Review
PDF Zotero Mendeley EndNote BibTex Cite

Genome Editing Techniques and Their Usability in Animal Breeding

Year 2020, Volume 3, Issue 2, 189 - 209, 27.12.2020

Abstract

New solutions are being produced for problems such as inadequate stock of agricultural products that can’t satisfy the food need due to rapid increase of the world population, adaptation difficulties arising in livestocks due to climate change and various diseases spreading each day. The use of genome editing techniques which is developing recently, has been recognized by scientists as a solution to these problems. Genome editing is the method of genomic modification which is generating double strand breaks with nucleases in a specific locus of the genome by repairing these double chain breaks with one of homologous recombination or nonhomologous recombination methods. By combining these methods with embryo transfer technology, the main purpose in animal breeding is increasing yield and quality of products as well as to increse animal welfare and resistance to diseases. In this study, it is aimed to explain the methods of genome editing and their application areas in animal breeding.

References

  • Akbudak, M.A., Kontbay, K. 2017. Yeni Nesil Genom Düzenleme Teknikleri: ZFN, TALEN, CRISPR’lar ve Bitkilerde Kullanımı. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 26(1), 111–111.
  • Anonim, 2010. Veteriner Hizmetleri, Bitki Sağlığı, Gıda ve Yem Kanunu. 13.06.2010 tarih ve 27610 sayılı Resmi Gazete.
  • Bevacqua, R.J., Fernandez-Martín, R., Savy, V., Canel, N.G., Gismondi, M.I., Kues, W.A., Carlson D.F., Fahrenkrug, S.C., Niemann, H., Taboga, O.A., Ferrais, S., Salamone, D.F. 2016. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology, 86(8), 1886–1896.
  • Bhat, S.A., Malik, A.A., Ahmad, S.M., Shah, R.A., Ganai, N.A., Shafi, S.S., & Shabir, N. 2017. Advances in genome editing for improved animal breeding: A review. Veterinary World, 10(11), 1361–1366.
  • Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.
  • Carlson D.F., Lancto C.A., Zang B., Kim E.S., Walton M., Oldeschulte D., Seabury C., Sonstegard T.S., Fahrenkrug S.C. 2016. Production of hornless dairy cattle from genome edited cell lines. Nat Biotechnol 34: 479–481.
  • Cho S.W., Kim S., Kim J.M. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(3): 230-232.
  • Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
  • Crispo M., Mulet A.P., Tesson L., Barrera N., Cuadro F., dos Santos- Neto P.C., Nguyen T.H., Creneguy A., Brusselle L., Anegon I. 2015. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLOS ONE, DOI:10.1371/journal.pone.0136690 August 25, 2015
  • Dimitrov L., Pedersen D., Ching K.H., Yi H., Collarini E.J., Izquierdo S., van de Lavoir M-C., Leighton P.A. 2016. Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells. PLOS ONE, :e0154303.
  • Eriksson. S., Jonas E., Rydhmer L., Röcklinsberg H. 2018. Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle. Journal of Dairy Science, 101(1), 1–17.
  • Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., Cui, C., Liu, X., Zhang, J., Zhang, Y. 2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 18(1), 1–15.
  • Hai T., Teng F., Guo R., Li W., Zhou Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375.
  • Hatada, I. 2017. Genome Editing in Animals. Vol. 1630. https://doi.org/10.1007/978-1-4939-7128-2.
  • Ishino, Y., Krupovic, M., & Forterre, P. 2018. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of Bacteriology, 200 (7): 1-17.
  • Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337:816–821.
  • Kambadur, R., Sharma, M., Smith, T.P.L., Bass, J.J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 7(9), 910–916.
  • Kim Y.G., Cha J., Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160
  • Lamb, B.M., Mercer, A.C., & Barbas, C.F. 2013. Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Research, 41(21), 9779–9785.
  • Lee K., Kwon D.N., Ezashi T., Choi Y.J., Park C., Ericsson A.C., Brown A.N., Samuel M.S., Park K.W., Walters E.M., Kim D.Y., Kim J.H., Franklin C.L., Murphy C.N., Roberts R.M., Prather R.S., Kim J.H.. 2014. Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA 111:7260–7265.
  • Lillico, S.G., Proudfoot, C., Carlson, D.F., Stverakova, D., Neil, C., Blain, C., King, T.J., Ritchie, W.A., Tan, W., Mileham, A.J., McLaren, D.G., Fahrenkrug, S.C., Whitelaw, C.B.A. 2013. Live pigs produced from genome edited zygotes. Scientific Reports, 3, 10–13.
  • Liu X., Wang Y., Guo W., Chang B., Liu J., Guo Z., Quan F., Zhang Y. 2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565.
