (2023). Artificial intelligence in geriatrics. The Turkish Journal of Geriatrics, 26(4), 352–360. https://doi.org/10.29400/tjgeri.2023.362
  • Kwon, J., Ha, J., Kim, D., Choi, J. W., & Kim, L. (2021). Emotion Recognition Using a Glasses-Type Wearable Device via Multi-Channel Facial Responses. IEEE Access, 9, 146392–146403. https://doi.org/10.1109/access.2021.3121543
  • Lee, E., Karim, H., Iaboni, A., & Sekhon, H. (2022). Artificial Intelligence in Geriatric Mental Health: Recent Advances in Clinical Research. American Journal of Geriatric Psychiatry, 30(4), S15–S16. https://doi.org/10.1016/j.jagp.2022.01.275
  • Leong, F. T. L., Lui, P. P., & Kalibatseva, Z. (2019). Multicultural Issues in Clinical Psychological Assessment. In Cambridge University Press eBooks (pp. 25–37). https://doi.org/10.1017/9781108235433.003
  • Li, R., Wang, X., Lawler, K., Garg, S., Bai, Q., & Alty, J. (2022). Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions. Journal of Biomedical Informatics, 127, 104030. https://doi.org/10.1016/j.jbi.2022.104030
  • Li, Y., Buys, N., Ferguson, S., Li, Z., Shi, Y., Li, L., & Sun, J. (2023). The evaluation of cognitive-behavioral therapy-based intervention on type 2 diabetes patients with comorbid metabolic syndrome: a randomized controlled trial. Diabetology & Metabolic Syndrome, 15(1). https://doi.org/10.1186/s13098-023-01100-2
  • London, A. J., Razin, Y. S., Borenstein, J., Eslami, M., Perkins, R., & Robinette, P. (2023). Ethical Issues in Near-Future Socially Supportive Smart Assistants for Older Adults. IEEE Transactions on Technology and Society, 4(4), 291–301. https://doi.org/10.1109/tts.2023.3237124
  • Luxton, D. D. (2014). Artificial intelligence in psychological practice: Current and future applications and implications. Professional Psychology Research and Practice, 45(5), 332–339. https://doi.org/10.1037/a0034559
  • Marais, C., Song, Y., Ferreira, R., Aounti, S., Duflos, C., Baptista, G., & Pers, Y. (2022). Evaluation of mindfulness based stress reduction in symptomatic knee or hip osteoarthritis patients: a pilot randomized controlled trial. BMC Rheumatology, 6(1). https://doi.org/10.1186/s41927-022-00277-9
  • Martinez-Martin, N. (2021). Minding the AI: Ethical Challenges and Practice for AI Mental Health Care Tools. In Advances in neuroethics (pp. 111–125). https://doi.org/10.1007/978-3-030-74188-4_8
  • Meyer, G. J., Finn, S. E., Eyde, L. D., Kay, G. G., Moreland, K. L., Dies, R. R., Eisman, E. J., Kubiszyn, T. W., & Reed, G. M. (2001). Psychological testing and psychological assessment: A review of evidence and issues. American Psychologist, 56(2), 128–165. https://doi.org/10.1037/0003-066x.56.2.128
  • Mhlanga, D. (2024). Artificial Intelligence in Elderly Care: Navigating Ethical and Responsible AI Adoption for Seniors. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4675564
  • Mittal, A., Dumka, L., & Mohan, L. (2023). A Comprehensive Review on the Use of Artificial Intelligence in Mental Health Care. 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), 15, 1–5. https://doi.org/10.1109/icccnt56998.2023.10308255
  • Modarres, M. H., Khazaie, V. R., Ghorbani, M., Ghoreyshi, A. M., AkhavanPour, A., Ebrahimpour, R., Vahabi, Z., Kalafatis, C., & Razavi, S. K. (2021). Early diagnosis of Alzheimer’s dementia with the artificial intelligence‐based Integrated Cognitive Assessment. Alzheimer S & Dementia, 16(S6). https://doi.org/10.1002/alz.042863
  • Mody, V., & Mody, V. (2019). Mental Health Monitoring System using Artificial Intelligence: A Review. 2022 IEEE 7th International Conference for Convergence in Technology (I2CT), 1–6. https://doi.org/10.1109/i2ct45611.2019.9033652
  • Moskowitz, D. S., & Young, S. N. (2006). Ecological momentary assessment: what it is and why it is a method of the future in clinical psychopharmacology. Journal of Psychiatry & Neuroscience, 31(1), 13–20.
  • Naglieri, J. A., & Graham, J. R. (2012). Current Status and Future Directions of Assessment Psychology. Handbook of Psychology, Second Edition. https://doi.org/10.1002/9781118133880.hop210025