  • Luo, J., Song, Z., Yu, S., Cui, D., Wang, B., Ding, F., Li, N. 2014. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS ONE, 9(4).
  • Mackay, T.F.C. 2004. The genetic architecture of quantitative traits: Lessons from Drosophila. Curr. Opin. Genet. Dev. 14:253–257.
  • McPherron A.C., Lawler A.M., Lee S.J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature,1;387(6628):83-90.
  • Nemudryi, A.A., Valetdinova, K.R., Medvedev, S.P., Zakian, S.M. 2014. TALEN and CRISPR / Cas Genome Editing Systems : Tools of Discovery. Acta Naturae, 6(22), 19–40.
  • Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., Chen, C. 2014. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE, 9(9), 1–8.
  • Oldenbroek K. 2014. Textbook Animal Breeding and Genetics For BSc Students, Wageningen University and Research Centre, Netherlands. pp:21-40.
  • Ota, Y., Saitoh, Y., Suzuki, S., Ozawa, K., Kawano, M., Imamura, T. 2002. Fibroblast growth factor 5 inhibits hair growth by blocking dermal papilla cell activation. Biochemical and Biophysical Research Communications, 290(1), 169–176. Özbey, G., Kalender, H., Muz, A. 2008. Sığır Tüberkülozu’nun Epidemiyolojisi ve Teşhisi. Fırat Üniversitesi Sağlık Bilimleri Dergisi, 22, 307-314.
  • Park T.S., Lee H.J., Kim K.H., Kim J-S., Han J.Y. 2014. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci,111:12716-12721.
  • Proudfoot, C., Carlson, D.F., Huddart, R., Long, C. R., Pryor, J.H., King, T.J., Fahrenkrug, S.C. 2015. Genome edited sheep and cattle. Transgenic Research, 24(1), 147–153.
  • Qian L., Tang M., Yang J., Wang Q., Cai C., Jiang S., Li H., Jiang K., Gao P., Ma D., Chen Y., An X., Li K., Cui W. 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435.
  • Ruan J., Xu, J., Yanru R., Li C.K. 2017. Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Research, 26(6), 715–726.
  • Sato M., Miyoshi K., Nagao Y., Nishi Y., Ohtsuka M., Nakamura S., Sakurai T., Watanabe S. 2014. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the alpha-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation, 21:291–300.
  • Sert, F. 2017. Genetik Cerrahi (DNA Ameliyatı) CRISPR-Cas9 Sistemi. Bezelye Popüler Genetik Bilim Dergisi, 2:20-21.
  • Şentürk B. 2015. Türkiye’de Salgın Hayvan Hastalık Sorunu ve Yeni Model Önerileri, Harran Üniv Vet Fak Derg, 4(1) 27-29. Tan, W., Proudfoot, C., Lillico, S.G., Whitelaw, C.B.A. 2016. Gene targeting, genome editing: From Dolly to editors. Transgenic Res. 25:273–287.
  • Van Eenennaam, A.L. 2017. Genetic modification of food animals. Current Opinion in Biotechnology, 44, 27–34.
  • Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B., Cai, B., Liu, J., Huang, S., Yan, H., Zhao, X., Zhou, G., He, X., Chen, X., Yang, Y., Jiang, Y., Shi, L., Tian, X., Wang, Y., Ma, B., Huang, X., Qu, L., Chen, Y. 2015a. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports, 5(September), 1–9.
  • Wang K., Ouyang H., Xie Z., Yao C., Guo N., Li M., Jiao H., Pang D. 2015b. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5:16623.
  • Wang, X., Cai, B., Zhou, J., Zhu, H., Niu, Y., Ma, B., Yu, H., Lei, A., Yan, H., Shen, Q., Shi, L., Zhao, X., Hua, J., Huang, X., Qu, L., Chen, Y. 2016. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS ONE, 11(10), 1–13.
  • Wei, J., Wagner, S., Lu, D., Maclean, P., Carlson, D.F., Fahrenkrug, S.C., Laible, G. 2015. Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Scientific Reports, 5, 1–12.
  • Whitworth K.M., Prather R.S. 2017. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev,84:926-933.
  • Whitworth, K.M., Lee, K., Benne, J.A., Beaton, B.P., Spate, L.D., Murphy,S.L., Samuel, M.S., Mao, J., O’Gorman, C., Walters, E.M., Murphy, C.N., Driver, J., Mileham, A., McLaren, D., Wells K.D., Prather, R.S. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction, 91(3), 78.
  • Wijshake, T., Baker, D.J., & van de Sluis, B. 2014. Endonucleases: New tools to edit the mouse genome. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1842(10), 1942–1950.
  • Wood R.J. 1973. Robert Bakewell (1725–1795), pioneer animal breeder, and his influence on Charles Darwin. Folia Mendeliana 58:231–242.
  • Wu H., Wang Y., Zhang Y., Yang M., Lv J., Liu J., Zhang Y. 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112:E1530–E1539.
  • Yao J., Huang J., Hai T., Wang X., Qin G., Zhang H., Wu R., Cao C., Xi J.J., Yuan Z., Zhao J. 2014. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep 4:6926.
  • Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y., Li, N. 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 21(11), 1638–1640.

Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği

Year 2020, Volume 3, Issue 2, 189 - 209, 27.12.2020

Abstract

Dünya nüfusunun hızla artmasıyla ortaya çıkan gıda ihtiyacını karşılayamayan tarımsal ürünlerin stok yetersizliği, iklim değişiklikleri sebebiyle çiftlik hayvanlarında ortaya çıkan adaptasyon güçlükleri ve yaygınlaşan çeşitli hastalıklar gibi problemler için her geçen gün yeni çözümler üretilmektedir. Son zamanlarda geliştirilen genom düzenleme tekniklerinin kullanımı ile bu sorunlara çözüm bulunabileceği bilim insanları tarafından kabul edilmektedir. Genom düzenleme, nükleazlar sayesinde genomda belirlenmiş bir yerden bölgeye özel DNA çift zincir kırıkları (DSB) oluşturduktan sonra homolog rekombinasyon (HDR) veya homolog olmayan rekombinasyon (NHEJ) yöntemlerinden biriyle çift zincir kırıkları tamir edilerek genom değişimini meydana getirebilme metodudur. Bu metotlar ile embriyo transfer teknolojisi birleştirilerek hayvan ıslahına uygulanmasında temel amaç, verim ve kaliteyi artırmanın yanında hayvan refahının arttırılması ve hastalıklara karşı direnç sağlanmasıdır. Bu çalışmada, genom düzenleme yöntemlerinin ve hayvancılıkta uygulama alanlarının açıklanması amaçlanmıştır.