  • Nandanwar, A., & Dutt, V. (2023). Assessing stress, anxiety, and depression with social robots via conversational AI. In Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments. https://doi.org/10.1145/3594806.3596589
  • Nasir, S., Khan, R. A., & Bai, S. (2024). Ethical Framework for Harnessing the Power of AI in Healthcare and Beyond. IEEE Access, 12, 31014–31035. https://doi.org/10.1109/access.2024.3369912
  • Nelson, B., McGorry, P. D., Wichers, M., Wigman, J. T. W., & Hartmann, J. A. (2017). Moving From Static to Dynamic Models of the Onset of Mental Disorder. JAMA Psychiatry, 74(5), 528. https://doi.org/10.1001/jamapsychiatry.2017.0001
  • Olawade, D. B., Wada, O. Z., Odetayo, A., David-Olawade, A. C., Asaolu, F., & Eberhardt, J. (2024). Enhancing mental health with Artificial Intelligence: Current trends and future prospects. Journal of Medicine Surgery and Public Health, 3, 100099. https://doi.org/10.1016/j.glmedi.2024.100099
  • Park, J., Choi, W., Jeong, T., & Seo, J. (2023). Digital twins and land management in South Korea. Land Use Policy, 124, 106442. https://doi.org/10.1016/j.landusepol.2022.106442
  • Pollack, M. E. (2005). Intelligent Technology for an Aging Population: The Use of AI to Assist Elders with Cognitive Impairment. AI Magazine, 26(2), 9–24. https://doi.org/10.1609/aimag.v26i2.1810
  • Rai, L., Boyle, R., Brosnan, L., Rice, H., Farina, F., Tarnanas, I., & Whelan, R. (2020). Digital Biomarkers Based Individualized Prognosis for People at Risk of Dementia: the AltoidaML Multi-site External Validation Study. Advances in Experimental Medicine and Biology, 157–171. https://doi.org/10.1007/978-3-030-32622-7_14
  • Ranade, A. G., Patel, M., & Magare, A. (2018). Emotion model for artificial intelligence and their applications. In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). https://doi.org/10.1109/pdgc.2018.8745840
  • Randall, N., Bennett, C. C., Šabanović, S., Nagata, S., Eldridge, L., Collins, S., & Piatt, J. A. (2019). More than just friends: in-home use and design recommendations for sensing socially assistive robots (SARs) by older adults with depression. Paladyn Journal of Behavioral Robotics, 10(1), 237–255. https://doi.org/10.1515/pjbr-2019-0020
  • Ray, A., Bhardwaj, A., Malik, Y. K., Singh, S., & Gupta, R. (2022). Artificial intelligence and Psychiatry: An overview. Asian Journal of Psychiatry, 70, 103021. https://doi.org/10.1016/j.ajp.2022.103021
  • Renn, B. N., Schurr, M., Zaslavsky, O., & Pratap, A. (2021). Artificial Intelligence: An Interprofessional Perspective on Implications for Geriatric Mental Health Research and Care. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.734909
  • Riboni, F. V., Comazzi, B., Bercovitz, K., Castelnuovo, G., Molinari, E., & Pagnini, F. (2020). Technologically-enhanced psychological interventions for older adults: a scoping review. BMC Geriatrics, 20(1). https://doi.org/10.1186/s12877-020-01594-9
  • Saadati, S. A., & Saadati, S. M. (2023). The role of chatbots in Mental Health Interventions: User experiences. AI And Tech in Behavioral and Social Sciences, 1(2), 19–25. https://doi.org/10.61838/kman.aitech.1.2.4
  • Sapci, A. H., & Sapci, H. A. (2019). Innovative Assisted Living Tools, Remote Monitoring Technologies, Artificial Intelligence-Driven Solutions, and Robotic Systems for Aging Societies: Systematic Review. JMIR Aging, 2(2), e15429. https://doi.org/10.2196/15429
  • Savoia, S. E., Stern, E. H., Salardini, A., & Dorai, C. (2021). Usability and functional validation of artificial intelligence‐enabled technology services in dementia care using a controlled trial in clinical practice. Alzheimer S & Dementia, 17(S7). https://doi.org/10.1002/alz.056547
  • Sharif, F., Masoudi, M., Ghanizadeh, A., Dabbaghmanesh, M. H., Ghaem, H., & Masoumi, S. (2014). The effect of cognitive-behavioral group therapy on depressive symptoms in people with type 2 diabetes: A randomized controlled clinical trial. Iran J Nurs Midwifery Res, 19(5), 529–536.