References

  • Akbudak, M.A., Kontbay, K. 2017. Yeni Nesil Genom Düzenleme Teknikleri: ZFN, TALEN, CRISPR’lar ve Bitkilerde Kullanımı. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 26(1), 111–111.
  • Anonim, 2010. Veteriner Hizmetleri, Bitki Sağlığı, Gıda ve Yem Kanunu. 13.06.2010 tarih ve 27610 sayılı Resmi Gazete.
  • Bevacqua, R.J., Fernandez-Martín, R., Savy, V., Canel, N.G., Gismondi, M.I., Kues, W.A., Carlson D.F., Fahrenkrug, S.C., Niemann, H., Taboga, O.A., Ferrais, S., Salamone, D.F. 2016. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology, 86(8), 1886–1896.
  • Bhat, S.A., Malik, A.A., Ahmad, S.M., Shah, R.A., Ganai, N.A., Shafi, S.S., & Shabir, N. 2017. Advances in genome editing for improved animal breeding: A review. Veterinary World, 10(11), 1361–1366.
  • Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.
  • Carlson D.F., Lancto C.A., Zang B., Kim E.S., Walton M., Oldeschulte D., Seabury C., Sonstegard T.S., Fahrenkrug S.C. 2016. Production of hornless dairy cattle from genome edited cell lines. Nat Biotechnol 34: 479–481.
  • Cho S.W., Kim S., Kim J.M. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology, 31(3): 230-232.
  • Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823
  • Crispo M., Mulet A.P., Tesson L., Barrera N., Cuadro F., dos Santos- Neto P.C., Nguyen T.H., Creneguy A., Brusselle L., Anegon I. 2015. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLOS ONE, DOI:10.1371/journal.pone.0136690 August 25, 2015
  • Dimitrov L., Pedersen D., Ching K.H., Yi H., Collarini E.J., Izquierdo S., van de Lavoir M-C., Leighton P.A. 2016. Germline gene editing in chickens by efficient CRISPR-mediated homologous recombination in primordial germ cells. PLOS ONE, :e0154303.
  • Eriksson. S., Jonas E., Rydhmer L., Röcklinsberg H. 2018. Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle. Journal of Dairy Science, 101(1), 1–17.
  • Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., Cui, C., Liu, X., Zhang, J., Zhang, Y. 2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biology, 18(1), 1–15.
  • Hai T., Teng F., Guo R., Li W., Zhou Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375.
  • Hatada, I. 2017. Genome Editing in Animals. Vol. 1630. https://doi.org/10.1007/978-1-4939-7128-2.
  • Ishino, Y., Krupovic, M., & Forterre, P. 2018. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of Bacteriology, 200 (7): 1-17.
  • Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337:816–821.
  • Kambadur, R., Sharma, M., Smith, T.P.L., Bass, J.J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 7(9), 910–916.
  • Kim Y.G., Cha J., Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160
  • Lamb, B.M., Mercer, A.C., & Barbas, C.F. 2013. Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Research, 41(21), 9779–9785.
  • Lee K., Kwon D.N., Ezashi T., Choi Y.J., Park C., Ericsson A.C., Brown A.N., Samuel M.S., Park K.W., Walters E.M., Kim D.Y., Kim J.H., Franklin C.L., Murphy C.N., Roberts R.M., Prather R.S., Kim J.H.. 2014. Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA 111:7260–7265.
  • Lillico, S.G., Proudfoot, C., Carlson, D.F., Stverakova, D., Neil, C., Blain, C., King, T.J., Ritchie, W.A., Tan, W., Mileham, A.J., McLaren, D.G., Fahrenkrug, S.C., Whitelaw, C.B.A. 2013. Live pigs produced from genome edited zygotes. Scientific Reports, 3, 10–13.
  • Liu X., Wang Y., Guo W., Chang B., Liu J., Guo Z., Quan F., Zhang Y. 2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun 4:2565.
  • Luo, J., Song, Z., Yu, S., Cui, D., Wang, B., Ding, F., Li, N. 2014. Efficient generation of myostatin (MSTN) biallelic mutations in cattle using zinc finger nucleases. PLoS ONE, 9(4).
  • Mackay, T.F.C. 2004. The genetic architecture of quantitative traits: Lessons from Drosophila. Curr. Opin. Genet. Dev. 14:253–257.
  • McPherron A.C., Lawler A.M., Lee S.J. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature,1;387(6628):83-90.
  • Nemudryi, A.A., Valetdinova, K.R., Medvedev, S.P., Zakian, S.M. 2014. TALEN and CRISPR / Cas Genome Editing Systems : Tools of Discovery. Acta Naturae, 6(22), 19–40.
  • Ni, W., Qiao, J., Hu, S., Zhao, X., Regouski, M., Yang, M., Chen, C. 2014. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE, 9(9), 1–8.
  • Oldenbroek K. 2014. Textbook Animal Breeding and Genetics For BSc Students, Wageningen University and Research Centre, Netherlands. pp:21-40.
  • Ota, Y., Saitoh, Y., Suzuki, S., Ozawa, K., Kawano, M., Imamura, T. 2002. Fibroblast growth factor 5 inhibits hair growth by blocking dermal papilla cell activation. Biochemical and Biophysical Research Communications, 290(1), 169–176. Özbey, G., Kalender, H., Muz, A. 2008. Sığır Tüberkülozu’nun Epidemiyolojisi ve Teşhisi. Fırat Üniversitesi Sağlık Bilimleri Dergisi, 22, 307-314.
  • Park T.S., Lee H.J., Kim K.H., Kim J-S., Han J.Y. 2014. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci,111:12716-12721.
  • Proudfoot, C., Carlson, D.F., Huddart, R., Long, C. R., Pryor, J.H., King, T.J., Fahrenkrug, S.C. 2015. Genome edited sheep and cattle. Transgenic Research, 24(1), 147–153.
  • Qian L., Tang M., Yang J., Wang Q., Cai C., Jiang S., Li H., Jiang K., Gao P., Ma D., Chen Y., An X., Li K., Cui W. 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci Rep 5:14435.
  • Ruan J., Xu, J., Yanru R., Li C.K. 2017. Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Research, 26(6), 715–726.
  • Sato M., Miyoshi K., Nagao Y., Nishi Y., Ohtsuka M., Nakamura S., Sakurai T., Watanabe S. 2014. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the alpha-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation, 21:291–300.
  • Sert, F. 2017. Genetik Cerrahi (DNA Ameliyatı) CRISPR-Cas9 Sistemi. Bezelye Popüler Genetik Bilim Dergisi, 2:20-21.
  • Şentürk B. 2015. Türkiye’de Salgın Hayvan Hastalık Sorunu ve Yeni Model Önerileri, Harran Üniv Vet Fak Derg, 4(1) 27-29. Tan, W., Proudfoot, C., Lillico, S.G., Whitelaw, C.B.A. 2016. Gene targeting, genome editing: From Dolly to editors. Transgenic Res. 25:273–287.
  • Van Eenennaam, A.L. 2017. Genetic modification of food animals. Current Opinion in Biotechnology, 44, 27–34.
  • Wang, X., Yu, H., Lei, A., Zhou, J., Zeng, W., Zhu, H., Dong, Z., Niu, Y., Shi, B., Cai, B., Liu, J., Huang, S., Yan, H., Zhao, X., Zhou, G., He, X., Chen, X., Yang, Y., Jiang, Y., Shi, L., Tian, X., Wang, Y., Ma, B., Huang, X., Qu, L., Chen, Y. 2015a. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Scientific Reports, 5(September), 1–9.
  • Wang K., Ouyang H., Xie Z., Yao C., Guo N., Li M., Jiao H., Pang D. 2015b. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5:16623.
  • Wang, X., Cai, B., Zhou, J., Zhu, H., Niu, Y., Ma, B., Yu, H., Lei, A., Yan, H., Shen, Q., Shi, L., Zhao, X., Hua, J., Huang, X., Qu, L., Chen, Y. 2016. Disruption of FGF5 in cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS ONE, 11(10), 1–13.
  • Wei, J., Wagner, S., Lu, D., Maclean, P., Carlson, D.F., Fahrenkrug, S.C., Laible, G. 2015. Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Scientific Reports, 5, 1–12.
  • Whitworth K.M., Prather R.S. 2017. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev,84:926-933.
  • Whitworth, K.M., Lee, K., Benne, J.A., Beaton, B.P., Spate, L.D., Murphy,S.L., Samuel, M.S., Mao, J., O’Gorman, C., Walters, E.M., Murphy, C.N., Driver, J., Mileham, A., McLaren, D., Wells K.D., Prather, R.S. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction, 91(3), 78.
  • Wijshake, T., Baker, D.J., & van de Sluis, B. 2014. Endonucleases: New tools to edit the mouse genome. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1842(10), 1942–1950.
  • Wood R.J. 1973. Robert Bakewell (1725–1795), pioneer animal breeder, and his influence on Charles Darwin. Folia Mendeliana 58:231–242.
  • Wu H., Wang Y., Zhang Y., Yang M., Lv J., Liu J., Zhang Y. 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proc Natl Acad Sci USA 112:E1530–E1539.
  • Yao J., Huang J., Hai T., Wang X., Qin G., Zhang H., Wu R., Cao C., Xi J.J., Yuan Z., Zhao J. 2014. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci Rep 4:6926.
  • Yu, S., Luo, J., Song, Z., Ding, F., Dai, Y., Li, N. 2011. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 21(11), 1638–1640.