  • Shimada, K. (2023). The Role of Artificial Intelligence in Mental Health: A Review. Science Insights, 43(5), 1119–1127. https://doi.org/10.15354/si.23.re820
  • Shiwani, T., Relton, S., Evans, R., Kale, A., Heaven, A., Clegg, A., Abuzour, A., Alderman, J., Anand, A., Bhanu, C., Bunn, J., Collins, J., Cutillo, L., Hall, M., Keevil, V., Mitchell, L., Ogliari, G., Penfold, R., Van Oppen, J., . . . Todd, O. (2023). New Horizons in artificial intelligence in the healthcare of older people. Age And Ageing, 52(12). https://doi.org/10.1093/ageing/afad219
  • Solanki, P., Grundy, J., & Hussain, W. (2022). Operationalising ethics in artificial intelligence for healthcare: a framework for AI developers. AI And Ethics, 3(1), 223–240. https://doi.org/10.1007/s43681-022-00195-z
  • Spitzer, M., Dattner, I., & Zilcha-Mano, S. (2023). Digital twins and the future of precision mental health. Frontiers in Psychiatry, 14. https://doi.org/10.3389/fpsyt.2023.1082598
  • Stuck, R. E., & Walker, B. N. (2018). Human-Robot trust: Understanding user perceptions. In Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (pp. 325–326). Association for Computing Machinery. https://doi.org/10.1145/3173386.3176920
  • Taylor, H. O. (2020). Social Isolation’s Influence on Loneliness Among Older Adults. Clinical Social Work Journal, 48(1), 140–151. https://doi.org/10.1007/s10615-019-00737-9
  • Timmons, A. C., Duong, J. B., Fiallo, N. S., Lee, T., Vo, H. P. Q., Ahle, M. W., Comer, J. S., Brewer, L. C., Frazier, S. L., & Chaspari, T. (2022). A Call to Action on Assessing and Mitigating Bias in Artificial Intelligence Applications for Mental Health. Perspectives on Psychological Science, 18(5), 1062–1096. https://doi.org/10.1177/17456916221134490
  • Tsoi, K. K. F., Jia, P., Dowling, N. M., Titiner, J. R., Wagner, M., Capuano, A. W., & Donohue, M. C. (2022). Applications of artificial intelligence in dementia research. Cambridge Prisms Precision Medicine, 1. https://doi.org/10.1017/pcm.2022.10
  • Vallée, A. (2023). Digital twin for healthcare systems. Frontiers in Digital Health, 5. https://doi.org/10.3389/fdgth.2023.1253050
  • Wei, D. H., Hernandez, B., & Burdick, D. (2023). Artificial intelligence in mental health for the aging population: a scoping review. Innovation in Aging, 7(Supplement_1), 805. https://doi.org/10.1093/geroni/igad104.2598
  • Weiner, I. B. (2003). The Assessment Process. Handbook of Psychology, 1–25. https://doi.org/10.1002/0471264385.wei1001
  • Wright, A. G. C., & Hopwood, C. J. (2016). Advancing the Assessment of Dynamic Psychological Processes. Assessment, 23(4), 399–403. https://doi.org/10.1177/1073191116654760
  • Yan, Z., Wu, Y., Zhang, Y., & Chen, X. ’. (2022). EmoGlass: an End-to-End AI-Enabled Wearable Platform for Enhancing Self-Awareness of Emotional Health. CHI Conference on Human Factors in Computing Systems, 1–19. https://doi.org/10.1145/3491102.3501925
  • Yin, L., & Bickmore, T. (2018). Culturally-aware healthcare systems. In Intelligent Systems Reference Library (pp. 97–110). https://doi.org/10.1007/978-3-319-67024-9_5
  • Youngstrom, E. A., Van Meter, A., Frazier, T. W., Hunsley, J., Prinstein, M. J., Ong, M., & Youngstrom, J. K. (2017). Evidence‐based assessment as an integrative model for applying psychological science to guide the voyage of treatment. Clinical Psychology Science and Practice, 24(4), 331–363. https://doi.org/10.1111/cpsp.12207
  • Yousefi, Z., Saadati, N., & Saadati, S. A. (2023). AI in Elderly Care: Understanding the Implications for Independence and Social Interaction. AI And Tech in Behavioral and Social Sciences, 1(4), 26–32. https://doi.org/10.61838/kman.aitech.1.4.5
  • Zhang, H., Xu, Y., & Xu, Y. (2024). Association of diastolic and systolic blood pressure with depression: a cross-sectional study from NHANES 2005-2018. Frontiers in Psychiatry, 15. https://doi.org/10.3389/fpsyt.2024.1433990
  • Zhang, Y., Zheng, X. T., Zhang, X., Pan, J., & Thean, A. V. (2024). Hybrid Integration of Wearable Devices for Physiological Monitoring. Chemical Reviews, 124(18), 10386–10434. https://doi.org/10.1021/acs.chemrev.3c00471
There are 92 citations in total.