Details

Primary Language Turkish
Subjects Agricultural, Engineering
Journal Section Review Articles
Authors

Vasfiye KADER ESEN (Primary Author)
KOYUNCULUK ARAŞTIRMA ENSTİTÜSÜ MÜDÜRLÜĞÜ, BALIKESİR
0000-0003-0661-7688
Türkiye


İbrahim CEMAL
AYDIN ADNAN MENDERES ÜNİVERSİTESİ/ZİRAAT FAKÜLTESİ/ZOOTEKNİ BÖLÜMÜ/BİYOMETRİ VE GENETİK ANABİLİM DALI
0000-0002-4069-4815
Türkiye


Prof.dr. Cengiz ELMACI
BURSA ULUDAĞ ÜNİVERSİTESİ/ZİRAAT FAKÜLTESİ/ZOOTEKNİ BÖLÜMÜ/BİYOMETRİ VE GENETİK ANABİLİM DALI
0000-0003-4819-0221
Türkiye

Publication Date December 27, 2020
Published in Issue Year 2020, Volume 3, Issue 2

Cite

Bibtex @review { jasp795424, journal = {Hayvan Bilimi ve Ürünleri Dergisi}, issn = {}, eissn = {2667-4580}, address = {Mesut TÜRKOĞLU Zootekni Federasyonu Yönetim Kurulu Başkanı, Zootekni Federasyonu Tuna Caddesi Halk Sokak Kültür Apt. No: 20/7 Sıhhiye-Ankara}, publisher = {Federation for Animal Science (FAS)}, year = {2020}, volume = {3}, pages = {189 - 209}, doi = {}, title = {Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği}, key = {cite}, author = {Kader Esen, Vasfiye and Cemal, İbrahim and Elmacı, Prof.dr. Cengiz} }
APA Kader Esen, V. , Cemal, İ. & Elmacı, P. C. (2020). Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği . Hayvan Bilimi ve Ürünleri Dergisi , 3 (2) , 189-209 . Retrieved from https://dergipark.org.tr/en/pub/jasp/issue/58701/795424
MLA Kader Esen, V. , Cemal, İ. , Elmacı, P. C. "Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği" . Hayvan Bilimi ve Ürünleri Dergisi 3 (2020 ): 189-209 <https://dergipark.org.tr/en/pub/jasp/issue/58701/795424>
Chicago Kader Esen, V. , Cemal, İ. , Elmacı, P. C. "Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği". Hayvan Bilimi ve Ürünleri Dergisi 3 (2020 ): 189-209
RIS TY - JOUR T1 - Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği AU - Vasfiye Kader Esen , İbrahim Cemal , Prof.dr. Cengiz Elmacı Y1 - 2020 PY - 2020 N1 - DO - T2 - Hayvan Bilimi ve Ürünleri Dergisi JF - Journal JO - JOR SP - 189 EP - 209 VL - 3 IS - 2 SN - -2667-4580 M3 - UR - Y2 - 2020 ER -
EndNote %0 Journal of Animal Science and Products Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği %A Vasfiye Kader Esen , İbrahim Cemal , Prof.dr. Cengiz Elmacı %T Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği %D 2020 %J Hayvan Bilimi ve Ürünleri Dergisi %P -2667-4580 %V 3 %N 2 %R %U
ISNAD Kader Esen, Vasfiye , Cemal, İbrahim , Elmacı, Prof.dr. Cengiz . "Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği". Hayvan Bilimi ve Ürünleri Dergisi 3 / 2 (December 2020): 189-209 .
AMA Kader Esen V. , Cemal İ. , Elmacı P. C. Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği. JASP. 2020; 3(2): 189-209.
Vancouver Kader Esen V. , Cemal İ. , Elmacı P. C. Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği. Hayvan Bilimi ve Ürünleri Dergisi. 2020; 3(2): 189-209.
IEEE V. Kader Esen , İ. Cemal and P. C. Elmacı , "Genom Düzenleme Teknikleri ve Hayvan Islahında Kullanılabilirliği", Hayvan Bilimi ve Ürünleri Dergisi, vol. 3, no. 2, pp. 189-209, Dec. 2021


Indexed by:

Google Scholar        Directory of Research Journals Indexing       idealonline        19413        BASE (Bielefeld Academic Search Engine)        

Index Copernicus        Cite Factor        JournalTOCs

InfoBase Index        SIS Scientific Group        Food and Agriculture Organization of the United Nations

International Peer Reviewed Journal)
The journal doesn’t have APC or any submission charges.

Creative Commons License