Details

Primary Language English
Subjects Clinical Psychology, Health Psychology, Psychology of Ageing
Journal Section Articles
Authors

Emre Şenol Durak 0000-0002-8065-1633

Publication Date December 30, 2024
Submission Date December 3, 2024
Acceptance Date December 26, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Şenol Durak, E. (2024). Harnessing Artificial Intelligence (AI) for Psychological Assessment and Treatment in Older Adults. Journal of Aging and Long-Term Care, 7(2), 55-82. https://doi.org/10.51819/jaltc.2024.1595910

For further assistance and more detailed information about the JALTC and the publishing process, please do not hesitate to contact the secretariat of the JALTC via sending an e-mail: editor-in-chief@jaltc.net

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

The National and Applied Gerontology Association (NASAG) is a leading non-profit organization in Türkiye that promotes healthy and productive aging via evidence-based research. The utilization of multidisciplinary and interdisciplinary research in gerontology is crucial in integrating research, practice, and policy, given the need for evidence-based programming to improve the quality of life in old age. As an advocate for social action for older people, the NASAG is particularly concerned that public policies are strongly and genuinely focused on supporting and protecting the most vulnerable, marginalized, or disadvantaged older people.

The NASAG has been a member of the International Association of Gerontology and Geriatrics (IAGG) since 2007.